4,016 research outputs found

    Review on qudits production and their application to Quantum Communication and Studies on Local Realism

    Full text link
    The codification in higher dimensional Hilbert Spaces (whose logical basis states are dubbed qudits in analogy with bidimensional qubits) presents various advantages both for Quantum Information applications and for studies on Foundations of Quantum Mechanics. Purpose of this review is to introduce qudits, to summarize their application to Quantum Communication and researches on Local Realism and, finally, to describe some recent experiment for realizing them. A Little more in details: after a short introduction, we will consider the advantages of testing local realism with qudits, discussing both the 3-4 dimensional case (both for maximally and non-maximally entanglement) and then the extension to an arbitrary dimension. Afterwards, we will discuss the theoretical results on using qudits for quantum communication, epitomizing the outcomes on a larger security in Quantum Key Distribution protocols (again considering separately qutrits, ququats and generalization to arbitrary dimension). Finally, we will present the experiments performed up to now for producing quantum optical qudits and their applications. In particular, we will mention schemes based on interferometric set-ups, orbital angular momentum entanglement and biphoton polarization. Finally, we will summarize what hyperentanglement is and its applications

    Uniqueness of N=2\mathcal{N}=2 and 33 pure supergravities in 4D

    Full text link
    After proving the impossibility of consistent non-minimal coupling of a real Rarita-Schwinger gauge field to electromagnetism, we re-derive the necessity of introducing the graviton in order to couple a complex Rarita-Schwinger gauge field to electromagnetism, with or without a cosmological term, thereby obtaining N=2{\cal N}=2 pure supergravity as the only possibility. These results are obtained with the BRST-BV deformation method around the flat and (A)dS backgrounds in 4 dimensions. The same method applied to nvn_{v} vectors, N{\cal N} real spin-3/2 gauge fields and at most one real spinor field also requires gravity and yields N=3{\cal N}=3 pure supergravity as well as N=1{\cal N}=1 pure supergravity coupled to a vector supermultiplet, with or without cosmological terms. Independently from the matter content, we finally derive strong necessary quadratic constraints on the possible gaugings for an arbitrary number of spin-1 and spin-3/2 gauge fields, that are relevant for larger supergravities.Comment: LaTeX, 31 + 1 pages, no figure. v2: Extended discussion at the end of Section 3, corrected typos and references adde

    Large Graph Analysis in the GMine System

    Full text link
    Current applications have produced graphs on the order of hundreds of thousands of nodes and millions of edges. To take advantage of such graphs, one must be able to find patterns, outliers and communities. These tasks are better performed in an interactive environment, where human expertise can guide the process. For large graphs, though, there are some challenges: the excessive processing requirements are prohibitive, and drawing hundred-thousand nodes results in cluttered images hard to comprehend. To cope with these problems, we propose an innovative framework suited for any kind of tree-like graph visual design. GMine integrates (a) a representation for graphs organized as hierarchies of partitions - the concepts of SuperGraph and Graph-Tree; and (b) a graph summarization methodology - CEPS. Our graph representation deals with the problem of tracing the connection aspects of a graph hierarchy with sub linear complexity, allowing one to grasp the neighborhood of a single node or of a group of nodes in a single click. As a proof of concept, the visual environment of GMine is instantiated as a system in which large graphs can be investigated globally and locally

    Techniques for effective and efficient fire detection from social media images

    Get PDF
    Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFDnR), which combines feature extractor and evaluation functions to support instance-based learning, (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences -- the FlickrFire dataset, and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFDnR was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.Comment: 12 pages, Proceedings of the International Conference on Enterprise Information Systems. Specifically: Marcos Bedo, Gustavo Blanco, Willian Oliveira, Mirela Cazzolato, Alceu Costa, Jose Rodrigues, Agma Traina, Caetano Traina, 2015, Techniques for effective and efficient fire detection from social media images, ICEIS, 34-4

    The conjugacy problem of the modular group and the class number of real quadratic number fields

    Get PDF
    AbstractWe shall discuss the conjugacy problem of the modular group, and show how its solution, in conjunction with a theorem of Olga Taussky can be used to compute the class number of certain real quadratic number fields

    Resolving the Multiple Birth Epidemic

    Get PDF
    • …
    corecore