131 research outputs found

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Metaheuristic and Multiobjective Approaches for Space Allocation

    Get PDF
    This thesis presents an investigation on the application of metaheuristic techniques to tackle the space allocation problem in academic institutions. This is a combinatorial optimisation problem which refers to the distribution of the available room space among a set of entities (staff, research students, computer rooms, etc.) in such a way that the space is utilised as efficiently as possible and the additional constraints are satisfied as much as possible. The literature on the application of optimisation techniques to approach the problem mentioned above is scarce. This thesis provides a description and formulation of the problem. It also proposes and compares a range of heuristics for the initialisation of solutions and for neighbourhood exploration. Four well-known metaheuristics (iterative improvement, simulated annealing, tabu search and genetic algorithms) are adapted and tuned for their application to the problem investigated here. The performance of these techniques is assessed and benchmark results are obtained. Also, hybrid approaches are designed that produce sets of high quality and diverse solutions in much shorter time than those required by space administrators who construct solutions manually. The hybrid approaches are also adapted to tackle the space allocation problem from a two-objective perspective. It is also revealed that the use of aggregating functions or relaxed dominance to evaluate solutions in Pareto optimisation, can be more beneficial than the standard dominance relation to enhance the performance of some multiobjective optimisers in some problem domains. A range of single-solution metaheuristics are extended to create hybrid evolutionary approaches based on the scheme of cooperative local search. This scheme promotes the cooperation of a population of local searchers by means of mechanisms to share the information gained during the search. This thesis also reports the best results known so far for a set of test instances of the space allocation problem in academic institutions. This thesis pioneers the application of metaheuristics to solve the space allocation problem. The major contributions are: provides a formulation of the problem together with tests data sets, reports the best known results for these test instances, investigates the multiobjective nature of the problem and proposes a new form of hybridising metaheuristics

    Metaheuristic and Multiobjective Approaches for Space Allocation

    Get PDF
    This thesis presents an investigation on the application of metaheuristic techniques to tackle the space allocation problem in academic institutions. This is a combinatorial optimisation problem which refers to the distribution of the available room space among a set of entities (staff, research students, computer rooms, etc.) in such a way that the space is utilised as efficiently as possible and the additional constraints are satisfied as much as possible. The literature on the application of optimisation techniques to approach the problem mentioned above is scarce. This thesis provides a description and formulation of the problem. It also proposes and compares a range of heuristics for the initialisation of solutions and for neighbourhood exploration. Four well-known metaheuristics (iterative improvement, simulated annealing, tabu search and genetic algorithms) are adapted and tuned for their application to the problem investigated here. The performance of these techniques is assessed and benchmark results are obtained. Also, hybrid approaches are designed that produce sets of high quality and diverse solutions in much shorter time than those required by space administrators who construct solutions manually. The hybrid approaches are also adapted to tackle the space allocation problem from a two-objective perspective. It is also revealed that the use of aggregating functions or relaxed dominance to evaluate solutions in Pareto optimisation, can be more beneficial than the standard dominance relation to enhance the performance of some multiobjective optimisers in some problem domains. A range of single-solution metaheuristics are extended to create hybrid evolutionary approaches based on the scheme of cooperative local search. This scheme promotes the cooperation of a population of local searchers by means of mechanisms to share the information gained during the search. This thesis also reports the best results known so far for a set of test instances of the space allocation problem in academic institutions. This thesis pioneers the application of metaheuristics to solve the space allocation problem. The major contributions are: provides a formulation of the problem together with tests data sets, reports the best known results for these test instances, investigates the multiobjective nature of the problem and proposes a new form of hybridising metaheuristics

    An ACO-based Hyper-heuristic for Sequencing Many-objective Evolutionary Algorithms that Consider Different Ways to Incorporate the DM's Preferences

    Get PDF
    Many-objective optimization is an area of interest common to researchers, professionals, and practitioners because of its real-world implications. Preference incorporation into Multi-Objective Evolutionary Algorithms (MOEAs) is one of the current approaches to treat Many-Objective Optimization Problems (MaOPs). Some recent studies have focused on the advantages of embedding preference models based on interval outranking into MOEAs; several models have been proposed to achieve it. Since there are many factors influencing the choice of the best outranking model, there is no clear notion of which is the best model to incorporate the preferences of the decision maker into a particular problem. This paper proposes a hyper-heuristic algorithm—named HyperACO—that searches for the best combination of several interval outranking models embedded into MOEAs to solve MaOPs. HyperACO is able not only to select the most appropriate model but also to combine the already existing models to solve a specific MaOP correctly. The results obtained on the DTLZ and WFG test suites corroborate that HyperACO can hybridize MOEAs with a combined preference model that is suitable to the problem being solved. Performance comparisons with other state-of-the-art MOEAs and tests for statistical significance validate this conclusion

