584 research outputs found

    Predictability of biomass burning in response to climate changes

    Get PDF
    Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming

    Testing the Hypothesis of Fire Use for Ecosystem Management by Neanderthal and Upper Palaeolithic Modern Human Populations

    Get PDF
    BACKGROUND: It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success. We would expect, if extensive fire use for ecosystem management were a component of the modern human technical and cognitive package, as suggested for Australia, to find major disturbances in the natural biomass burning variability associated with the colonisation of Europe by Modern Humans. METHODOLOGY/PRINCIPAL FINDINGS: Analyses of microcharcoal preserved in two deep-sea cores located off Iberia and France were used to reconstruct changes in biomass burning between 70 and 10 kyr cal BP. Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load. No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40-10 kyr cal BP). CONCLUSIONS/SIGNIFICANCE: Results indicate that either Neanderthals and Modern humans did not influence fire regime or that, if they did, their respective influence was comparable at a regional scale, and not as pronounced as that observed in the biomass burning history of Southeast Asia

    Increased aridity in southwestern Africa during the warmest periods of the last interglacial

    Get PDF
    Open access journalTerrestrial and marine climatic tracers from marine core MD96-2098 were used to reconstruct glacial-interglacial climate variability in southwestern Africa between 194 and 24 thousand years before present. The pollen record documented three pronounced expansions of Nama-Karoo and fine-leaved savanna during the last interglacial (Marine Isotopic Stage 5 – MIS 5). These Nama-Karoo and fine-leaved savanna expansions were linked to increased aridity during the three warmest substadials of MIS 5. Enhanced aridity potentially resulted from a combination of reduced Benguela Upwelling , expanded subtropical high-pressure cells, and reduced austral-summer precipitation due to a northward shift of the Intertropical Convergence Zone. Decreased austral-winter precipitation was likely linked to a southern displacement of the westerlies. In contrast, during glacial isotopic stages MIS 6, 4 and 3, Fynbos expanded at the expense of Nama-Karoo and fine-leaved savanna indicating a relative increase in precipitation probably concentrated during the austral winter months. Our record also suggested that warm-cold or cold-warm transitions between isotopic stages and substages were punctuated by short increases in humidity. Increased aridity during MIS 5e, 5c and 5a warm substages coincided with minima in both precessional index and global ice volume. On the other hand, austral-winter precipitation increases were associated with precession maxima at the time of well-developed northern-hemisphere ice caps.European Research Counci

    Les séries fluvio-éoliennes du "Cutler Group" :: Permien (Utah, USA). Modèle architectural et expression des unités génétiques

    No full text
    National audienceL'essor qu'a connu la stratigraphie séquentielle dans les environnements continentaux a permis de définir des modèles architecturaux pour des séries fluvio-lacustres. Plus récemment, les modèles proposés ont intégré les dépôts éoliens dans les systèmes continentaux côtiers ou lacustres (préservation de l'éolien vs variations de la table d'eau, e.g. Carr-Crabaugh & Kocurek, 1998) ou dans les systèmes continentaux endoréiques (préservation de l'éolien vs climat (e.g. Clemmensen et al., 1998) ou préservation de l'éolien vs accommodation et flux de sédiments, e.g. Bourquin et al., 2009). Cependant, peu de modèles discutent les variations de préservation des dépôts éoliens par rapport aux environnements continentaux associés (fluvial, lac, playa) afin de prédire un modèle architectural des dépôts éoliens (du réservoir au bassin) en fonction du contexte géodynamique. L'objectif de cet exposé est de contraindre l'expression des unités génétiques et de proposer un modèle architectural montrant les variations de préservation des dépôts éoliens en fonction du contexte tectonique, climatique et eustatique. L'étude des séries du Permien inférieur, " Cutler Group ", du " Paradox Basin " (SE Utah), caractérisées par des dépôts fluvio-éoliens (e.g. Condon, 1997), a été réalisée à partir de 5 sections sédimentologiques. Elles sont localisées sur un profil proximal représenté par des dépôts dominés fluvial jusqu'à des dépôts dominés éolien dans le domaine distal (e.g. Mountney & Jagger, 2004). Une étude sédimentologique et stratigraphique détaillée permet de proposer une évolution spatiale et temporelle des environnements de dépôt. Nous avons ainsi mis en évidence (1) les variations d'expression des unités génétiques d'un environnement proximal à un environnement distal en climat semi-aride, (2) plusieurs modèles architecturaux montrant l'évolution verticale depuis un contexte de bassin côtier, à dunes éoliennes faiblement préservées, vers des environnements plus continentaux dominés éolien puis vers des systèmes fluvio-lacustres à faible préservation des dépôts éoliens

