127 research outputs found

    The intrinsic features of the specific heat at half-filled Landau levels of two-dimensional electron systems

    Full text link
    The specific heat capacity of a two-dimensional electron gas is derived for two types of the density of states, namely, the Dirac delta function spectrum and that based on a Gaussian function. For the first time, a closed form expression of the specific heat for each case is obtained at half-filling. When the chemical potential is temperature-independent, the temperature is calculated at which the specific heat is a maximum. Here the effects of the broadening of the Landau levels are distinguished from those of the different filling factors. In general, the results derived herein hold for any thermodynamic system having similar resonant states.Comment: 11 pages, 1 figure, to appear in J Low Temp Phys (2010

    Persistent spin splitting of a two-dimensional electron gas in tilted magnetic fields

    Full text link
    By varying the orientation of the applied magnetic field with respect to the normal of a two-dimensional electron gas, the chemical potential and the specific heat reveal persistent spin splitting in all field ranges. The corresponding shape of the thermodynamic quantities distinguishes whether the Rashba spin-orbit interaction RSOI, the Zeeman term or both dominate the splitting. The interplay of the tilting of the magnetic field and RSOI resulted to an amplified splitting in weak fields. The effects of changing the RSOI strength and the Landau level broadening are also investigated.Comment: 10 pages, 5 figure

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻Âč of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqÎł coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tÎł production via a left-handed (right-handed) tuÎł coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tÎł production via a left-handed (right-handed) tcÎł coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported
    • 

    corecore