45 research outputs found

    A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements

    Get PDF
    In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I–VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers’ views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. <it>Panagrolaimus superbus </it>is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that <it>P. superbus </it>uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis.</p> <p>Results</p> <p>To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of <it>P. superbus</it>. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at <url>http://www.nematodes.org/nembase4/species_info.php?species=PSC</url>. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from <it>P. superbus</it>. Notable among those is a putative lineage expansion of the <it>lea </it>(late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific <it>sxp/ral-2 </it>family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from <it>Phytophthora infestans</it>. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This <it>P. superbus </it>sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants <it>glutathione peroxidase, dj-1 </it>and <it>1-Cys peroxiredoxin</it>, an <it>shsp </it>sequence and an <it>lea </it>gene.</p> <p>Conclusions</p> <p><it>P. superbus </it>appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of <it>lea </it>genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of <it>P. superbus</it>.</p

    In vitro cultures of resurrection fern – Polypodium vulgare L.

    No full text

    Preliminary results on studies of in vivo and in vitro sexual reproduction of Salix viminalis L.

    No full text
    In vivo and in vitro self-pollination of whole pistils of some clones of Salix viminalis enabled to obtain mature seeds containing cotyledonary embryos which after the transfer to MS medium developed into wholly formed seedlings. Pollination in vitro of placentae led to abundant pollen germination and formation of tubes which occasionally they were entering the ovules through micropyle. Fertilized ovules normally developed into germinable seeds. Distant pollination of stigmas in vivo and in vitro with pollen grains of Populus tremula, P.tomentosa, P. lasiocarpa showed the ability of pollen to germinate and to form tubes several hours after pollination. Some tubes penetrated the styles but did not enter into the placenta. When placentae were directly pollinated than pollen germinated abundantly and occasionally pollen tubes were found entering the micropyle. Embryological analysis of those ovules performed 3-5 days after pollination demonstrated the presence of globular embryos with several endosperm nuclei. The technique of in vitro placental pollination works well for Salix viminalis and it could probably be applied to other Salix species

    Regulation of thiol metabolism as a factor that influences the development and storage capacity of beech seeds.

    No full text
    Ratajczak E, Staszak AM, Wojciechowska N, Bagniewska-Zadworna A, Dietz K-J. Regulation of thiol metabolism as a factor that influences the development and storage capacity of beech seeds. Journal of plant physiology. 2019;239:61-70.Seeds are the basis of propagation for the common beech (Fagus sylvatica L.), but the seed set of the beech is unsteady, with 5-10 years between abundant crops. Beech seeds are very difficult to store and lose their viability quickly even in optimum storage conditions. To date, it has not been possible to determine factors indicative of the aging process and the loss of viability of beech seeds during storage. To address this important economic challenge and interesting scientific problem, we analyzed the adjustment of the redox state during the development and storage of seeds. Many metabolic processes are based on reduction and oxidation reactions. Thiol proteins control and react to the redox state in the cells. The level of thiol proteins increased during seed maturation and decreased during storage. Gel-based redox proteomics identified 17 proteins in beech seeds during development. The proteins could be assigned to processes like metabolism and antioxidant functions. During storage, the number of proteins decreased to only six, i.e., oxidoreductases, peptidases, hydrolases and isomerases. The occurrence of peroxiredoxins (PRX) as thiol peroxidases and redox regulators indicates an important role of cytosolic 1CysPRX and PRXIIC, mitochondrial PRXIIF, and plastidic PRXIIE, 2CysPRX, and PRXQ in beech seeds during development and storage. Particularly, 2CysPRX was present in beech seeds during development and storage and may perform an important function in regulation of the redox state during both seed development and storage. The role of thiol proteins in the regulation of the redox state during the development and storage of beech seeds is discussed. Copyright © 2019. Published by Elsevier GmbH
    corecore