    LiTaO3/Silicon Composite Wafers for the Fabrication of Low Loss Low TCF High Coupling Resonators for Filter Applications

    Get PDF
    AbstractSAW devices are widely used for radio-frequency (RF) telecommunication filtering and the number of SAW filters, resonators or duplexers is still increasing in RF stage of cellular phones. Therefore, a strong effort is still dedicated to reduce as much as possible their sensitivity to environmental parameter and more specifically to temperature. Bounding processes have been developed at FEMTO-ST and CEA-LETI using either Au/Au or direct bonding techniques for the fabrication of composite wafers combining materials with very different thermoelastic properties, yielding innovative solutions for about-zero temperature coefficient of frequency (TCF) bulk acoustic wave devices. In the present work, this approach has been applied to (YXl)/42∘ lithium tantalate plates, bounded onto (100) silicon wafers and thinned down to 25μm. The leading idea already explored by other groups as mentioned in introduction consists in impeding the thermal expansion of the piezoelectric material using silicon limited expansion. 2GHz resonators have been built on such plates and tested electrically and thermally, first by tip probing. A dramatic reduction of the TCF is observed for all the tested devices, allowing to reduce the thermal drift of the resonators down to a few ppm.K-1 within the standard temperature range. We then propose an analysis of the frequency-temperature behavior of the device to improve the resonator design to use these wafers for industrial applications

    Theoretical analysis of damping effects of guided elastic waves at solid/fluid interfaces

    No full text
    International audienceA theoretical description of ideal and viscous fluid media is proposed to address the problem of modeling damping effects of surface acoustic waves and more generally of any guided elastic waves at the interface between viscous fluids and solids. It is based on the Fahmy-Adler eigenvalue representation of the elastic propagation problem, adapted to provide Green's function of the considered media. It takes advantage of previous efforts developed to numerically stabilize Green's-function computation process. This function is used to compute a harmonic admittance according to the Blötekjaër approach. The influence of acoustic radiation and viscosity effects on different kinds of waves excited on various substrates is reported and discussed

    Orbital-scale climate forcing of grassland burning in southern Africa.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.We thank Linda Rossignol for picking the foraminifera for carbon radiometric dating, Olivier Ther for XRF analysis, Marie-Hélène Castera and Muriel Georget for laboratory assistance, V. Hanquiez for extracting bathymetric data, Thibault Caley for providing the East African monsoon regression model data, Lydie Dupont for sharing the pollen data of cores GeoB1711 and MD96-2048, and Louis Scott for providing Wonderkrater’s charcoal data. This research was funded by European Research Council Advanced Grant TRACSYMBOLS 249587. The postdoctoral position of A.-L.D was funded by this project

    Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4

    Get PDF
    Open access journalhe relationships between climate, vegetation and fires are a major subject of investigation in the context of climate change. In southern Africa, fire is known to play a crucial role in the existence of grasslands and Mediterranean-type biomes. Microcharcoal-based reconstructions of past fire activity in that region have shown a tight correlation between grass-fueled fires and the precessional cycle, with maximum fire activity during maxima of the climatic precession index. These changes have been interpreted as the result of changes in fuel load in response to precipitation changes in eastern southern Africa. Here we use the general circulation model IPSL_CM5A (Institut Pierre Simon Laplace Climate Model version 5A) and the dynamic vegetation model LPJ-LMfire to investigate the response of climate, vegetation and fire activity to precession changes in southern Africa during marine isotopic stage 4 (74–59 kyr BP). We perform two climatic simulations, for a maximum and minimum of the precession index, and use a statistical downscaling method to increase the spatial resolution of the IPSL_CM5A outputs over southern Africa and perform high-resolution simulations of the vegetation and fire activity. Our results show an anticorrelation between the northern and southern African monsoons in response to precession changes. A decrease of the precession climatic index leads to a precipitation decrease in the summer rainfall area of southern Africa. The drying of climate leads to a decrease of vegetation cover and fire activity. Our results are in qualitative agreement with data and confirm that fire activity in southern Africa during MIS4 is mainly driven by vegetation cover.European Research Counci
    • …
    corecore