    Evaluating Particle Swarm Intelligence Techniques for Solving University Examination Timetabling Problems

    Get PDF
    The purpose of this thesis is to investigate the suitability and effectiveness of the Particle Swarm Optimization (PSO) technique when applied to the University Examination Timetabling problem. We accomplished this by analyzing experimentally the performance profile-the quality of the solution as a function of the execution time-of the standard form of the PSO algorithm when brought to bear against the University Examination Timetabling problem. This study systematically investigated the impact of problem and algorithm factors in solving this particular timetabling problem and determined the algorithm\u27s performance profile under the specified test environment. Keys factors studied included problem size (i.e., number of enrollments), conflict matrix density, and swarm size. Testing used both real world and fabricated data sets of varying size and conflict densities. This research also provides insight into how well the PSO algorithm performs compared with other algorithms used to attack the same problem and data sets. Knowing the algorithm\u27s strengths and limitations is useful in determining its utility, ability, and limitations in attacking timetabling problems in general and the University Examination Timetabling problem in pal1icular. Finally, two additional contributions were made during the course of this research: a better way to fabricate examination timetabling data sets and the introduction of the PSO-No Conflicts optimization approach. Our new data set fabrication method produced data sets that were more representative of real world examination timetabling data sets and permitted us to construct data sets spanning a wide range of sizes and densities.· The newly derived PSO-No Conflicts algorithm permitted the PSO algorithm to perform searches while still satisfying constraints

    Problema de atribuição de vigilâncias de exames a docentes

    Get PDF
    O presente trabalho foi realizado com o intuito de resolver o problema de alocação de vigilantes a exames do Instituto Superior de Engenharia do Porto, no departamento de Engenharia Mecânica. O modelo apresentado faz a atribuição das vigilâncias de uma forma hierárquica, utilizando vários critérios, desde a regência da unidade curricular até à simples vigilância. Devido ao facto de estar implementado informaticamente, apresenta reduzidos tempos na formulação e obtenção de uma solução, o que o torna uma boa ferramenta para a criação de cenários alternativos. Em suma, o modelo proposto neste trabalho apresenta soluções de melhor qualidade, em que a distribuição de afetações é proporcional entre os docentes, e o seu tempo de obtenção é muito reduzido em comparação com a alternativa atual.The present study was performed in order to solve the problem of allocating vigilantes to examinations in the Instituto Superior de Engenharia do Porto, in the department of Mechanical Engineering. The model presented makes the allocation of surveillances in a hierarchical manner, using various criteria, since the regency of course to the simple vigilance. Due to it being implemented on a computer, the model presents reduced time in formulating and obtaining a solution, which makes it a good tool for the creation of alternative scenarios. In sum, the proposed model presents better quality solutions, in which the distribution of the affectations is equitable among teachers, and require much less time to obtain compared to the current alternative

    Metaheuristics for university course timetabling.

    Get PDF
    The work presented in this thesis concerns the problem of timetabling at universities – particularly course-timetabling, and examines the various ways in which metaheuristic techniques might be applied to these sorts of problems. Using a popular benchmark version of a university course timetabling problem, we examine the implications of using a “twostaged” algorithmic approach, whereby in stage-one only the mandatory constraints areconsidered for satisfaction, with stage-two then being concerned with satisfying the remaining constraints but without re-breaking any of the mandatory constraints in the process. Consequently, algorithms for each stage of this approach are proposed and analysed in detail.For the first stage we examine the applicability of the so-called Grouping Genetic Algorithm (GGA). In our analysis of this algorithm we discover a number of scaling-upissues surrounding the general GGA approach and discuss various reasons as to why this is so. Two separate ways of enhancing general performance are also explored. Secondly, an Iterated Heuristic Search algorithm is also proposed for the same problem, and in experiments it is shown to outperform the GGA in almost all cases. Similar observations to these are also witnessed in a second set of experiments, where the analogous problem of colouring equipartite graphs is also considered.Two new metaheuristic algorithms are also proposed for the second stage of the twostaged approach: an evolutionary algorithm (with a number of new specialised evolutionaryoperators), and a simulated annealing-based approach. Detailed analyses of both algorithms are presented and reasons for their relative benefits and drawbacks are discussed.Finally, suggestions are also made as to how our best performing algorithms might be modified in order to deal with further “real-world” constraints. In our analyses of these modified algorithms, as well as witnessing promising behaviour in some cases, we are also able to highlight some of the limitations of the two-stage approach in certain cases
    corecore