1,453 research outputs found

    Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.

    Get PDF
    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena

    Mechanical Stress Inference for Two Dimensional Cell Arrays

    Get PDF
    Many morphogenetic processes involve mechanical rearrangement of epithelial tissues that is driven by precisely regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the targets of regulation, but are themselves likely signals that coordinate developmental process. Yet, because it is difficult to directly measure mechanical stress {\it in vivo} on sub-cellular scale, little is understood about the role of mechanics of development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the {\it Drosophila} embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics

    Secular Evolution and the Formation of Pseudobulges in Disk Galaxies

    Full text link
    We review internal processes of secular evolution in galaxy disks, concentrating on the buildup of dense central features that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. As an existence proof, we review how bars rearrange disk gas into outer rings, inner rings, and gas dumped into the center. In simulations, this gas reaches high densities that plausibly feed star formation. In the observations, many SB and oval galaxies show central concentrations of gas and star formation. Star formation rates imply plausible pseudobulge growth times of a few billion years. If secular processes built dense central components that masquerade as bulges, can we distinguish them from merger-built bulges? Observations show that pseudobulges retain a memory of their disky origin. They have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) large ratios of ordered to random velocities indicative of disk dynamics, (3) small velocity dispersions, (4) spiral structure or nuclear bars in the bulge part of the light profile, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be rapid. So the cleanest examples of pseudobulges are recognizable. Thus a large variety of observational and theoretical results contribute to a new picture of galaxy evolution that complements hierarchical clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Contributions of the MyD88-Dependent Receptors IL-18R, IL-1R, and TLR9 to Host Defenses following Pulmonary Challenge with Cryptococcus neoformans

    Get PDF
    Signaling via the adapter protein, MyD88, is important in the host defense against Cryptococcus neoformans infection. While certain Toll-like receptors (TLRs) can enhance the clearance of Cryptococcus, the contributions of MyD88-dependent, TLR-independent pathways have not been fully investigated. We examined the roles of IL-1R and IL-18R in vivo by challenging C57BL/6 mice with a lethal strain of Cryptococcus. We found that the absence of IL-18R, but not IL-1R, causes a shift in the survival curve following pulmonary delivery of a virulent strain of C. neoformans (H99). Specifically, IL-18R-deficient mice have significantly shorter median survival times compared to wild-type mice following infection. Cytokine analysis of lung homogenates revealed that deficiency of IL-IR, IL-18R, or MyD88 is associated with diminished lung levels of IL-1ÎČ. In order to compare these findings with those related to TLR-deficiency, we studied the effects of TLR9-deficiency and found that deficiency of TLR9 also affects the survival curve of mice following challenge with C. neoformans. Yet the lungs from infected TLR9-deficient mice have robust levels of IL-1ÎČ. In summary, we found that multiple signaling components can contribute the MyD88-dependent host responses to cryptococcal infection in vivo and each drives distinct pulmonary responses

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Psychiatric diagnoses, trauma, and suicidiality

    Get PDF
    BACKGROUND: This study aimed to examine the associations between psychiatric diagnoses, trauma and suicidiality in psychiatric patients at intake. METHODS: During two months, all consecutive patients (n = 139) in a psychiatric hospital in Western Norway were interviewed (response rate 72%). RESULTS: Ninety-one percent had been exposed to at least one trauma; 69 percent had been repeatedly exposed to trauma for longer periods of time. Only 7% acquired a PTSD diagnosis. The comorbidity of PTSD and other psychiatric diagnoses were 78%. A number of diagnoses were associated with specific traumas. Sixty-seven percent of the patients reported suicidal thoughts in the month prior to intake; thirty-one percent had attempted suicide in the preceding week. Suicidal ideation, self-harming behaviour, and suicide attempts were associated with specific traumas. CONCLUSION: Traumatised patients appear to be under- or misdiagnosed which could have an impact on the efficiency of treatment

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore