
Landa Silva, Jesus Dario (2003) Metaheuristic and 
Multiobjective Approaches for Space Allocation. PhD 
thesis, University of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/10147/1/JDLSPHDTHESIS.PDF

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


 

METAHEURISTIC AND MULTIOBJECTIVE  

APPROACHES FOR SPACE ALLOCATION 

 

 

by Jesus Dario Landa Silva, BEng, MSc 

 

 

 

 

Thesis submitted to the University of Nottingham  

for the degree of Doctor in Philosophy 

School of Computer Science and Information Technology 

November 2003 

 



Table of Contents 

 2 

TABLE OF CONTENTS 

List of Figures ------------------------------------------------------------------------------ 6 

List of Tables ------------------------------------------------------------------------------- 8 

Abstract -------------------------------------------------------------------------------------- 9 

Aknowledgements ------------------------------------------------------------------------- 10 

1. INTRODUCTION  

1.1.Background and Motivation ------------------------------------------------------------- 12 

1.2.Aims and Scope --------------------------------------------------------------------------- 14 

1.3.Overview of this Thesis ------------------------------------------------------------------ 15 

1.4.Contributions of this Thesis ------------------------------------------------------------- 17 

2. THE SPACE ALLOCATION PROBLEM  

2.1.Introduction -------------------------------------------------------------------------------- 18 

2.2.Related Problems ------------------------------------------------------------------------- 19 

2.2.1.Multiple Knapsack Problem ---------------------------------------------------- 19 

2.2.2.Generalised Assignment Problem ---------------------------------------------- 20 

2.3.  Space Allocation in Academic Institutions ------------------------------------------ 21 

2.3.1.Space Allocation in UK Universities ------------------------------------------ 22 

2.3.2.Manual Approach to Space Allocation ---------------------------------------- 24 

2.3.3.The Multiobjective Nature of the Problem ----------------------------------- 25 

2.4.  Problem Formulation ------------------------------------------------------------------- 26 

2.4.1.Types of Constraints ------------------------------------------------------------- 27 

2.4.2.Evaluation of an Allocation ----------------------------------------------------- 28 

2.4.3.A Metric for Population Diversity --------------------------------------------- 30 

2.5.  Test Data Sets From UK Universities ------------------------------------------------ 32 

3. LITERATURE REVIEW  

3.1.Introduction -------------------------------------------------------------------------------- 35 

3.2.Previous Research on Space Optimisation --------------------------------------------- 35 

3.3.Other Space Optimisation and Related Problems ------------------------------------- 38 

3.3.1.Space Planning -------------------------------------------------------------------- 38 

3.3.2.Shelf Space Allocation ----------------------------------------------------------- 39 

3.3.3.Constrained Variants of Knapsack Problems --------------------------------- 39 

3.3.4.Related Scheduling Problems --------------------------------------------------- 40 



Table of Contents 

 3 

3.4.Complexity Theory and the No Free Lunch Theorem -------------------------------- 41 

3.4.1.Algorithms Complexity ---------------------------------------------------------- 41 

3.4.2.Problem Complexity – The P and NP Classes -------------------------------- 42 

3.4.3.Approaches to Solve Optimisation Problems --------------------------------- 45 

3.4.4.The No Free Lunch Theorem ---------------------------------------------------- 46 

3.5.Review of Metaheuristic Approaches -------------------------------------------------- 47 

3.5.1.Introduction ------------------------------------------------------------------------ 47 

3.5.2.Classification of Metaheuristics ------------------------------------------------- 47 

3.5.3.Constructive Heuristics ----------------------------------------------------------- 48 

3.5.4.Simple Local Search -------------------------------------------------------------- 49 

3.5.5.Greedy Randomised Adaptive Search Procedure ----------------------------- 52 

3.5.6.Guided Local Search ------------------------------------------------------------- 52 

3.5.7.Iterated Local Search ------------------------------------------------------------- 54 

3.5.8.Variable Neighbourhood Search ------------------------------------------------ 54 

3.5.9.Threshold Acceptance Algorithms --------------------------------------------- 55 

3.5.10.Simulated Annealing ------------------------------------------------------------ 56 

3.5.11.Tabu Search ---------------------------------------------------------------------- 61 

3.5.12.Genetic Algorithms -------------------------------------------------------------- 63 

3.5.13.Other Evolutionary Algorithms ------------------------------------------------ 66 

3.5.14.Hybrid Metaheuristics ---------------------------------------------------------- 69 

3.5.15.Evaluating the Performance of Metaheuristics ------------------------------ 72 

4. GENERAL METAHEURISTIC APPROACHES 
 

4.1.Introduction -------------------------------------------------------------------------------- 73 

4.2.Solution Representation and Data Structures ------------------------------------------ 75 

4.3.Neighbourhood Structures --------------------------------------------------------------- 77 

4.4.Fitness Evaluation Routines -------------------------------------------------------------- 78 

4.5.Constructive Heuristics and Neighbourhood Exploration --------------------------- 79 

4.5.1.Constructive Heuristics ----------------------------------------------------------- 80 

4.5.2.Neighbourhood Structure Selection -------------------------------------------- 81 

4.5.3.Neighbourhood Exploration ----------------------------------------------------- 82 

4.6.Iterative Improvement Algorithm ------------------------------------------------------- 84 

4.7.Simulated Annealing ---------------------------------------------------------------------- 85 

4.8.Tabu Search -------------------------------------------------------------------------------- 86 

4.8.1.Matrices of Tabu and Attractive Genes ---------------------------------------- 87 

4.8.2.Intensification and Diversification Strategies --------------------------------- 88 

4.9.Genetic Algorithm ------------------------------------------------------------------------- 89 

4.9.1.Selection of Parents --------------------------------------------------------------- 89 

4.9.2.Genetic Operators ----------------------------------------------------------------- 90 



Table of Contents 

 4 

4.10.Experiments and Results ---------------------------------------------------------------- 91 

4.10.1.The Initialisation Heuristics ---------------------------------------------------- 91 

4.10.2.The Neighbourhood Exploration Heuristics --------------------------------- 93 

4.10.3.Comparing the Four Metaheuristics ------------------------------------------ 95 

4.10.4.Further Discussion of Results -------------------------------------------------- 95 

4.11.Summary and Final Remarks ----------------------------------------------------------- 96 

5. HYBRID METAHEURISTIC APPROACHES 
 

5.1.Introduction -------------------------------------------------------------------------------- 99 

5.2.A Single-Solution Hybrid Metaheuristic ----------------------------------------------- 100 

5.2.1.The Hybrid Components --------------------------------------------------------- 101 

5.3.On the Performance of the Single-Solution Hybrid ----------------------------------- 103 

5.3.1.Experimental Settings ------------------------------------------------------------ 103 

5.3.2.Results and Discussion ----------------------------------------------------------- 104 

5.3.3.Further Comparison with Previous Results ------------------------------------ 105 

5.4.  A Population-Based Hybrid Metaheuristic ------------------------------------------- 106 

5.4.1.The Shared Memory Structures ------------------------------------------------- 108 

5.4.2.The Common Cooling Schedule ------------------------------------------------ 108 

5.5.  On the Performance of the Population-Based Hybrid ------------------------------- 109 

5.5.1.Experiments and Results --------------------------------------------------------- 109 

5.5.2.Variants of the Population-Based Hybrid -------------------------------------- 112 

5.6.Summary and Final Remarks ------------------------------------------------------------ 115 

6. MULTIOBJECTIVE APPROACHES 
 

6.1.Introduction -------------------------------------------------------------------------------- 118 

6.2.A Brief Review of Multiobjective Optimisation -------------------------------------- 119 

6.2.1.Multiple Criteria Decision-Making --------------------------------------------- 119 

6.2.2.Pareto Optimisation --------------------------------------------------------------- 120 

6.2.3.Metaheuristics for Multiobjective Optimisation ------------------------------ 123 

6.3.Conflicting Objectives in Space Allocation -------------------------------------------- 128 

6.4.Pareto Optimisation of Space Allocation ----------------------------------------------- 132 

6.4.1.Adapting the Hybrid Algorithms ----------------------------------------------- 132 

6.4.2.Experiments and Results --------------------------------------------------------- 133 

6.5.The Influence of the Fitness Evaluation Method -------------------------------------- 134 

6.5.1.Assigning Fitness to Solutions in Pareto Optimisation ---------------------- 134 

6.5.2.Relaxed Pareto Dominance ------------------------------------------------------ 135 

6.5.3.Multiobjective Algorithms Tested ---------------------------------------------- 137 

6.5.4.Experimental Settings ------------------------------------------------------------ 138 

6.5.5.The Offline Non-dominated Sets ----------------------------------------------- 139 

6.5.6.The Online Non-dominated Sets ------------------------------------------------ 141 



Table of Contents 

 5 

6.5.7.Results on Diversity -------------------------------------------------------------- 142 

6.5.8.Compromise Between Objectives in Relaxed Dominance ------------------ 143 

6.5.9.The Evolution of Objective Values --------------------------------------------- 147 

6.5.10.Further Discussion of Results -------------------------------------------------- 148 

6.6.Summary and Final Remarks ------------------------------------------------------------ 150 

7. HYBRID EVOLUTIONARY METAHEURISTICS BASED ON 
COOPERATIVE LOCAL SEARCH  

7.1.Introduction -------------------------------------------------------------------------------- 152 

7.2.Hybridising Recombinative and Local Search Methods ----------------------------- 153 

7.3.Cooperative Local Search ---------------------------------------------------------------- 155 

7.4.Hybrid Evolutionary Metaheuristics ---------------------------------------------------- 156 

7.4.1.Relation to Previous Work ------------------------------------------------------ 156 

7.4.2.The Cooperation Mechanism --------------------------------------------------- 157 

7.4.3.Extending the Single-Solution Approaches ----------------------------------- 158 

7.5.On the Performance of the Extended Approaches ------------------------------------ 159 

7.5.1.Experimental Settings ------------------------------------------------------------ 159 

7.5.2.Results on the Fitness of Solutions --------------------------------------------- 160 

7.5.3.Results on the Diversity of Solutions ------------------------------------------ 163 

7.5.4.On the Rate of Improvement ---------------------------------------------------- 164 

7.6.The Best Results for All Test Instances ------------------------------------------------ 166 

7.7.Summary and Final Remarks ------------------------------------------------------------ 168 

8. CONCLUSIONS AND FUTURE WORK 
 

8.1.Conclusions -------------------------------------------------------------------------------- 170 

8.1.1.Description and Formulation of the Problem --------------------------------- 170 

8.1.2.Design of Basic Operators ------------------------------------------------------- 170 

8.1.3.Suitability of Metaheuristics ---------------------------------------------------- 171 

8.1.4.The Hybrid Algorithms Proposed ---------------------------------------------- 172 

8.1.5.The Two-Objective Problem ---------------------------------------------------- 172 

8.1.6.Influence of Fitness Evaluation in Pareto Optimisation --------------------- 172 

8.1.7.Cooperative Local Search ------------------------------------------------------- 173 

8.1.8.Scope of Conclusions ------------------------------------------------------------ 173 

8.2.Future Work -------------------------------------------------------------------------------- 173 

8.2.1.From the Space Allocation Perspective ---------------------------------------- 173 

8.2.2.From the Metaheuristics Perspective ------------------------------------------ 174 

REFERENCES ---------------------------------------------------------------------------- 175 

APPENDIX − List of Publications ----------------------------------------------------- 199 



Table of Contents 

 6 

LIST OF FIGURES 

Figure 3.1.Iterative improvement algorithm ----------------------------------------------------- 50 

Figure 3.2.Greedy randomised adaptive search procedure ------------------------------------ 52 

Figure 3.3.Guided local search metaheuristic --------------------------------------------------- 53 

Figure 3.4.Iterated local search metaheuristic --------------------------------------------------- 54 

Figure 3.5.Variable neighbourhood search metaheuristic ------------------------------------- 55 

Figure 3.6.Threshold acceptance metaheuristic ------------------------------------------------- 56 

Figure 3.7.Simulated annealing metaheuristic -------------------------------------------------- 56 

Figure 3.8.Tabu search metaheuristic ------------------------------------------------------------ 61 

Figure 3.9.The genetic algorithm framework --------------------------------------------------- 63 

Figure 3.10.Hierarchy of hybrid evolutionary algorithms ------------------------------------- 70 

Figure 4.1.Data structure used for the space allocation problem ----------------------------- 77 

Figure 4.2.The approximate fitness evaluation routine ----------------------------------------79 

Figure 4.3.Local search heuristic HLS ------------------------------------------------------------ 82 

Figure 4.4.The iterative improvement local search approach --------------------------------- 85 

Figure 4.5.The simulated annealing approach --------------------------------------------------- 85 

Figure 4.6.The tabu search approach ------------------------------------------------------------- 89 

Figure 4.7.The genetic algorithm approach ------------------------------------------------------ 89 

Figure 5.1.The single-solution hybrid metaheuristic ------------------------------------------- 100 

Figure 5.2.Space misuse, soft constraints violation and the total penalty ------------------- 105 

Figure 5.3.The population-based hybrid metaheuristic ---------------------------------------- 107 

Figure 5.4.Space misuse, soft constraints violation and the total penalty ------------------- 114 

Figure 6.1.Tracing one objective while optimising the other for the nott1 instance ------- 131 

Figure 6.2.Tracing one objective while optimising the other for the trent1 instance ------ 131 

Figure 6.3.Tracing one objective while optimising the other for the wolver1 instance --- 132 

Figure 6.4.Comparing the single-solution and the two population-based variants --------- 133 

Figure 6.5.Aggregating function, standard dominance and relaxed dominance ------------ 135 

Figure 6.6.Offline non-dominated sets obtained by PBAA and PAES on nott1 ------------ 139 

Figure 6.7.Offline non-dominated sets obtained by PBAA and PAES on nott1b ---------- 140 

Figure 6.8.Offline non-dominated sets obtained by PBAA and PAES on trent1 ----------- 140 

Figure 6.9.Offline performance of PBAA and PAES with relaxed dominance variants -- 145 

Figure 6.10.New offline non-dominated sets obtained by PBAA and PAES on trent1 --- 146 

Figure 6.11.Evolution of objective values in PBAA using aggregating function ---------- 147 

Figure 6.12.Evolution of objective values in PBAA using standard dominance -----------147 



Table of Contents 

 7 

Figure 6.13.Evolution of objective values in PBAA using relaxed dominance ------------ 148 

Figure 7.1.Common strategy for designing memetic algorithms ----------------------------- 154 

Figure 7.2.The cooperative local search scheme ------------------------------------------------ 155 

Figure 7.3.Hybrid evolutionary scheme based on cooperative local search ----------------- 158 

Figure 7.4.Results obtained by the hybrid evolutionary approaches for nott1 -------------- 161 

Figure 7.5.Results obtained by the hybrid evolutionary approaches for nott1b ------------ 161 

Figure 7.6.Results obtained by the hybrid evolutionary approaches for nott1c ------------ 162 

Figure 7.7.Results obtained by the hybrid evolutionary approaches for trent1 ------------- 162 

Figure 7.8.Rate of improvement over computation time for trent1 -------------------------- 165 

  

  
 



Table of Contents 

 8 

LIST OF TABLES  

Table 2.1.Calculation of the Population Variety V(p)------------------------------------------ 31 

Table 2.2.Characteristics of the test problems used in this thesis ---------------------------- 34 

Table 4.1.Performance of the initialisation heuristics on the test instance nott1 ----------- 91 

Table 4.2.Performance of the initialisation heuristics on the test instance trent1 ---------- 91 

Table 4.3.Performance of the initialisation heuristics on the test instance wolver1 -------- 92 

Table 4.4.Variants of the three approaches using neighbourhood search ------------------- 93 

Table 4.5.Results for the iterative improvement metaheuristic variants --------------------- 94 

Table 4.6.Results for the simulated annealing metaheuristic variants ----------------------- 94 

Table 4.7.Results for the tabu search metaheuristic variants ---------------------------------- 94 

Table 4.8.The best solutions obtained by the four approaches -------------------------------- 95 

Table 5.1.Quality of the solutions obtained by the four single-solution approaches ------- 104 

Table 5.2.Comparison of the single-solution and the population-based hybrids ----------- 106 

Table 5.3.Comparison using fixed execution time as termination criterion ----------------- 110 

Table 5.4.Comparison using idle iterations as termination criterion ------------------------- 113 

Table 6.1.Correlation between objectives for the nott1 test instance ------------------------ 129 

Table 6.2.Online performance of PBAA and PAES with the evaluation methods --------- 142 

Table 6.3.Results on diversity for PBAA and PAES with the evaluation methods -------- 143 

Table 7.1.Initial populations of different sixes and diversity values for test problems ---- 160 

Table 7.2.Results on final diversity when the initial diversity is high ----------------------- 163 

Table 7.3.Results on final diversity when the initial diversity is low ------------------------ 163 

Table 7.4.Comparing all population-based hybrid approaches in all test instances -------- 168 

  

 



Abstract 

 9 

ABSTRACT 

This thesis presents an investigation on the application of metaheuristic techniques to 

tackle the space allocation problem in academic institutions. This is a combinatorial 

optimisation problem which refers to the distribution of the available room space 

among a set of entities (staff, research students, computer rooms, etc.) in such a way 

that the space is utilised as efficiently as possible and the additional constraints are 

satisfied as much as possible. The literature on the application of optimisation 

techniques to approach the problem mentioned above is scarce. This thesis provides a 

description and formulation of the problem. It also proposes and compares a range of 

heuristics for the initialisation of solutions and for neighbourhood exploration. Four 

well-known metaheuristics (iterative improvement, simulated annealing, tabu search 

and genetic algorithms) are adapted and tuned for their application to the problem 

investigated here. The performance of these techniques is assessed and benchmark 

results are obtained. Also, hybrid approaches are designed that produce sets of high 

quality and diverse solutions in much shorter time than those required by space 

administrators who construct solutions manually. The hybrid approaches are also 

adapted to tackle the space allocation problem from a two-objective perspective. It is 

also revealed that the use of aggregating functions or relaxed dominance to evaluate 

solutions in Pareto optimisation, can be more beneficial than the standard dominance 

relation to enhance the performance of some multiobjective optimisers in some 

problem domains. A range of single-solution metaheuristics are extended to create 

hybrid evolutionary approaches based on the scheme of cooperative local search. 

This scheme promotes the cooperation of a population of local searchers by means of 

mechanisms to share the information gained during the search. This thesis also 

reports the best results known so far for a set of test instances of the space allocation 

problem in academic institutions. 

This thesis pioneers the application of metaheuristics to solve the space 

allocation problem. The major contributions are:  provides a formulation of the 

problem together with tests data sets, reports the best known results for these test 

instances, investigates the multiobjective nature of the problem and proposes a new 

form of hybridising metaheuristics. 
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Chapter 1.   Introduction 

1.1.  Background and Motivation 

Office space allocation and the associated resource efficiency issues impact (to a 

greater or lesser extent) on all institutions from small companies to large multi-

national organisations. In academic institutions, the distribution of the available room 

space among staff, research students and other resources such as lecture rooms, labs, 

storage rooms, etc., is a process that needs to be carried out on a regular basis 

because of the continuous changes that occur in this environment. For example, 

people leave the institution or move to another department/faculty, new lecture 

rooms or labs are required, offices for new staff or research students should be 

available, certain rooms are unavailable for various reasons, etc. 

Since the available room space is usually restricted, an efficient functioning of 

the academic institution depends on, among other factors, having a good distribution 

of this space. A good distribution must ensure that all demanding resources are given 

the minimum required space, that the space is utilised as efficiently as possible and 

that the additional constraints are satisfied to as great an extent as possible. An 

efficient utilisation of the space requires that no resource is given too much room 

(space wastage) and no resource is given less room than the minimum required 

(space overuse). Additional constraints usually require that the allocation of 

resources to the available rooms meets specific conditions. For example, professors 

must not share offices, research students should be allocated near to their 

supervisor’s office, lecture rooms must be located away from noisy areas, research 

groups should be located together, etc. 

Besides achieving an efficient utilisation of the room space and the satisfaction 

of additional constraints, producing an adequate allocation requires taking into 

account other quality factors that are very difficult to evaluate. Space administrators 

need to consider the preferences of people when assigning offices so that they are 

satisfied with their working environment. They should also address aspects such as 

politics and future requirements when distributing the room space. That is, several 
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criteria (usually from various decision-makers) are employed to evaluate the quality 

of the space distribution. 

Space allocation is a difficult task and a recent survey on this issue revealed that 

in most of the cases this process is carried out manually and it can take weeks or 

even months to be completed in this way (Burke and Varley, 1998). That survey 

showed that only a small proportion of higher education institutions in the UK use 

some form of computer aid when dealing with the space allocation problem. Usually, 

this aid consists of databases that maintain a record and drawings of all rooms and 

how they are being used, but no form of automated space allocation is implemented. 

Automating the space allocation process would permit space administrators to save 

time and effort. Moreover, if several solutions are obtained in a short computation 

time, this would allow the administrator to spend more time in the decision-making 

process to select the most appropriate allocation considering all the quality factors 

mentioned above. The application of heuristics to tackle this problem was suggested 

in (Burke and Varley, 1998b) as a first step towards the construction of a computer 

system to automate the space allocation process in academic institutions. 

Space allocation is a combinatorial optimisation problem that has some 

similarities with classical knapsack problems (Martello and Toth, 1990) and is also 

related to scheduling problems such as academic timetabling (Wren, 1996). In the 

traditional knapsack problem, a set of objects of given sizes must be accommodated 

into a set of containers of given capacity so that the available capacity is utilised as 

efficiently as possible, but usually no additional constraints exist. In academic 

timetabling the problem is to accommodate a set of events into the set of available 

timeslots so that additional constraints are satisfied. In some cases, the construction 

of academic timetables also takes into account the allocation of rooms to events 

(Burke et al., 1996) which is obviously closely related to the space allocation 

problem. 

The range of techniques that have been applied to tackle combinatorial 

optimisation problems can be classified in two general groups: exact methods and 

approximate (heuristic) methods (Papadimitriou and Steiglitz, 1999). Exact methods 

seek to solve a problem to guaranteed optimality but their execution on large real 



Introduction 

 14 

world problems usually requires too much computation time. For practical use 

heuristic methods seek to find high quality solutions (not necessarily optimal) within 

reasonable computation times (Poole et al., 1998). Metaheuristics are a class of 

heuristic techniques that have been successfully applied to solve a wide range of 

combinatorial optimisation problems over the years (Glover and Kochenberger, 

2003; Voss et al., 1999; Aarts and Lenstra, 1997; Osman and Kelly, 1996; Osman 

and Laporte, 1996; Rayward-Smith et al., 1996; Reeves, 1995).  

This thesis describes an investigation into the development of metaheuristic 

approaches to automate the space allocation process in academic institutions. This 

work has been motivated by an interest in developing modern automated algorithms 

that tackle this problem in a more effective way than currently exists. In addition, 

given the relation of space allocation to other combinatorial problems such as 

knapsack and timetabling problems, this investigation may also benefit the 

development of optimisation techniques that can be applied to other such problems. 

1.2.  Aims and Scope 

Since space allocation is a multiple criteria optimisation and decision process, where 

some of the criteria are not easily measurable (e.g. preference of people over certain 

rooms), it is very difficult to obtain an accurate model of this real-world problem. 

Even if the preferences are expressed in an objective function and optimal or near-

optimal solutions are found, it is very likely that the decision-makers will modify 

these solutions before the final distribution of space is decided. These are some of the 

arguments in favour for the application of heuristic methods to obtain near-optimal 

solutions to the space allocation problem. 

As expressed above, the space allocation process is very complex and the present 

thesis tackles one part of this process, the construction of allocations. That is, given a 

set of entities, to allocate them into the set of available rooms. Two main objectives 

are pursued when constructing an allocation: minimising the amount of space misuse 

(wastage and overuse) and minimising the number of constraint violations. Initially, 

this investigation considers finding one high-quality solution. Then, we address the 
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situation in which a set of high-quality allocations is required, so that the space 

administrators can select the most adequate. 

The main aim of this thesis is to present an investigation on the application of 

metaheuristic approaches to solve the space allocation problem in academic 

institutions. To the best knowledge of the author, apart of (Burke and Varley, 1998b), 

no other work in this area has been published in the literature. Some reports are 

available on the application of some exact optimisation techniques to tackle the 

problem of distributing space in academic institutions (Ritzman et al., 1980; 

Benjamin et al., 1992; Giannikos et al., 1995). An additional aim here is to present a 

description and formulation of this problem that helps to better understand it for 

future research on this subject.  

This thesis demonstrates the suitability of applying metaheuristic techniques for 

automating the space allocation process. Furthermore, several hybrid approaches 

have been designed as a result of this research and they are described and tested in 

this document. This thesis also describes a set of test instances of the space allocation 

problem and reports the best known results. 

1.3.  Overview of this Thesis 

The remainder of this thesis is organised as follows. In the second chapter, a 

description and formulation of the space allocation process and the specific problem 

investigated here (the construction of allocations) is presented together with an 

insight into its relationship with other combinatorial optimisation problems. 

Chapter three reviews the literature from two perspectives: the problem and the 

solution techniques. That is, a review of the published research on the subject of 

space allocation is presented together with an account and brief description of a 

range of metaheuristic approaches proposed in the literature. Chapter three also gives 

an introduction to the theory of algorithms complexity and the No Free Lunch 

theorem (NFL) of Wolpert and Macready (Wolpert and Macready, 1995; Wolpert 

and Macready, 1997). 
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An investigation into the application of a range of metaheuristics to the space 

allocation problem is presented in chapter four. This initial study aims to identify the 

strengths and weaknesses of various well-known techniques when used to solve this 

problem. Four approaches are investigated: iterative improvement, simulated 

annealing, tabu search and genetic algorithms. Constructive heuristics for initialising 

solutions and neighbourhood exploration heuristics are also designed, presented and 

tested in chapter four. Various recombination and mutation operators are also 

designed and evaluated for this problem. 

In chapter five, hybrid metaheuristics for the space allocation problem are 

developed and tested. First, a single-solution hybrid approach is designed by 

combining some of the features of the algorithms studied in chapter four. Then, this 

algorithm is modified to produce two population-based variants in which a common 

annealing schedule is used to control the evolution of the whole population. 

In chapter six, an investigation of the space allocation problem as a two-

objective optimisation problem is carried out. That is, instead of using an aggregating 

function to assign fitness to solutions, the concepts of Pareto optimisation are used in 

order to produce a set of compromise solutions (Steuer, 1986). First, the 

multiobjective nature of the space allocation problem is investigated. Then, the 

suitability of the hybrid algorithms of chapter five to produce a set of compromise 

solutions is assessed. Finally, it is shown that the fitness evaluation method used to 

discriminate against solutions during the search, has an impact on the performance of 

some multiobjective optimisers. As a consequence, we suggest the use of relaxed 

dominance relations as alternative methods to assign fitness to solutions in 

multiobjective optimisation. 

A scheme for extending single-solution local search algorithms towards hybrid 

evolutionary approaches is proposed in chapter seven. This scheme is based on the 

concept of cooperative local search which promotes the idea that an evolving 

population of local searchers share the information gained during the search. In this 

way, explorative capabilities from population-based methods can be combined with 

the intensification features of local search techniques without the need to design 

specialised recombination operators or repairing heuristics to maintain the feasibility 
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of solutions. This approach appears to hold significant promise for other problems 

particularly where recombination and repair present serious difficulties. Finally, 

conclusions and some directions for future work on this area are given in chapter 

eight. 

1.4.  Contributions of this Thesis 

The contributions of this thesis are summarised as follows: 

• A description and formulation of the space allocation problem in British 

universities is presented. From real data provided by some universities, six data 

sets have been prepared in a proposed format and these test instances have 

been made publicly available. 

• For the first time, an investigation on the suitablilty of applying metaheuristics 

to solve the space allocation problem is presented. It is shown that these 

approaches can produce solutions of better quality than those generated 

manually by space officers and in a much shorter time. 

• Two hybrid algorithms are presented, one point-based and one population-

based, which produce the best known solutions for the test instances used in 

this thesis. 

• For the first time, an investigation on the multiobjective nature of the space 

allocation problem is provided. A form of relaxed dominance is proposed and 

it is shown that using this form of evaluating solutions is beneficial in the 

multiobjective optimisation of this problem. 

• A new form of hybridisation is proposed in which single-solution local search 

methods are extended to population-based variants. The result is a cooperative 

scheme in which a population of local searchers help each other to find better 

solutions.  
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Chapter 2.   The Space Allocation Problem 

2.1.  Introduction 

In combinatorial optimisation problems the aim is to find an optimal setting of a 

finite or countable infinite number of discrete entities (Papadimitriou and Steiglitz, 

1999). The desired setting can be an arrangement, ordering, grouping, selection or 

distribution of the entities such that a number of requirements and perhaps 

constraints are satisfied. The complexity of many combinatorial problems is 

described by exponential functions and they are considered to be intractable or NP-

complete (Garey and Johnson, 1979). Since there are no known polynomial bounded 

exact algorithms for solving this class of problems, heuristic algorithms are 

frequently applied with the aim of producing high-quality solutions in a reasonable 

amount of time (Baase, 1998). Chapter three presents a more detailed discussion of 

the theory of algorithms complexity including the P and NP classes. Among the class 

of important and difficult to solve combinatorial problems there are the capacity 

allocation problems. This refers to those problems in which the available capacity or 

amount of resources has to be distributed among a set of demanding entities. 

Examples of this type of problems are: the bin-packing problem, the knapsack 

problem and the generalised assignment problem (Martello and Toth, 1990; Kallarath 

and Wilson, 1997 chapter 7). 

The particular capacity allocation problem that motivated the research for this 

thesis is the distribution of the available office space among staff, research students 

and other resources in academic institutions. When solving this problem, the goal is 

to find an allocation that optimises the space utilisation and satisfies (as far as 

possible) the additional requirements and constraints that may exist. To the best 

knowledge of the author, there are few publications in the literature reporting 

research on this problem. For example, (Giannikos et al., 1995) applied goal 

programming to automate the distribution of offices among staff in an academic 

institution. The management of space in academic institutions has also been subject 

of study from a different perspective: planning the layout of offices (Benjamin et al., 

1992; Ritzman et al., 1980). The application of some heuristic algorithms to tackle 

the space allocation problem was explored in (Burke and Varley, 1998b). 
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In principle, the problem of distributing office space in academic institutions is very 

similar to two other capacity allocation problems: the multiple knapsack problem and 

the generalised assignment problem. These two capacity allocation problems are 

briefly described below in order to provide a background for a better understanding 

of the space allocation problem in academic institutions. Then, a detailed description 

and formulation of the space allocation problem is presented. Finally, the test data 

sets used in the experiments of this thesis are also described. The material presented 

in this chapter is included in the papers [Bur2000] and [Bur2003b] (see the appendix 

on page 199). 

2.2.  Related Problems 

2.2.1.  Multiple Knapsack Problem 

In the multiple knapsack problem there are a number of items of given sizes and a 

number of knapsacks of given capacities. Each item has an associated profit and an 

associated weight. The goal is to fill each of the knapsacks with a subset of the items 

without exceeding the capacity of the knapsack and maximising the total profit. If an 

item is selected it can only be assigned to one knapsack. This problem is formulated 

as follows (Martello and Toth, 1990): 

m = number of knapsacks 

n = number of items  

c(i)  = capacity of the knapsack i 

p(j) = profit associated to item j 

w(j) = weight associated to item j 

x(i,j) = 1 if item j is selected for knapsack i, 0 otherwise 
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Because of the binary variable x(i,j), this problem is also known as the 0-1 multiple 

knapsack problem (Hanafi et al., 1996).  

2.2.2.  Generalised Assignment Problem 

Another type of capacity allocation problem is the generalised assignment problem, 

which is very similar to the multiple knapsack problem described above. However, in 

the generalised assignment problem, the profit and weight associated with each of the 

items vary according to the knapsack for which it is selected. It is common that this 

problem be described in terms of assigning tasks to agents, assigning jobs to 

machines or any similar situation. Each agent has a given capacity and each task has 

a profit and a weight (capacity request) associated to each of the agents. The goal is 

to distribute all the tasks among the agents ensuring that the sum of weights of all the 

jobs assigned to each agent does not exceed the agent’s capacity and the total profit 

is maximised. A formulation of the generalised assignment problem can be 

represented as follows (Martello and Toth, 1990): 

m = number of agents 

n = number of tasks 

c(i)  = capacity of the agent i 

p(i,j) = profit associated to task j when assigned to agent i 

w(i,j) = weight associated to task j when assigned to agent i 

x(i,j) = 1 if task j is assigned to agent i, 0 otherwise 
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Note that, in this formulation, all the tasks have to be assigned to exactly one agent 

(constraint 2.6). However, in some variations of this problem, it may be permitted 

that some of the tasks are not assigned to any agent. In this case, equation 2.6 is 

replaced by equation 2.3 as in the multiple knapsack problem. 
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2.3.  Space Allocation in Academic Institutions 

In academic institutions, the distribution of the available room space among staff, 

research students, laboratories, teaching rooms, etc. is a difficult task because space 

is a demanded commodity and a variety of conflicting interests are present. 

Therefore, it is often crucial that the available room space be utilised as efficiently as 

possible. The available room space in buildings has to be distributed among a set of 

demanding entities. Each room is assigned with a functionality. For example, some 

offices are assigned to staff, research rooms for postgraduate students, laboratories, 

meeting rooms, lecture rooms, seminar rooms, common rooms, etc. In this thesis, the 

functionality assigned to each room is called an entity and each entity requires a 

certain amount of room space. The amount of room space demanded by each entity is 

measured (not surprisingly) by the floor area. For example, staff offices may require 

12 m2, computer rooms may need 3 m2 per workstation, etc. In this problem, it is 

often the case that it is not possible to assign exactly the required space room to each 

demanding entity, i.e. space in rooms is often wasted or overused. In this problem 

there are also additional constraints that restrict the location of certain entities with 

respect to some rooms or with respect to other entities. For example, a laboratory 

might need to be allocated next to a lecture room, a professor should not be allocated 

in a shared room or postgraduate students and staff in a given research group should 

be allocated in nearby rooms.  

Then, the space allocation problem can be seen as the distribution of the 

available room space among the demanding entities in such a way that the space 

utilisation is optimised and the additional constraints are satisfied. Constraints can be 

any of the two following types: soft constraints are rules that can be broken but 

penalised, while hard constraints cannot be violated at all. 

In (Burke and Varley, 1998) a description of this problem was provided as a 

result of a questionnaire on the space allocation process that was sent to space 

administrators in ninety-six British Universities. Thirty-eight of the ninety-six 

universities replied and the paper describes and analyses the results of the 

questionnaire. In that paper, the authors stated that (in most of the surveyed 

universities) this process is carried out by a manual process and only a few British 
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universities use some kind of automated tool. They also showed that this problem as 

it actually appears in a wide range of British universities is very complex, highly 

constrained, contains multiple objectives, varies greatly among different institutions, 

requires frequent modifications due to the addition or removal of entities and/or 

rooms and has a direct impact on the functionality of the university. 

2.3.1.  Space Allocation in UK Universities 

This section gives a brief description of the space allocation process in British 

universities. The paper by (Burke and Varley, 1998) gives more details about this 

process. In their work, Burke and Varley expressed that, allocating rooms to entities 

in UK universities is a multi-stage process that can be performed in three phases: 

§ The estates department or central committee allocates space to faculties and 

assigns common areas. 

§ Faculties assign areas to schools and departments. 

§ Departments allocate specific rooms to staff, research groups, research students 

and other entities. 

However, in practice there is a lower phase when assigning rooms to entities. This is 

when the head of a research group distributes the office space among the members of 

the group. During any of these phases, the problem can be solved in different ways: 

§ Fitting all entities into a limited amount of room space. For example, when all the 

research student members of the same research group have to be allocated into a 

number of available rooms. 

§ Minimising the amount of room space required to allocate a set of entities. For 

example, when a department has to allocate all the needed teaching rooms in the 

most efficient way possible. 

§ Reorganising the existing allocation due to the variation of requirements and/or 

constraints. For example, a lecturer that is promoted to professor will require a 

bigger office and the students that he supervises may also need to be relocated. 
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§ Reorganising the existing allocation because of the addition/removal of entities. 

For example, new staff and additional teaching rooms have to be allocated. 

§ Reorganising the existing allocation because of a change in available room space. 

For example, if new rooms are constructed, rooms are resized or rooms are 

assigned to a different authority (department/school/faculty). 

The need for reorganising the distribution of room space is a situation that 

academic institutions face more frequently that many large organisations due to the 

dynamic nature of the space distribution in universities (e.g. PhD students and post-

doctoral research assistants usually only require space for a three year period). In this 

case, the economic cost and disturbance caused due to the changes made are very 

important additional objectives that should be minimised. This often impedes our 

ability to find very high quality utilisation of the space due to the fact that it is far too 

costly to completely move everyone around every year or so. The quality of the 

initial allocation usually has an impact on how much reorganisation is required at a 

later date when the conditions of the allocation change. Continual reorganisations on 

a small scale usually result in a bad overall utilisation of space. However, large 

reorganisations are time consuming and costly.  The amount of disruption that should 

be allowed must be controlled to balance the quality of the new allocation and the 

difficulty in implementing it. 

Although some variations may exist, the various entities that need to be allocated 

to rooms are usually common in academic institutions.  There are approximately 30 

different types of entities and among them there are: staff offices, research offices, 

storage/equipment/administrative rooms, library space, recreational/amenity rooms, 

lecture rooms, meeting rooms, laboratories and others. 

All institutions prefer (and usually insist) that rooms allocated to the same 

department/faculty/school are located close to one another but of course this is not 

always possible. The level of closeness depends on the size of the group but 

complete buildings are often allocated to single or related groups. Where space is not 

too limited or groups are small, different groups may be allocated to different floors 

within shared buildings, but sometimes even floors have to be shared between 

groups. Some institutions have very different views as to what constitutes a good 
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allocation. An example presented in (Burke and Varley, 1998) is that most new 

universities (former polytechnics) in the UK are perfectly happy for lecturing staff to 

share offices. In most old universities, this is unlikely to be accepted. 

Some academic institutions express a requirement to ensure that certain entities 

are allocated near to other entities. For example, departmental secretaries near to 

heads of departments, group leaders near to their research groups, etc. Departments 

may also require that all the lecture and meeting rooms are located close to each 

other or that all staff offices are on the same floor. The grouping conditions may be 

different according to the problem. For example, entities can be required to be 

together (same room), adjacent (next door rooms) or nearby (neighbouring rooms). 

Sometimes, when allocating a specific entity to a room, additional requirements 

must be met. For example, lecture/examination rooms may need to have disabled 

access or audio visual aid facilities; library space may need to be located in a quiet 

area away from busy rooms and noisy equipment, etc. Such information must be 

available to judge whether additional costs or work must be committed before 

implementing the allocation (Diminnie and Kwak, 1986). 

2.3.2.  Manual Approach to Space Allocation 

The manual process for allocating space in academic institutions varies from one 

case to another but it can be briefly described as follows (Burke and Varley, 1998): 

In most UK academic institutions there is a centralised office that regulates the 

space distribution and assigns areas of space to faculties, schools, departments, etc. 

Space officers and administrators (heads of departments, group leaders, etc.) at 

different levels are in charge of the construction of an allocation. Then, the space 

necessary for each entity, the available space in rooms, the constraints that must be 

satisfied (hard constraints), those that are desirable to satisfy (soft constraints) and 

additional requirements are determined. With the aid of floor plans and room 

databases, information about the available areas of space is obtained (size, location, 

proximity, etc.). Entities are allocated to rooms in order of importance according to 

the specific situation. The satisfaction of space requirements and constraints is 

verified each time an entity is allocated. During this iterative process changes might 
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be necessary in order to produce a solution that satisfies as many requirements and 

constraints as possible. The evaluation of a solution involves multiple criteria and in 

some cases this criteria may come from different decision-makers. Due to the nature 

of this manual process, it is common that weeks or months are necessary to obtain a 

final solution. 

2.3.3.  The Multiobjective Nature of the Problem 

The objectives pursued during the process of space allocation and the criteria used to 

evaluate the quality of an allocation depend on the problem instance. For example, 

while some academic institutions have a preference for optimising space utilisation, 

others have a preference for achieving a better functionality in the distribution of 

rooms. The satisfaction of preferences is another objective that is very difficult to 

measure and that is also important to consider when deciding how to assign room 

space. Of course, it is commonly the case that several conflicting objectives are 

present and then a compromise must be found. Moreover, the conditions for 

considering a solution as feasible also depend on the problem instance. In some cases 

it may be required to accommodate all the entities to the available space even if all 

the requirements/constraints cannot be fully satisfied. In other cases it may be that 

these requirements/constraints must be accomplished at the expense of some entities 

being left unallocated. 

The constraints that limit the ways in which the room space can be distributed 

are also very problem-specific. For example, entities that must be allocated nearby 

each other or to the same room, preferences for allocating certain entities to specific 

rooms, entities that need to be allocated in a non-sharing basis, etc. Some of the 

constraints may be in conflict with each other or in conflict with the objectives. For 

example, it may be that a professor has to be allocated near to a laboratory and also 

near to their research students but there are no rooms that satisfy both constraints and 

space utilisation may also be affected. Considering the situation in which the 

available room space cannot be modified (i.e. construction work is not considered), 

the quality of an allocation can be measured in terms of the following aspects (not 

necessarily in this order of importance): 

§ Number of allocated entities. 
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§ Space utilisation, measured in terms of the amount of space wasted (areas of space 

not used) and the amount of space overused (entities with less space allocated to 

them than needed). 

§ Degree of satisfaction of additional requirements. 

§ Degree of satisfaction of the constraints. 

Even when the evaluation function is carefully designed and takes into account 

all the different criteria, their relative importance and the way in which the space 

officers use these criteria to measure the quality of the allocation, a crucial 

observation can be made: 

The best evaluated solutions produced by an automated system in the space 

allocation problem are not always the ones that would be finally selected by the 

space officers to be implemented in the real world. 

The expert administrator often knows certain “constraints” which are not (or 

cannot, for political reasons) be built into the objectives. An example (which does 

occur) might be that two members of staff have a personality clash and cannot be 

located together. It might be politically sensitive to have this as a stated constraint. 

The administrator just keeps it in his mind when making the allocation. This 

observation leads us to the view that while automated space allocation methods 

certainly have huge potential for exploitation in higher education they are being 

developed to aid the administrators rather than to replace them. 

It can be seen that due to the existence of a variety of conflicting objectives and 

constraints, requirements, feasibility conditions and evaluation criteria, the problem 

of distributing the room space in academic institutions is a complex multiobjective 

combinatorial optimisation problem. In the next section a formulation of the space 

allocation problem as approached in this thesis is presented. 

2.4.  Problem Formulation 

As mentioned in section 2.3.1, the space allocation process is commonly carried out 

in three stages. In this thesis only the last stage is considered, that is, the allocation of 



The Space Allocation Problem 

 27 

specific entities to rooms. This process is carried out with the aim of maximising the 

space utilisation and the satisfaction of specific requirements and constraints. The 

data required in this case includes: 

§ Space requirements, i.e. the amount of space (floor area) that should be assigned 

to each entity. 

§ Room size, i.e. the amount of space (floor area) that is available in each room for 

allocating entities. 

§ Proximity relations between rooms, i.e. information that specifies, for each room, 

the list of rooms that are adjacent, near and distant. 

§ Additional requirements and constraints, i.e. specific requirements and constraints 

(hard and soft) that impose limitations on how the entities can be allocated. 

2.4.1.  Types of Constraints 

It is assumed here that all the entities for a given problem instance must be allocated 

using the available room space only. That is, feasible solutions must have, besides all 

hard constraints satisfied, all entities allocated. Since no additional space is available, 

some of the room space will be misused (wasted or overused). The types of 

constraints that exist in the test data sets used in this investigation are listed below. 

These data sets were prepared using real data from British universities and are 

described in detail in the next section. However, as explained above, different 

requirements and constraints may be applicable to different problem instances. 

§ Not sharing. This is a unary constraint indicating that the entity should not share 

the room with other entities. For example, when senior or lecturing staff should 

have private offices. This may be hard in some cases and soft in others. 

§ Be located in. This is a binary constraint indicating that there is a preference for 

allocating a specific entity to a specific room. For example, the situation in which 

it would be convenient that a computer room be allocated in a room with 

appropriate layout. This is considered a soft constraint in this thesis because when 

it must be satisfied, the entity is pre-allocated to the indicated room. 
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§ Be adjacent to. This is a binary constraint indicating that one specific entity 

should be allocated adjacent to another. For example, when secretarial staff should 

be allocated in a room next to senior staff. When it is used, this is often a hard 

constraint but it can also be considered a soft one. 

§ Be away from. This is a binary constraint indicating that one specific entity should 

be allocated away from another entity or from a certain room. For example, when 

is preferred to allocate a lecture room away of noisy areas or communal rooms. 

This may be hard or soft. 

§ Be together with. This is a binary constraint indicating that two specific entities 

should be allocated in the same room. For example, this applies to the case when 

two researchers working on the same project should be in the same room. This is 

often soft. 

§ Be grouped with. This is a q-ary constraint indicating that a group of people 

should be allocated in the proximity of each other. For example, when all the 

members in the same research group should be allocated in a set of rooms that are 

close together. This is often as soft constraint. 

Most of the constraint types listed above can be set as hard or soft depending on 

the particular problem instance. The exception is the constraint be located in which is 

always set as a soft constraint in the tests data sets used in this thesis. The reason for 

this is that in the cases where this constraint is set as hard, it is enough to fix the 

allocation of the given entity to the specified room. 

2.4.2.  Evaluation of an Allocation 

Given the diversity in the criteria that space administrators use when evaluating the 

quality of the room space distribution in each particular case, it is very difficult to 

design an evaluation function that incorporates all the criteria with the adequate 

weighting. Besides, as explained in the previous sections, it is frequently the case 

that the final decision on which allocation will be implemented is affected by 

subjective criteria (and sometimes politics). Two overall (and often conflicting) 

objectives are aimed at in the space allocation problems considered in this thesis:  
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Minimise the space misuse. This objective is measured in terms of the space wasted 

and the space overused and it is equivalent to maximising the space utilisation. Here, 

wasting space is considered less serious than overusing space, therefore the weight 

for each unit of wasted space is one while the weight for each unit of space overused 

is two. 

Minimise the violation of soft constraints. This objective is measured as 

minimising the penalty for violating the soft constraints. The penalties applied for the 

violation of each type of soft constraint are shown below. These penalty values were 

adjusted by experimentation following guidelines from space officers regarding the 

usual relative importance between these constraints in real world problems. 

Soft Constraint 
Penalties 
not sharing 50 

be located in 20 

be adjacent to 10 

be away of 10 

be together with 10 

be grouped with 5 

The space allocation problem as described above can be formulated as follows: 

m = number of available rooms 

n = number of entities to allocate 

h = number of hard constraints of the form truekZ =)(  

s = number of soft constraints trueZ(r)=  

c(i) = capacity or size of room i 

w(j) = space requirement of entity j 

x(i,j) = 1 if entity j is assigned to room i, 0 otherwise 
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Equations (2.10) and (2.11) measure space misuse and violation of soft constraints 

respectively. WP(i) expresses the penalty if the room capacity is wasted while OP(i) 

expresses the penalty if the room capacity is overused. 
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SCP(r) is the penalty applied if the rth soft constraint is violated. A solution or 

allocation is represented by a vector π = [π(1),π(2),…,π(j)] where each element 

π(j)∈ {1,2,…,m} for j = 1,2,…,n indicates the room to which the j th entity has been 

allocated. 

It can be noted from the formulation given above, that when only the space 

utilisation is considered, this problem is very similar to the multiple knapsack 

problem and the generalised assignment problem. What makes the academic space 

allocation more complicated to formulate and to solve is the existence of additional 

constraints that are also very problem-specific.  
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2.4.3.  A Metric for Population Diversity 

It was noted above that in the process of allocating room space in academic 

institutions it might be required to provide several solutions so that one allocation 

can be selected. Therefore, it is important to measure the degree of similarity 

between solutions in this problem. The metric used in this thesis to measure the 

degree of difference between two vectors representing allocations is described next. 

Space administrators suggested this metric as a meaningful way to express the 

variety of a set of allocations. From the perspective of space administrators, it is 

important to distinguish the number of positions in which two vectors representing 

allocations are different, i.e. the number of entities that are allocated to different 

rooms. For example, the following three vectors represent allocations that are 

completely different from each other: π1={c,a,b,a}, π2={b,b,a,c} and π3={a,c,c,b}. 

Then, for a population of solutions, the percentage of non-similarity or variety used 

here as a diversity measure is given by eq. 2.16. 
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where D(j) is the number of different values in the jth position for all vectors and p is 

the population size. This metric measures the diversity of a set of allocations with 

respect to the solution space. Diversity in the solution space is the diversity that 

matters in this context so that the decision-makers can be provided with a set of 

competitive solutions and compare them in terms of their structure before selecting 

the final allocation (maybe after making some manual changes).  

 Five strings representing allocations 

 A A A A A A A 

 A A B B A B B 

 A B B C B C C 

 A B B C B D D 

 A B B C C D E 

D(j)  1 2 2 3 3 4 5 

(D(j) – 1) / (p – 1) 0 0.25 0.25 0.50 0.50 0.75 1 

V(p) = ( 3.25 / 7 ) x 100 = 46.42 % 

Table 2.1. Calculation of the population variety V(p). 
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The non-similarity metric described above is an indication of the diversity in the 

allocation of entities to different rooms within a population of solutions. The way in 

which the population variety is calculated using the string representations of 

solutions is illustrated in figure 2.2. Consider the population of five strings (p = 5) 

representing allocations for a problem where seven entities have to be allocated (n = 

7) and there are five available rooms (m = 5). The way in which the number of 

different rooms D(j) used within the population to allocate each of the entities and 

the population variety V(p) are calculated is illustrated below. Other population 

diversity metrics are described in (Morrison and De Jong, 2001). 

2.5.  Test Data Sets From UK Universities 

Real data corresponding to the administration of academic space allocation in some 

of their schools/departments was available from the following universities: 

University of Nottingham, Nottingham Trent University and University of 

Wolverhampton. Using these data sets and following suggestions from space 

administrators, several test data sets were prepared for this investigation. These test 

data sets were designed to reflect different degrees of difficulty so that the 

performance of the algorithms proposed here could be assessed under different 

conditions. A brief description of the original data sets provided by the universities 

mentioned above and the test data sets prepared is given below.  

University of Nottingham  

This data corresponds to the distribution of offices in the School of Computer 

Science and Information Technology during the 1999-2000 academic year. There are 

131 rooms with sizes ranging from 4.2 m2 to 437.4 m2 and distributed over one 

building with three floors. The total of 158 entities to be allocated are distributed as 

follows: 15 research rooms, 11 laboratories, 12 meeting rooms, 16 storage rooms, 6 

professors, 1 reader, 5 senior lecturers, 25 lecturers, 16 research staff, 10 secretaries, 

1 teaching assistant, 8 technicians and 32 research students. The space requirements 

of these entities range from 4 m2 to 437 m2. There are 263 constraints of which 111 

are hard constraints and 152 are soft constraints. This is the most complete data set 

because all the information about the proximity between rooms is available and this 

permits us to make an accurate evaluation of the satisfaction of proximity constraints 
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(be adjacent to, be away from and be grouped with). This data set is called nott1 in 

this thesis. 

Nottingham Trent University  

This data corresponds to a subset of the real distribution of space in the Chaucer 

Building during the 2000-2001 academic year. There are 73 rooms with sizes ranging 

from 9.94 m2 to 132.43 m2 and distributed over four floors. There is no information 

available on the physical proximity between rooms within each floor. Rooms are 

considered to be close to each other if they are located in the same floor and only this 

is considered to evaluate the satisfaction of proximity constraints. The total of 151 

entities to be allocated are distributed as follows: 9 co-ordinators, 6 professors, 7 

managers, 81 lecturers, 7 senior administrators, 32 administrative assistants and 9 

technicians. The space requirements of these entities range from 3 m2 to 18 m2. 

There are 211 constraints, 80 hard constraints and 131 soft constraints. This data set 

is called trent1 in this thesis. 

University of Wolverhampton  

This data corresponds to the distribution of offices in the SC Building in the Telford 

campus during the 1999-2000 academic year. There are 115 rooms with sizes 

ranging from 0.79 m2 to 185.26 m2. There is no information available about the 

physical proximity between rooms. There are 115 entities to be allocated including 

laboratories, staff rooms, computer rooms, teaching rooms, store rooms and common 

rooms but there is not a clear classification of this group of entities. There are 115 

additional constraints, all of them sharing hard constraints. This data set is 

considered to be the least constrained and, in a sense, the easiest problem to solve. 

The reason for this is that the number of rooms and entities is the same and all the 

hard constraints forbid entities to share a room. Obviously this implies that a feasible 

solution is a one-to-one mapping between n and m and the goal is then to achieve an 

optimal utilisation of the available space. This data set is called wolver1 in this 

thesis. 
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Summary of Test Data Sets  

In addition to the three data sets described above, three more were prepared for the 

experiments carried out in this investigation. These three additional test data sets are 

subproblems of the nott1 instance and were prepared to investigate various aspects 

on the performance of the metaheuristic approaches studied in this thesis. The nott1 

test instance was selected because it contains all information about proximity of 

rooms and it also includes a great variety of soft and hard constraints that permitted 

us to design tests problems with different degrees of difficulty. Some of the specific 

features of the three additional data sets are as follows. The test instance nott1a is 

highly constrained but the size of the problem (n,m) was reduced with respect to the 

original data set nott1. In the test instance nott1b, the number of hard constraints has 

been reduced considerably with respect to the number of soft constraints. Finally, the 

test instance nott1c is a smaller problem in which also the number of entities to 

allocate equals the number of available rooms (n = m). Table 2.2 below summarises 

the features of all the six test data sets. For more details refer to the following web 

site: http://www.cs.nott.ac.uk/~jds/research/spacedata.html. 

 nott1 nott1a nott1b nott1c trent1 wolver1 

n 158 142 104 94 151 115 

m 131 115 77 94 73 115 

constraints h s h s h s h s h s h s 

not sharing 100 58 100 58 46 58 84 10 80 71 115 -- 

be allocated in -- 35 -- 35 -- 9 -- 35 -- 19 -- -- 

be adjacent to 5 15 5 15 4 10 5 15 -- 5 -- -- 

be away from 6 14 5 12 1 2 5 12 -- -- -- -- 

be together with -- 20 -- 20 -- 20 -- -- -- 36 -- -- 

be grouped with -- 10 -- 10 -- 9 -- 10 -- -- -- -- 

total 111 152 110 150 51 108 94 82 80 131 115 -- 

Table 2.2. Characteristics of the test problems used in this thesis. 
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Chapter 3.   Literature Review 

3.1.  Introduction 

This chapter discusses previous work on applying computer optimisation techniques 

for the problem of allocating and/or planning space in academic institutions and it 

also looks at some applications for the optimisation of space in other scenarios such 

as industrial facilities and supermarkets. This chapter provides more evidence of the 

importance, complexity and diversity of this problem. Also, in this chapter the 

relation between the academic space allocation problem and other combinatorial 

problems is considered because previous research on similar problems has 

underpinned some of the ideas for the investigation presented in this thesis. In 

addition, an overview of complexity theory, the No Free Lunch theorem and 

metaheuristics is also presented in this chapter. Some of the sections in this chapter 

have been included in papers already published or submitted as follows. Sections 3.2 

and 3.3 can be found in [Bur2001] while section 3.5.14 can be found in [Bur2003b] 

(see the appendix on page 199). 

3.2.  Previous Research on Space Optimisation 

There are only a few reported applications in the literature on the optimisation of 

space usage in academic institutions. Ritzman et al. presented one of the earliest 

studies on the automated planning of academic facilities (Ritzman et al., 1980). Their 

application concentrated on the reassignment of 144 offices to 289 members in 6 

academic departments of staff within the Ohio State University. Although the overall 

goal was to make the reassignment of offices as fair as possible, six conflicting 

objectives were identified: 

§ Assign enough offices to each department so that there is enough room space for 

all its members. 

§ Minimise the deviation of the assigned space to each department from the given 

space requirements. 

§ Equally distribute the offices equipped with air conditioning among the various 

departments. 
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§ Minimise the physical distances between the rooms assigned to each department 

and its administrative office. 

§ Ensure that each department obtains a fair share of the high quality offices 

available. 

§ Minimise the number of reassignments, i.e. the number of offices assigned to a 

department which were not previously occupied by its staff members. 

Ritzman et al. decided not to establish a-priory the preferences for each of the 

above objectives. In order to deal with the multiple objectives, they used a mixed-

integer goal programming model to formulate the problem and linear programming 

as the solution method. An interactive program was implemented which permitted 

the decision-makers to obtain and compare different alternative layouts before 

producing a final compromise solution. The authors highlighted the importance of 

producing the various layouts in an interactive process because it permitted the 

administrators to be in command of the solution process and to have a set of 

alternative solutions from which to chose the most appropriate one. 

Benjamin et al. also applied a linear programming approach but in their case the 

problem was not the distribution of rooms but the planning of a computer integrated 

manufacturing laboratory (Benjamin et al., 1992). The new laboratory was 

constructed due to the expansion of the department of engineering manufacturing at 

the University of Missouri-Rolla. The overall goal of this new lab was to stimulate 

the interest for teaching and research and after some debate and discussion it was 

decided that 15 sections would be located in the new laboratory. In addition to the 

desired space to be allocated to each of the sections, the following five goals (some 

of them conflicting) were previously specified: 

§ Increase the student use of the laboratory facilities. 

§ Develop new courses relying on the laboratory facilities. 

§ Stimulate the graduate-level and funded research. 

§ Increase the awareness of industry of the concepts developed in the laboratory. 
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§ Enhance the university’s public image. 

Before applying a linear goal programming algorithm to solve this planning 

problem, the goals listed above were prioritised and the authors highlighted that this 

required a substantial amount of time and knowledge from the decision-makers. In 

particular, they noted that the preference levels assigned to each goal by the different 

decision-makers revealed some inconsistencies in the subjective comparison between 

the goals. Therefore, extra work was required in order to review and adjust these 

preferences before setting the final values. 

Another application of integer goal programming to the optimisation of 

academic space was reported in (Giannikos et al., 1995). The problem in this case 

consisted of reorganising the distribution of the academic space at the University of 

Westminster in the UK. Five objectives were identified and prioritised according to 

the preferences established by the decision-makers. The objectives are listed below 

in non-increasing order of their importance: 

§ Assign enough offices to each school according to the standards in order to 

allocate lecturers, researchers and heads of school. 

§ Allocate the adequate type of offices to schools according the standards. 

§ Assign each office to only one school, i.e. only members of the same school can 

share a room. 

§ Minimise the number of people that have to be relocated to reduce the disturbance 

during the transition period. 

§ Minimise the distances from the rooms assigned to each school to its 

administrative centre. 

In addition to these objectives, two additional hard constraints were imposed: 

§ All heads of school must be allocated to an office with the exact requirements 

specified in the standards. 
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§ Each office can be used by members of staff in the same level or category. The 

three levels are: i) heads of school and similar, ii) heads of division and iii) 

lecturers, researchers and similar. 

One of the observations that the authors made was that after comparing the 

actual distribution of offices with the one produced with the automated method it was 

clear that the space was being used in an inefficient way (at least according to the 

objectives and preferences defined). Although the authors did not indicate that the 

proposed solution was implemented, they highlighted that their ultimate goal was to 

provide the managers with a decision support tool to evaluate the current distribution 

of space and explore alternative allocations. 

In all the studies mentioned above it is recognised that it is virtually impossible 

to allocate space in a way that conflicts of interest are completely eliminated due to 

the complex multiobjective nature of the problems. This reinforces the necessity for 

presenting to the decision-makers, a set of good solutions that can be used to 

negotiate and design the final space distribution. 

3.3.  Other Space Optimisation and Related Problems 

3.3.1.  Space Planning 

The optimal utilisation of physical space is a goal not only in academic institutions 

but also in many other scenarios that range from industrial and commercial 

environments (Francis et al., 1992) to computer systems (Romero and Sanchez-

Flores, 1990). Of course, the actual conditions, requirements and constraints may be 

very different from those present in the academic context. For example, in the 

facilities layout problem it is required to assign objects to locations considering 

distances and interactions between the objects. The objects can be physical facilities 

or activities such as administrative functions or personnel. Examples of the 

application of metaheuristics to facility layout problems can be found in (Bland, 

1999; Bland, 1999b).  
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Sometimes, facility layout problems involve not only assigning the objects to 

locations but also designing the physical layout of the space, i.e. to partition the 

available space before assigning each partition (Kim and Kim, 1998). Most of the 

facility layout problems refer to the industrial and commercial scenarios where the 

main goals are to minimise the operation costs and to maximise the operational 

efficiency. An example is the planning and allocation of storage space to inventory in 

factories in order to minimise the costs of handling material, see (Larson and Kusiak, 

1995; Kusiak, 2000). A review of heuristic approaches including constructive 

heuristics, iterative improvement strategies, simulated annealing, genetic algorithms 

and some other hybrid heuristics for solving facility layout problems is available in 

(Liggett, 2000). 

3.3.2.  Shelf Space Allocation 

Among the applications of space management in commercial scenarios, the 

automated allocation of shelf space to products in supermarkets is an area that has 

received particular attention. The problem in this context is to select the products 

(and their quantities) to be placed on the shelves and then to determine where each 

product will be located taking into consideration retailing and operational 

requirements. A detailed description and elaborated model of the shelf space 

allocation problem are presented in (Yang and Chen, 1999) and examples of 

automated approaches to tackle this problem can be found in (Zufryden, 1986) and 

(Yang, 2001).   

3.3.3.  Constrained Variants of Knapsack Problems 

There are some variants of capacity allocation problems that include other constraints 

apart from those related to the capacity of the container. These variants are 

mentioned here because the approaches investigated in this thesis can eventually be 

considered for capacity allocation problems with additional constraints. For example, 

a variant of the bin-packing problem in which there is a limit on the number of items 

that can be assigned to each bin is presented in (Kellerer and Pferschy, 1999) and 

some heuristics with guaranteed performance to solve that problem are analysed too. 

In the knapsack sharing problem, each item belongs to one or more owners therefore 

the objective function needs to be modified accordingly since each owner aims to 
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maximise the profit of his items (Yamada and Futakawa, 1997). In (Dawande et al., 

2000) an analysis of the complexity and performance of approximation algorithms 

for the multiple knapsack problem with assignment restrictions is presented. In that 

variant each item can only be assigned to a subset of the available knapsacks. 

Another constrained variant of knapsack problems is the daily photograph scheduling 

problem (Vasquez and Hao, 2001). That problem consists of scheduling a subset of 

photographs from a set of candidate photographs to be taken by cameras in an earth 

observation satellite. The problem is modelled as a variant knapsack problem where 

in addition to the capacity constraints (memory available in the system) there are 

logic constraints that prevent certain combinations of photographs to be taken. 

3.3.4.  Related Scheduling Problems 

Scheduling problems include a wide range of combinatorial optimisation problems 

and to some extent the academic space allocation problem can be considered within 

this group of problems. Scheduling can be described as the arrangement of objects 

(people, tasks, vehicles, lectures, exams, meetings, etc.) into a pattern in space-time 

in such a way that constraints are satisfied and certain goals are achieved (Wren, 

1996). In most scheduling problems the goals include the creation of feasible 

schedules, efficient utilisation of available resources and the maximisation of 

schedule quality according to some predefined criteria. A schedule can be a sequence 

of processing jobs in production machines, an events timetable, an employee roster, a 

transport services routing or timetable, the assignment of events to places, etc. 

Among scheduling problems there are the following well-studied classes: 

§ Production scheduling: job shop, flow shop, open shop, etc. 

§ Transport scheduling or vehicle routing such as railway scheduling and bus 

timetabling. 

§ Personnel scheduling or timetabling such as nurse rostering, crew scheduling, etc. 

§ Maintenance scheduling such as electricity line maintenance and generator 

maintenance. 
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§ Events scheduling or timetabling such as examinations, courses, sport events, etc. 

Some timetabling problems also involve assigning space resources to events. For 

example, room assignment is sometimes considered to be part and parcel of 

academic timetabling problems such as examination and course timetabling (Schaerf, 

1999). Since the academic space allocation problem refers to efficiently assigning 

entities to rooms subject to additional constraints it can certainly be seen as related to 

some of the scheduling problems described above.  

Considerable research has been carried out over the years in the area of 

automated scheduling and timetabling particularly in the application of metaheuristic 

techniques to solve these types of problems (e.g. Nagar et al., 1995; Burke et al., 

1996; Dowsland, 1998; Colorni et al., 1998; Bagchi, 1999; Di Caspero and Schaerf, 

2001; Varela et al., 2001; T’kindt and Billaut, 2002). Therefore it is important to 

consider the similarities that some of these problems have with the academic space 

allocation problem since some of the ideas and experiences can prove to be useful in 

this research area. It is not within the scope of this thesis to provide a survey or 

classification of scheduling problems or scheduling techniques investigated by other 

researchers. Instead, brief descriptions and references are provided whenever ideas 

and previous results that have been published in the literature are used in this thesis. 

3.4.  Complexity Theory and the No Free Lunch Theorem 

3.4.1.  Algorithms Complexity 

The theory of algorithm complexity is concerned with the identification of problems 

that are computationally easy to solve and problems that are computationally hard to 

solve (Garey and Johnson, 1979; Rayward-Smith, 1986). This theory is also 

concerned with identifying those algorithms that are efficient and those that are 

inefficient from a computational point of view. From a broad perspective, the 

efficiency of an algorithm is assessed in terms of the computing resources that are 

needed to execute the algorithm and this includes execution time and space. The 

execution time is the number of steps that the algorithm takes to process the input 

and give an answer. The space is an indication of the amount of memory that is 
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needed to run the algorithm. However, in the theory of algorithms complexity the 

efficiency of algorithms is usually expressed in terms of its time complexity. 

The time complexity is described by a function of the size of the input, which 

relates to the size of the problem instance. More specifically, the time complexity for 

an algorithm is described by its worst-case behaviour, which is the maximum number 

of basic operations that the algorithm is expected to perform for an input of size n. 

The time complexity of an algorithm is expressed using the notation Ο(g(n)) which is 

defined as follows. A function f(n) is said to be Ο(g(n)) if there is a constant k such 

that |f(n)| ≤ k⋅|g(n)| for n ≥ 0. In other words,Ο(g(n)) refers to functions that do not 

grow faster than g(n) and the Ο(g(n)) notation indicates that the algorithm’s worst-

case time complexity is bounded by g(n). 

Algorithms that have a time complexity described by a polynomial function (e.g. 

Ο(4n), Ο(n3), etc.) are considered efficient because they can be run in reasonable 

amount of time for inputs of considerable size. However, if the time complexity of 

the algorithm is described by an exponential function (e.g. Ο( 3n), Ο(nlog n), etc.) then 

the algorithm is considered inefficient because it can be run in a reasonable amount 

of time only for inputs of small length, but for larger inputs running the algorithm 

becomes impractical. The difference between polynomial time algorithms and 

exponential time algorithms is the rate at which their computational time complexity 

grows given an increase in the size of the input (n). Remember, that the time 

complexity of an algorithm refers to the worst-case performance. There are some 

polynomial time algorithms that are not very useful in practice because n is typically 

large in practical instances. Also, there are exponential time algorithms regarded as 

useful because they can run quickly in practice due to small values of n encountered 

in practical instances. 

3.4.2.  Problem Complexity – The P and NP Classes 

The computational complexity of a problem is determined by the best algorithm that 

can be found to solve the problem (Garey and Johnson, 1979). At a high level of 

abstraction, if a polynomial time algorithm can be found for a given problem, then 

the problem is considered tractable or not so hard. But if no such algorithm can be 
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found for the problem, i.e. only exponential time algorithms can be constructed, the 

problem is considered intractable or very hard even if the problem is solvable. The 

theory of computational complexity has been developed considering mainly decision 

problems. Most optimisation problems can be expressed as a decision problem. A 

decision problem is a problem for which the answer is ‘yes’ or ‘no’ according to 

whether the input satisfies the given conditions in the problem. Some examples of 

decision problems are given below. 

EVEN. Given a natural number n, is n an even number? The answer is ‘yes’ if n is 

even or ‘no’ if n is odd. 

PRIME. Given a natural number n, is n a prime number? The answer is ‘yes’ if n is 

prime or ‘no’ if n is composite. 

SATISFIABILITY. Given a Boolean expression f (x1, x2,…xn), can the variables x1, 

x2,…xn be fixed to values that make the value of f true? The answer is ‘yes’ if there is 

a setting of the variables that makes f true and ‘no’ otherwise. 

HAMILTONIAN CYCLE. Given a graph G(V,E) with N nodes, is there a cycle of 

edges in G that includes each of the N nodes? The answer is ‘yes’ if such cycle exists 

and ‘no’ otherwise. 

The space allocation problem described in chapter 2 can also be stated as a 

decision problem: 

SPACE ALLOCATION. Given n entities and m available rooms, is it possible to 

construct an allocation of the n entities to the m rooms in such a way that all existing 

constraints (hard and soft) are satisfied and the space misuse is at most W? The 

answer is ‘yes’ is such an allocation exists and ‘no’ otherwise. 

In the rest of this section, we refer to decision problems simply as problems. 

There are two classes in which problems are classified, the P and NP classes (Garey 

and Johnson, 1979, Rayward-Smith, 1986). The class P includes all those problems 

for which an efficient (polynomial time) deterministic algorithm has been found. The 

class NP includes all those problems for which a non-deterministic polynomial time 

algorithm is known to solve the problem (NP stands for non-deterministic 
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polynomial). A non-deterministic algorithm can be described as consisting of two 

stages. The first stage guesses a structure for the problem and the second stage 

verifies if the given structure is or is not a solution to the problem. Then, the 

algorithm is said to be a non-deterministic polynomial time algorithm if for each 

instance of the problem there is a guess that can be verified by the deterministic 

phase for answer ‘yes’ in a polynomial time. 

Then, if P are problems solved in polynomial time by deterministic algorithms 

and NP are problems solved in polynomial time by non-deterministic algorithms, the 

question is whether P = NP or P ≠ NP. In fact, this is the most important open 

question in computational complexity theory. It is clear that P ⊆  NP, which means 

that non-deterministic algorithms are more powerful that deterministic algorithms. If 

there is a deterministic algorithm for a problem, a non-deterministic one can be 

constructed by simply not using the guessing stage. 

For many problems proved to be in the class NP no efficient algorithm has been 

found. This strengthens the belief that P ≠ NP but this conjecture is still not proven. 

There are many problems known to be in NP for which no efficient algorithm has 

been found and these problems are considered NP-hard in the strong sense. Examples 

of these problems are the multiple knapsack problem and the generalised assignment 

problems described in chapter 2 and it is generally believed that no efficient 

algorithm exists for these (and all other NP-hard) combinatorial problems, i.e. they 

are intractable.  

If it is true that P ≠ NP, then the problems in the set NP − P are intractable. 

Therefore, when tackling a particular problem, it is important to know if the problem 

belongs to the class of tractable or intractable problems. One way of doing this is to 

determine whether the problem of interest in or not related to another problem that is 

already known to be tractable or intractable. Reducing one problem to another is the 

technique used to demonstrate if the two problems are related or not. Reduction is to 

provide a transformation that permits to map one instance of the first problem into 

one instance of the second problem. This transformation permits to convert one 

algorithm that solves one problem into an algorithm that solves the other problem. 
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There is an important class of problems in NP, this is the class NP-complete. The 

first work towards the theory of NP-completeness was reported by Cook in 1971 

(Cook, 1971). Among other results, Cook proved that any problem in NP can be 

reduced to the satisfiability problem. This means that if there is an efficient algorithm 

to solve the satisfiability problem, then any problem in NP can also be solved by an 

efficient algorithm. These problems are said to be NP-complete and are considered 

the hardest in NP in a sense. This is because if no single NP-complete problem has 

an efficient algorithm to solve it, then none of them has an efficient algorithm and 

they are all intractable. Many problems have been proven to be NP-complete (or 

reduced to the satisfiability problem) but it is still not proved that these problems are 

intractable. However, it is generally assumed that finding an efficient algorithm for 

any problem in NP-complete is unlikely. 

Then, if a problem is NP-complete and P ≠ NP then the problem belongs to the 

set NP − P. In other words, the problem (and all in NP-complete) could belong to P 

only if P = NP. Then, if it is assumed that NP-complete problems are intractable, i.e. 

P ≠ NP, then when a problem is known to be NP-complete the focus should not be on 

finding efficient algorithms. Instead one should aim to design algorithms that 

produce high-quality solutions with no guaranteed optimality, i.e. design useful 

algorithms to tackle the problem in practice. 

3.4.3.  Approaches to Solve Optimisation Problems 

As discussed above, the complexity of a problem and the complexity of an algorithm 

to solve the problem gives an indication of how hard it is to solve the problem from a 

computational view point. An exact algorithm is capable of solving a given instance 

of a combinatorial optimisation problem to optimality. However, the time complexity 

of some exact algorithms is bounded by an exponential function, which makes these 

algorithms inefficient. The interest and practical significance of the concept of NP-

complete problems lies in the widespread belief that an efficient algorithm for 

solving such problems does not exist and that algorithms that produce high quality 

(or near-optimal) solutions in a reasonable amount of time are then needed. Such 

algorithms are known as heuristic methods (as well as a number of similar names).  
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A heuristic is defined in (Reeves, 1995) as a “technique which seeks good (i.e. 

near-optimal) solutions at a reasonable computational cost without being able to 

guarantee either feasibility or optimality, or even in many cases to state how close to 

optimality a particular feasible solution is”. Examples of heuristics are constructive 

algorithms (also known as greedy methods). These are very simple heuristics that 

construct the solution in a series of steps based on the strategy of making the best 

decision (based on a certain criterion) at each step. Another example of heuristic 

methodology is local search (also known as neighbourhood search) where 

neighbouring solutions are explored in an attempt to improve the solution (although 

worse solutions can be accepted as an interim step – see below for more details). A 

gentle introduction to heuristic approaches is provided in (Michalewicz and Fogel, 

2000). 

More advanced heuristic approaches called metaheuristics have been widely 

developed and applied to a variety of optimisation problems over the last two 

decades or so (e.g. Glover and Kochenberger, 2003; Voss et al., 1999; Aarts and 

Lenstra, 1997; Osman and Kelly, 1996; Osman and Laporte, 1996; Rayward-Smith 

et al., 1996; Reeves, 1995). A metaheuristic is described in (Voss et al., 1999 page 

ix) as “an iterative master process that guides and modifies the operations of 

subordinate heuristics to efficiently produce high-quality solutions. It may 

manipulate a complete (or incomplete) single solution or a collection of solutions at 

each iteration. The subordinate heuristics may be high (or low) level procedures, or 

a simple local search, or just a construction method”. 

When solving combinatorial optimisation problems, there are exact algorithms 

that, given enough time, can guarantee to find an optimal solution. There are also 

very specialised heuristics that exploit knowledge of the problem domain and 

produce solutions of good quality. There are also metaheuristics that are not designed 

specifically for a particular problem but are considered general approaches that can 

be tuned for any problem. Some metaheuristics may need tuning while others act as a 

black box because they can be implemented with none or very little information 

about the problem being solved. An example of such black-box approach is random 

search, which can be used to compare the performance of other algorithms. 
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3.4.4.  The No Free Lunch Theorem 

The interest on developing metaheuristic approaches for difficult combinatorial 

optimisation problems such as the one tackled in this thesis is because of the time 

complexity of these problems and because of the implications of the No Free Lunch 

Theorem (NFL) of Wolpert and Macready (Wolpert and Macready, 1995; Wolpert 

and Macready, 1997). The NFL theorem states that the averaged performance across 

all possible problems is the same for all algorithms. In other words, considering all 

possible problems, all algorithms perform equally and therefore, no distinction can 

be made between two algorithms because there are as many problems for which one 

algorithm performs better than the second one as for which the reverse is true. 

However, in some circumstances the comparison of two algorithms A1 and A2 can be 

made. If there are some problems for which the solutions obtained by A1 are much 

better than those obtained by A2, then if the NFL theorem holds, it may be the case 

that there are many problems for which A2 performs better than A1 but only for a 

small amount. Hence, if the problems in our interest are those for which A1 is better 

than A2, then it is possible to make a distinction between the two algorithms. 

The above implies that it is essential to incorporate knowledge of the problem 

domain into the algorithm. Otherwise, the algorithm is as likely to perform better 

than random search as it is likely to perform worse. One conclusion that can be 

obtained from the NFL theorem is that to solve any problem, the algorithm needs to 

be adapted by taking into consideration the specific characteristics of the problem. 

This motivates the interest in the investigation of applying and adapting 

metaheuristics approaches to the space allocation problem in this thesis. 

3.5.  Review of Metaheuristic Approaches 

3.5.1.  Introduction 

This section presents a brief overview of some of the most well known and 

successful metaheuristic approaches presented in the literature. The aim is to provide 

a consistent theoretical background on the field of metaheuristics for combinatorial 

optimisation to underpin the rest of this thesis. A review on the main concepts, 
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terminology, classifications, algorithms description and relevant applications is 

presented.  

3.5.2.  Classification of Metaheuristics 

There are several possible classifications of heuristics and metaheuristics but one that 

is commonly used and that certainly allows us to embrace most metaheuristics 

including their hybrids is: single-solution approaches and population-based 

approaches also called single-point and multiple-point respectively (Blum and Roli, 

2001). Examples of single-solution methods are: basic local search (deterministic 

iterative improvement), simulated annealing, tabu search, greedy randomised 

adaptive search procedure, variable neighbourhood search, guided local search, 

iterated local search and others. Population-based methods include: genetic 

algorithms, scatter search, ant colony systems, memetic algorithms, evolutionary 

strategies (although some of them are single-solution), particle swarm systems, 

cultural algorithms, etc. If a single-solution approach is hybridised with a population-

based approach (e.g. a memetic algorithm can be defined to be a genetic algorithm 

incorporating local search) then the result is, of course, a population-based approach. 

Sometimes, researchers classify heuristic and metaheuristic approaches into 

nature-inspired and non-nature inspired and many refer to the first group as 

evolutionary algorithms. While these algorithms are commonly conceptualised as 

those approaches that simulate various aspects of natural evolution (Bäck et al., 

1997), some researchers argue that a fundamental characteristic of evolutionary 

algorithms is that they handle a population of individuals (Calegari et al., 1999; Hertz 

and Klober, 2000). As noted in (Blum and Roli, 2001), sometimes it is difficult to 

clearly identify the genesis of an algorithm. In addition, many hybrid metaheuristics 

do not fit well into the above classification.  

An alternative classification of heuristic approaches is based on whether the 

algorithms use memory during the search (Taillard et.al, 2001). In that classification, 

memory is considered to be any mechanism that is explicitly used to store a set of 

solutions or parts of solutions. Taillard et al. sketch adaptive memory programming 

approaches as those algorithms that perform the following steps. First, the algorithm 

initialises the memory. Then, in an iterative process, the algorithm generates new 
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provisional solutions using the data stored in the memory, improves these generated 

solutions using local search and updates the memory using the pieces of knowledge 

brought by the new generated solutions. 

3.5.3.  Constructive Heuristics 

Constructive (greedy) heuristics exist for many combinatorial optimisation problems 

and some of these methods can produce an acceptable or acceptably good solution in 

a reasonable computation time, depending upon the problem solving situation in 

hand. Although in most cases the solutions produced are not considered to be near-

to-optimal, they can be improved in a subsequent more intensive search if the initial 

solutions are constructed using a greedy heuristic (Burke et al., 1998; Corne and 

Ross, 1996). A constructive heuristic builds a solution progressively in a number of 

iterations. It is commonly the case that the number of iterations equals the number of 

variables in the combinatorial optimisation problem. Then, in each iteration, the 

heuristic assigns a value to one of the variables until a complete solution is 

constructed. The heuristic selects the value that maintains the solution’s feasibility 

and produces the best result based on a predefined criterion. The suitability of 

initialising each variable is calculated using the predefined criterion at the beginning 

of the process and the order is maintained static during the construction. This means 

that for the same problem instance and the same predefined criterion, a greedy 

heuristic generates the same solution every time it is executed. 

3.5.4.  Simple Local Search 

Once a solution is initialised either randomly or with a constructive heuristic, it can 

be iteratively improved using local search heuristics that explore the neighbourhood 

of the present solution (e.g. Aarts and Lenstra, 1997). The neighbourhood of a 

solution is the set of solutions that are close to it in some sense. The local optima is 

the best solution(s) in the defined neighbourhood. Then, local search is also known 

as neighbourhood search. The global optima is a term used to describe the best 

solution(s) with respect to the whole solution space. Plateaus are regions of the 

solutions space where no neighbourhood is better but a number of them are as good 

as the present solution.  
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A neighbourhood function or neighbourhood structure maps each solution x ∈  S 

into a set of solutions Ν(x) ∈  S where S is the solution space, Ν(x) is the 

neighbourhood of x and each solution in Ν(x) is a neighbour of x. For example, many 

combinatorial optimisation problem solutions can be represented as sequences or 

partitions. These solution representations permit the use of k-exchange 

neighbourhood structures, i.e. by exchanging k elements in a given sequence or 

partition a neighbour solution is produced. A move in local search is the change 

defined by the neighbourhood structure that is made to the current solution in order 

to produce a neighbouring solution. Given a solution x, each neighbourhood structure 

specifies a set of solutions that are “close” to x. The neighbourhood size |Ν(x)| is the 

number of neighbouring solutions that can be reached from the solution x. 

Then, local search heuristics attempt to improve the current solution by 

exploring neighbourhoods. The first important choice is the neighbourhood 

structure(s). A given neighbourhood with a manageable size has a certain strength. A 

strong neighbourhood produces local optima that are largely independent of the 

quality of the initial solution while a weak neighbourhood produces local optima that 

is highly correlated to the initial solution (Papadimitriou and Steiglitz, 1982). The 

next choice is how to explore solutions in the neighbourhood(s) and some of the 

possible ways are described below. 

Deterministic Iterative Improvement 

The basic local search strategy or deterministic iterative improvement assumes a 

given neighbourhood and an initial solution. One neighbour is generated in each 

iteration and it replaces the current solution only if it is better. The search finishes 

when no better neighbouring solution is found. 

First and Best Iterative Improvement 

Exploring only one neighbouring solution often leads to poor local optima. An option 

is to generate a subset of the neighbouring solutions or all of them depending on the 

size of the neighbourhood. If the first neighbouring solution that is better than the 

current one is accepted, one obtains a first iterative improvement algorithm. When 
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the best of all the neighbours is selected, the approach is called best iterative 

improvement algorithm.  

Iterative improvement algorithms are also referred to as hill-climbing methods in 

maximisation problems or as descent methods in minimisation problems. Iterative 

improvement algorithms can be described using the pseudocode shown in figure 3.1. 

Step 1. Generate initial current solution x. 
Step 2. Explore neighbourhood of current solution x and generate candidate solution x’. 
Step 3. If fitness(x’) > fitness(x)  then x = x’. 
Step 4. If stopping condition met finish, otherwise go to Step 2. 

Figure 3.1. Iterative improvement algorithm. Deterministic improvement explores only one neighbour 
in step 2 while first improvement and best improvement explore a set of them. 

Other Extensions to Local Search 

Local search heuristics that accept only improving solutions are simple and easy to 

implement but they often produce local optima of low quality. Various strategies to 

avoid getting stuck in poor local optima have been incorporated into local search 

producing a number of metaheuristic approaches. These strategies aim to establish an 

adequate compromise between intensification and diversification. Intensification 

refers to focusing the search into certain regions of the solution space while 

diversification refers to expanding the search by exploring unvisited regions of the 

solution space. The intensification and diversification mechanisms can be 

fundamental components of the searching method or additional strategies 

incorporated by the designer with or without knowledge of the problem domain. A 

dynamic and adaptive compromise between the intensification and diversification 

phases is commonly regarded as desirable to achieve good results, but very few 

metaheuristics actually incorporate such a mechanism. Strong diversification 

strategies are good for sampling the solution space and identifying promising areas 

while strong intensification strategies are good for focusing and exploring these 

promising areas in search of elite solutions. 

In (Vaessens et al., 1998) a local search template that attempts to capture most of 

the variants of local search algorithms was proposed. In that template the authors 

identified the following strategies that contribute to the design of more elaborate 

local search procedures: 
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§ Generate all or a subset of the solutions in the given neighbourhood structure. 

§ Restart the search from different generated initial solutions. 

§ Use more elaborate criteria to even accept non-improving solutions. 

§ Replace the current solution by a population of current solutions. 

§ Design more than one neighbourhood structure to be used during the search. 

The local search template mentioned above classifies algorithm variations based 

on two aspects: the number of current solutions (point-based and population-based) 

and the number of search strategies or neighbourhood structures used (single-level 

and multi-level). More elaborate methods such as genetic algorithms (see section 

3.5.12) are described in the template as an instance of single-level population-based 

algorithms. 

3.5.5.  Greedy Randomized Adaptive Search Procedure (GRASP) 

GRASP is an iterative process that combines a randomised constructive heuristic and 

local search and is based on the strategy of restarting the search from different initial 

solutions (Glover and Kochenberger, 2003). In each iteration, a solution is generated 

with the randomised constructive heuristic and then the solution is improved by 

means of local search. The best solution over all iterations is kept and reported as the 

result at the end of the search. At each constructive step the suitability of each 

remaining non-initialised variable is calculated according to the status of the partial 

solution. Then, the variables are sorted according to their suitability and a sublist is 

formed. From this restricted candidate list the next variable to be initialised is chosen 

at random instead of selecting the most suitable one as in a greedy heuristic.  

Step 1. Start with an empty solution x. 
Step 2. Calculate suitability of each non-initialised variable. 
Step 3. Sort the non-initialised variables and generate the restricted candidate list. 
Step 4. Select and initialise one element at random from the restricted candidate list. 
Step 5. If the solution x is still incomplete go to Step 2. 
Step 6. Apply Local Search to solution current solution x to generate x’. 
Step 7. Memorise the best solution found so far. 
Step 8. If stopping condition met then finish, otherwise go to Step 1. 
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Figure 3.2. Greedy randomised adaptive search procedure. 

Figure 3.2 shows the pseudocode of the GRASP metaheuristic. The local search 

phase in the greedy randomised adaptive search procedure (step 6) can be any simple 

or more elaborated improvement method. Important conditions that should be met 

for GRASP to be successful are that the constructive and the local search phases 

must complement each other well and the latter should generate solutions that lie in 

promising areas of the solution space. 

3.5.6.  Guided Local Search (GLS) 

Guided local search (see pseudocode in figure 3.3) is a metaheuristic that employs 

the strategy of modifying the search landscape by changing the objective function 

(Glover and Kochenberger, 2002). The purpose of using modified objective 

functions in guided local search is to escape from the local optimal by gradually 

reducing its attractiveness. The algorithm starts with an initial solution that is 

improved by local search until a local optima is found. Then, in each iteration the 

original objective function f(x) is adapted to obtain the modified objective function 

f’(x) and the local search is restarted. 

Step 1. Generate initial current solution x. 
Step 2. Apply Local Search to solution x to generate local optima x* and using f’(x). 
Step 3. Modify the objective function f’(x) according to the search history. 
Step 4. If stopping condition met then finish, otherwise go to Step 2. 

Figure 3.3. Guided local search metaheuristic. 

The guided local search method is very simple and the critical component is the 

tactical change induced in the objective function, which is now explained in more 

detail. First, it is necessary to identify a set of q properties or features that may (or 

may not) be present in a solution and which serve to discriminate between solutions. 

Then, weights are associated to the q solution features to establish their relative 

importance. The modified function f’(x) is given by: 
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where pi is the weight or penalty parameter associated to feature i, I i(x) is a Boolean 

indicator of whether the feature i is present or not in the solution x and λ is the 
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regularisation parameter that established a balance between the importance of 

solution features with respect to the original objective function f(x). To adapt the 

objective function, some of the q penalty parameters are increased in each iteration. 

The penalties changed are those corresponding to the solution features that have a 

maximum utility. This utility is given by, 
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where ci is the cost assigned to each feature i measuring its relative importance with 

respect to the other solution features.  

Adapting the penalty parameters is a critical design decision when implementing 

guided local search because this will affect how the objective function and hence the 

search landscape is adapted during the search. The strategy for changing the penalty 

parameters is normally very dependent on the problem domain but it should 

encourage the use of the search history and avoid making the search landscape too 

rugged. 

3.5.7.  Iterated Local Search (ILS) 

Iterated local search is a metaheuristic that combines local search with a perturbation 

operator (Glover and Kochenberger, 2003) The algorithm starts with an initial 

solution and performs local search until a local optimum is found. Then, the current 

solution is perturbed and a different local optimum is obtained by performing local 

search. Finally, acceptance criteria based on the search history are used to decide 

whether the perturbed solution or the new local optimum becomes the current 

solution in the next iteration. Figure 3.4 shows the pseudocode of this metaheuristic. 

Step 1. Generate initial current solution x. 
Step 2. Apply Local Search to solution x to generate local optima x*. 
Step 3. Perturb solution x* to produce x’. 
Step 4. Apply Local Search to x’ to generate new local optima x’*. 
Step 5. If the acceptance criteria is satisfied then x*  = x’*. 
Step 4. If stopping condition met then finish, otherwise go to Step 3. 

Figure 3.4. Iterated local search metaheuristic. 

The way in which the perturbation operator, acceptance criteria and search 

history are designed and implemented permits a high degree of flexibility for tuning 
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iterated local search according to the problem domain. The perturbation operation 

must be designed in such a way that escaping from the local optima to explore other 

areas of the solution space is possible without turning into a completely random 

restart. The acceptance criterion can simply be to accept the new local optimum if it 

is better than the best solution so far or it can be a more elaborate criterion based on 

threshold acceptance (see section 3.5.9 below). 

3.5.8.  Variable Neighbourhood Search (VNS) 

The variable neighbourhood search metaheuristic is based on the strategy of using 

more than one neighbourhood structure during the search (Mladenovic and Hansen, 

1997). The main idea is to change the neighbourhood structure in a systematic way 

as the search progresses. First, k neighbourhood structures need to be defined. The 

algorithm is made of three phases: shaking, local search and move (see pseudocode 

in figure 3.5). 

During shaking a random solution is generated from the current solution using 

the kth neighbourhood structure. In the local search phase this randomly generated 

solution is improved and if it is better than the current solution it replaces it. In the 

move phase the next neighbourhood to be used is chosen based on whether or not the 

previous local search phase was successful or not. Intensification is achieved by the 

local search while the systematic change of the neighbourhood structure acts as a 

diversification mechanism. It is important to design good neighbourhood structures 

of increasing cardinality that present different views of the search landscape and 

allow the shaking phase to generate new starting solutions that lie near new local 

optima. There exist other variants of variable neighbourhood search such as variable 

neighbourhood decomposition search (VNDS), skewed variable neighbourhood 

search (SVNS) and given the flexibility of the technique, other variants of this 

algorithm can be employed (Hansen and Mlandenovic, 2001). 

Step 1. Generate initial current solution x. 
Step 2. Select neighborhood structure N1, i.e. k = 1. 
Step 3. Generate candidate solution x’ from x using the neighborhood structure Nk. 
Step 4. Apply Local Search to solution x’ to generate x*. 
Step 5. If fitness(x*) > fitness(x’) then x = x* and k = 1. 
Step 6. If fitness(x*) < fitness(x’) then k = k + 1. 
Step 7. If k < kmax  then go to Step 3. 
Step 8. If stopping condition met finish, otherwise go to Step 2. 
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Figure 3.5. Variable neighbourhood search metaheuristic. 

3.5.9.  Threshold Acceptance Algorithms 

Threshold acceptance algorithms are modified versions of improving heuristics 

where non-improving solutions are also accepted if a given condition is met. Figure 

3.6 shows the pseudocode for this technique. The condition is that the fitness 

difference between the current and the non-improving candidate solution be smaller 

that a given threshold. The threshold can be fixed during the whole search:  

threshold (t + 1) = threshold (t) 

or it can be varied as the searches progresses: 

threshold (t) ≥ threshold ( t + 1) and lim (t→ ∞) threshold (t) = 0 for the iteration t. 

Step 1. Generate initial current solution x. 
Step 2. t = 0. 
Step 3. threshold(t) = f(t). 
Step 4. Generate candidate solution x’ from current solution x. 
Step 5. If fitness(x’) – fitness(x) <  threshold(t) then x = x’. 
Step 6. t = t +1. 
Step 5. If stopping condition met finish, otherwise go to Step 3. 

Figure 3.6. Threshold acceptance metaheuristic. In step 3, f(t) gives the threshold for the iteration t. 

3.5.10.  Simulated Annealing (SA) 

Simulated annealing is an optimisation method that was inspired from the Metropolis 

algorithm for statistical mechanics (Metropolis et al., 1953). Simulated annealing is a 

metaheuristic that attempts to avoid getting stuck in poor local optima by exploring 

other areas of the solution space (Kirkpatrick et al., 1983, Aarts and Korst, 1998) and 

it is a probabilistic version of threshold acceptance. The main idea is that improving 

candidate solutions are always accepted while non-improving candidate solutions are 

accepted with a certain probability. This probability of accepting non-improving 

solutions is calculated according to the current temperature of the algorithm. 

Step 1. Generate initial current solution x. 
Step 2. Temperature = Initial Temperature. 
Step 3. Generate candidate solution x’ from current solution x. 
Step 4. If fitness(x’) > fitness(x)  then x = x’. 
Step 5. If fitness(x’) ≤ fitness(x) then calculate Acceptance Probability. 
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Step 5.1 If Acceptance Probability > random [0,1] then x = x’. Step 6. Update Temperature according to Cooling Schedule. 
Step 7. If stopping condition met finish, otherwise go to Step 3. 

Figure 3.7. Simulated annealing metaheuristic. In step 5 the acceptance probability is calculated 
according to the current temperature while in step 6 the current temperature is updated according to 
the cooling schedule. 

The algorithm starts with a high initial temperature, which corresponds to a high 

probability of accepting non-improving solutions. The temperature is gradually 

decreased as the search progresses so that the probability of accepting non-improving 

solutions is also reduced. At temperature zero the algorithm operates like an 

improving heuristic, i.e. only improving solutions are accepted. The search process 

can remain at temperature zero until the stopping condition or it can be reheated, i.e. 

the temperature is increased and reduced periodically. Two specific decisions have to 

be made for this algorithm: a) the choice of cooling schedule, i.e. the initial 

temperature and rules for varying it during the search and b) the choice of acceptance 

probability function, i.e. how to determine, according to the current temperature, the 

probability of accepting non-improving solutions. Figure 3.7. shows the pseudocode 

for the simulated annealing metaheuristic. 

The Cooling Schedule 

In general, the cooling schedule is determined by: 

a) Initial temperature. 

b) Decrement step, i.e. number of iterations between temperature decrements. 

c) Cooling factor, i.e. the proportion of the temperature reduction. 

d) Reheating step, i.e. number of iterations after which the temperature is 

increased to the initial temperature or to another value. 

Some cooling schedules reduce the temperature in a monotonic fashion and it 

has been suggested that optimal cooling schedules may not be monotonic (Reeves, 

1995). The selection of an adequate cooling schedule and all its associated 

parameters has been extensively studied and has been found to be dependant upon 

the problem domain. An analysis and comparison of various cooling schedules 

(when the computing time is limited) is provided in (Strenski and Kirkpatrick, 1991). 

The performance of a simulated annealing algorithm with different cooling schedules 
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on the course timetabling problem is investigated in (Elmohamed et al., 1998) while 

(Thompson and Dowsland, 1996; Thompson and Dowsland, 1996b) carried out a 

similar comparison on the examination timetabling problem. Some examples of 

cooling schedules that have been proposed and investigated in the literature are 

described as follows. 

Arithmetic Cooling Schedule. 

Ti = (Ti-1) – ∆T      (3.3) 

Ti is the new temperature value, Ti-1 is the previous temperature value and ∆T is the 

amount of temperature reduction, which is usually kept constant. 

Geometric Cooling Schedule. 

Ti = α⋅Ti-1 where 0 < α < 1, with α ≈ 1.  (3.4) 

or 

Ti = (α⋅Ti-1) / (1 + α⋅Ti-1) where 0 < α < 1, with α ≈ 0.  (3.5) 

Ti is the new temperature value, Ti-1 is the previous temperature value and α 

determines the cooling factor. 

Quadratic Cooling Schedule. 

Ti = a⋅i2 + b⋅i + c where 
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T1 and Tf are the initial and final temperature values respectively while Itotal is the 

total number of iterations of the algorithm. 

Heuristic Cooling Schedules. 

Heuristic cooling schedules reduce the temperature by taking into account the history 

of the search. One example of a heuristic temperature control is reheating as a 

function of the cost as described in (Elmohamed et al., 1998). In that cooling 

schedule, the temperature is raised according to the specific heat. The specific heat is 

a measure of the variance of the fitness values of the solutions visited at a given 

temperature level. At each temperature level Ti the average fitness of the visited 
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solutions is denoted by F(Ti) and σ 2(Ti) denotes the variance of the fitness at that 

temperature level. Then, the specific heat at the temperature level Ti is given by 
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The temperature at which the specific heat is maximum can then be found and it 

is denoted by T(CH
max). The cooling schedule reheats the temperature after a 

predefined number of iterations without improvement (reheating step) according to 

the following equation: 
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where k is a tuneable parameter and Fbest is the best fitness so far. The temperature 

can be decreased using an arithmetic or geometric cooling schedule. 

Another example of a heuristic cooling schedule is the adaptive cooling 

described also in (Elmohamed et al., 1998). Here, the temperature reduction is 

controlled based on the specific heat as given by equation 3.9 and then reheating may 

or may not be used.  
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where a is a tuneable parameter and σ (Ti) is the standard deviation of the fitness at 

temperature level Ti. 

(Aarts and Korst, 1998) proposed a cooling schedule that reduces the 

temperature very quickly during the first iterations and then, as the temperature 

decreases, the reduction rate is also slowed down. The temperature is reduced 

according to the following formula: 
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where δ* is the maximum difference between the global optimum (if known) and any 

feasible solution and δ is theoretically the maximum proportional change allowed for 

any temperature level. Suggested values are δ* = 3σi where σi is the standard 
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deviation of the current solution fitness value while using the temperature level Ti 

and δ = 0.1. 

Other heuristic cooling schedules are those described in (Osman, 1995) and 

given below by equations 3.11 and 3.12. 

reseti TT =+1  and 
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Treset is a higher temperature than the current value Ti and Tfound is the temperature 

value at which the best solution so far was found. The temperature is incremented 

using the above relation only after the whole neighbourhood (assuming this can be 

done) has been explored and no better solution has been found. Increasing the 

temperature permits us to escape from the current neighbourhood but without too 

much deviation from the best solution visited so far. 
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T1 and Tf are the initial and final temperature values respectively and suggested 

values for α and γ are: α = |N(x)|⋅N(x)feasible and γ = |N(x)|, where N(x)feasible is the 

total number of feasible moves in the neighbourhood N(x) of the current solution. 

Acceptance Probability Function 

As with the cooling schedule, several functions to calculate the acceptance 

probability have been proposed, but the most widely used is the Boltzmann-like 

distribution (Aarts and Korst, 1998): 

Acceptance probability = exp (- ∆F/Ti) where ∆F = fitness(x’) – fitness(x) and Ti is 

the current temperature. 

Remarks 

Broadly speaking, simulated annealing can find good solutions for a wide variety of 

problems, it is easy to implement and is capable of handling almost any optimisation 

problem and any constraint. On the other hand, some of the difficulties reported with 
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this method are long run times, the need for fine-tuning and the necessity for good 

neighbourhood structures design. An interesting research avenue is the challenge to 

design parallel versions of the simulated annealing algorithm. This is a task that, 

although promising, is not trivial because of the intrinsic sequential nature of the 

algorithm (Abramson, 1991). 

3.5.11.  Tabu Search (TS) 

Tabu search is a metaheuristic that attempts to guide the search in a systematic and 

intelligent way by using flexible and adaptive memory structures and some 

intensification and exploration strategies (Glover 1986; Glover et al., 1993; Glover 

and Laguna, 1997; Hansen 1986). The main components of tabu search are: short-

term memory, long-term memory and intensification and diversification strategies. 

Short-term memory is used to forbid revisiting solutions and then avoid cycling and 

being trapped in poor local optima. Long-term memory is used as a kind of learning 

process to generate intensification and diversification strategies. Long-term memory 

is used to collect information during the overall search process that permits the 

identification of common properties in good visited solutions and also to attempt to 

visit solutions with varying properties from those already visited. The 

implementation of both short-term and long-term memory is based on four 

principles: recency, frequency, quality and influence. While the recency principle is 

an indication of how recent it was that certain solutions were visited, the frequency 

principle is an indication of how often those solutions were visited. The quality 

principle refers to keeping information about visited solutions with good fitness 

values to identify good solution components and stimulate more intensive search in 

promising areas of the solution space. Finally, influence is used to identify those 

changes induced in the solutions structure that have proven to be more beneficial. 

Figure 3.8 shows the pseudocde for the tabu search metaheuristic. 

Step 1. Generate initial current solution x. 
Step 2. Initialize the Tabu List. 
Step 3. While set of candidate solutions X’ is not complete. 

Step 3.1. Generate candidate solution x’ from current solution x using the strategies for 
intensification and diversification. 
Step 3.2. Add x’ to X’ only if x’ (or associated attributes) is not tabu or if at least one 
Aspiration Criterion is satisfied. 

Step 4. Select the best candidate solution x* in X’. 
Step 5. If fitness(x*) > fitness(x)  then x = x*. 
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Step 6. Update Tabu List, Aspiration Criteria and Intensification and Diversification Strategies. 
Step 7. If stopping condition met finish, otherwise go to Step 3. 

Figure 3.8. Tabu search metaheuristic. 

Short-term Memory 

This component is usually implemented by maintaining a list that contains the most 

recently visited solutions. In most combinatorial optimisation problems, managing a 

list of visited solutions is not very efficient. Therefore, instead of the solution only 

some of its attributes (moves, components, etc.) are stored. This list is called the tabu 

list and the information stored there is used to forbid revisiting solutions for a certain 

number of iterations. The tabu list size defines how many recently visited solutions 

or their attributes are classified as tabu and the tabu tenure indicates for how long 

(usually measured in terms of  the number of iterations) each element of the list 

remains tabu. Then, during the local search only those moves that are not tabu will be 

explored unless the tabu move satisfies the predefined aspiration criteria. These 

aspiration criteria are used because the attributes in the tabu list may also be shared 

by unvisited good quality solutions. A common aspiration criterion is better fitness, 

i.e. the tabu status of a move in the tabu list is overridden if the move produces a 

better solution. 

Long-term Memory 

The long-term memory component is implemented by keeping a history of the 

overall search process based on the four principles mentioned above. Then, by 

storing information about the recency, frequency, quality and influence of solutions, 

moves or other attributes, it is possible to tune the strategies that will attempt to 

guide the search in a more intelligent way.  

Intensification and Diversification Strategies 

An example of an intensification strategy is that after identifying components of 

good quality solutions and moves that have had the most influence towards these 

solutions, the search is intensified around certain areas of the solution space and 

using these beneficial moves. An example of a diversification strategy is that after 
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identifying moves that have been accepted more frequently, the search is directed 

towards other areas by forcing moves that have not been used so frequently. 

Remarks 

The variety of principles that are incorporated in tabu search and the flexibility in 

which they can be implemented are factors that have contributed to the successful 

application of this metaheuristic to a wide range of combinatorial optimisation 

problems (Reeves, 1995; Glover and Laguna, 1997). In fact, tabu search can be better 

conceptualised as a framework rather that a method. This is because each of its 

components can be designed specifically for the target application following the 

principles and suggested refinements that have emerged as a result of the experience 

from practitioners and researchers in various fields. 

3.5.12.  Genetic Algorithms (GA) 

Genetic algorithms were in essence proposed by Holland in his book Adaptation in 

Natural and Artificial Systems (Holland, 1975). However, the ideas of using 

evolution and recombination for optimisation were proposed even earlier by 

Bremmermann (Bremmermann, 1962). A genetic algorithm is a population-based 

method that is based on the principles of natural evolution (e.g. Goldberg, 1989; Man 

et al., 1999; Michalewicz, 1999). The main idea in genetic algorithms is to generate a 

population of individuals and then, during a number of iterations (generations) to 

evolve this population by means of self-adaptation and recombination. Figure 3.9 

shows the general framework of a genetic algorithm. 

Step 1. Generate initial population. 
Step 2. Evaluate population. 
Step 3. Select individuals that will act as parents. 
Step 4. Apply Recombination to create offspring. 
Step 5. Apply Mutation to offspring. 
Step 6. Select parents and offspring to form the new population for the next generation. 
Step 7. If stopping condition met finish, otherwise go to Step 2. 

Figure 3.9. The genetic algorithm framework. 

Mutation and crossover are the two basic genetic operators used for 

implementing self-adaptation and recombination respectively. Crossover refers to the 

generation of one or more individuals (offspring) from the recombination of two or 
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more solutions in the current population (parents) and its purpose is the propagation 

of good solution components (genetic material) from parents to offspring. Mutation 

refers to small random variations of the solution and its purpose is to add diversity to 

the population. At each generation, some parents are selected and then recombined to 

generate the offspring. Some of the children may be mutated before adding them to 

the next generation. If elitism is implemented, some high quality individuals are 

selected to survive from one generation to the next one. The selection mechanism 

used to choose the parents aims to enforce the principle of survival of the fittest and 

therefore, acts as an intensification strategy. Recombination and mutation aim to 

encourage exploration and act as a diversification strategy. It is expected that a 

genetic algorithm will be capable of evolving the population and then converging 

towards solutions of high quality. Among the specific components that have to be 

carefully selected when designing effective genetic algorithms are the following: a) 

individual encoding, b) selection mechanisms, c) genetic operators, d) replacement 

scheme and d) constraint handling techniques. 

Individual Encoding 

An individual in genetic algorithms is usually a solution, a partial solution or a set of 

them. The representation of individuals in genetic algorithms is called the 

chromosome. Selecting an appropriate chromosome is an important issue because 

such representation should be suitable for the effective functioning of the genetic 

operators and perhaps the constraint-handling mechanism. Common representations 

for combinatorial problems are binary strings (including gray coded strings) and 

permutations of integer numbers but more complex structures are often designed to 

represent individuals for real world problems (Coley, 1999; Goldberg, 1989). 

Selection Mechanism 

Several mechanisms exist for selecting individuals that will act as parents (Coley, 

1999). For example, a common method is fitness-proportional selection where the 

probability of individuals for being chosen is proportional to their fitness. Another 

common method is tournament selection where two or more individuals compete 

among themselves for the right to become parents. In rank-based selection the 
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individuals are assigned a reproductive probability that depends on the rank they are 

given based on some criteria. 

Genetic Operators 

Mutation and crossover can also be implemented in many ways (Chambers, 2001). 

For example, a common way of implementing mutation is to select one or more 

positions in the chromosome and then modify them with a given (usually low) 

probability. The single-point and multi-point crossover operators are among the most 

well known and frequently used. In these operators one or more points (respectively) 

are selected at random to split the chromosome of the parents into sections and then 

recombine these sections to create the offspring (Goldberg, 1989). 

Replacement Scheme 

Once the crossover and mutation operators have been applied it is necessary to 

decide which individuals from the last generation will be replaced by the new 

offspring to form the new population. A non-elitist strategy replaces all individuals in 

the current population while an elitist strategy maintains the best individuals so that 

their genetic material can be transferred to the next generations (Man et al., 1999). 

Constraint Handling 

In constrained problems, the application of recombination (crossover) and random 

variations (mutation) to individuals makes the creation of infeasible solutions very 

likely with genetic algorithms. Constraint handling techniques for genetic algorithms 

can be grouped into three categories (Michalewicz, 1999):  

1. Allow the violation of constraints but penalise them. 

2. Apply special repairing heuristics to correct infeasible solutions. 

3. Use special individual representations to guarantee or increase the 

probability of generating only feasible solutions or use problem specific 

operators that preserve the feasibility of solutions. 
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Remarks 

Genetic algorithms are regarded as methods that are suited for exploring large 

solution spaces. It can be said that genetic algorithms are a general technique that can 

produce acceptable results in relatively short time and there exist many ways to 

design the main components mentioned above (Goldberg, 1989; Coley, 1999). 

However, in order to obtain high quality results it is generally acknowledged that it is 

required to design good genetic operators and to perform fine parameters tuning 

(Bäck, 1996). These algorithms have been applied to a variety of applications 

including optimisation, design and creative systems (Goldberg, 1989; Davis, 1991; 

Chambers, 2001; Bentley and Corne, 2002).  

3.5.13.  Other Evolutionary Algorithms (EA) 

Although there is no universally accepted definition of evolutionary algorithms, 

some classifications have been proposed, see for example (Calegari et al., 1999; 

Hertz and Klober, 2000). Here, we refer to evolutionary algorithms as methods that 

handle a population of solutions, iteratively evolve the population by applying phases 

of self-adaptation and co-operation and employ a coded representation of the 

solutions. The genetic algorithm described above is one of several types of 

evolutionary algorithms that exist. Some of the key evolutionary approaches are 

described below. 

Evolutionary Strategies 

While genetic algorithms emphasize recombination (high crossover probability) as 

the main search mechanism and usually use self-adaptation (low mutation 

probability) only as a supportive mechanism, evolutionary strategies emphasize both 

mechanisms as fundamental for searching. Another difference is that while genetic 

algorithms usually operate on the encoded representation of a solution (genotype), 

evolutionary strategies operate on the solution itself (phenotype) (Bäck, 1996; Bäck 

et al., 1997). The basic notation (µ + λ)ES where µ is the number of parents and λ is 

the number of offspring, represents an evolutionary strategy that in each generation 

selects the best µ individuals from the µ + λ individuals (parents and offspring) in 
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total. The modified notation (µ,λ)ES indicates that λ offspring are generated from the 

µ parents but the best µ individuals are selected only from the λ offspring. 

Scatter Search and Path Relinking 

The scatter search and path relinking metaheuristic (Laguna, 2002) consists of two 

phases. In the first phase, one or more feasible solutions are generated which serve as 

seed solutions. Then, a reference set containing the best solutions found so far in 

terms of fitness and diversity is created as follows: trail solutions are generated using 

the seed or the trial solutions. Then, these trial solutions are improved by means of 

local search before using them to update the reference set. It may be that the trail 

solutions and their improved versions are infeasible. Then, it will be necessary to 

apply repairing heuristics to these infeasible solutions. Once the reference set is 

created, the algorithm enters the second phase where a subset of solutions is created 

by recombination of solutions in the reference set. The combination of solutions is 

based on generalized path constructions in the Euclidean (scatter search) or 

neighbourhood space (path relinking). These newly generated solutions are then 

improved and used to update the reference set. This process continues until the 

stopping criteria are satisfied. 

Memetic Algorithms 

The term memetic algorithms (MA) has been used to identify a broad class of hybrid 

metaheuristics: evolutionary algorithms that incorporate local search heuristics, 

specialised recombination/mutation operators and/or other “helpers” specifically 

designed to exploit the knowledge of the problem domain (e.g. Moscato 1989; 

Moscato, 1999). While genetic algorithms are inspired by the metaphor of genes, 

memetic algorithms are inspired by the metaphor of memes. A gene is the unit of 

genetic information that is propagated biologically between generations during the 

evolution process. A meme is the unit of conceptual information (knowledge, ideas, 

behaviour, customs, etc.) that is transmitted by imitation from one generation to the 

next one. Then by incorporating the available knowledge about the problem into an 

evolutionary algorithm, the working metaphor is that of evolving a population both 

biologically and culturally. Since the term memetic was introduced some time after 

researchers have started to study this kind of hybrids, it is common that names such 
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as genetic local search, hybrid genetic algorithms an others are used when referring 

to memetic algorithms (e.g. Reeves, 1996; Ishibuchi et al., 1997; Falkenauer, 1996; 

Burke et al., 2000; Jaszkiewicz, 2002). 

Ant Colony Optimisation 

The ant colony optimisation (ACO) metaheuristic (Dorigo et al., 1996) is inspired by 

the behaviour of ants when finding the shortest path between a food source and their 

nest. Ants deposit a substance called pheromone while exploring paths and also use 

the level of concentration of pheromone to decide which path to follow. Since the 

pheromone evaporates as time passes, the concentration is stronger in the shortest 

paths making them more attractive for other ants that also contribute to enhance the 

attractiveness of the path. An ant colony optimisation algorithm consists of a set of 

artificial ants that incrementally construct solutions by adding components to their 

solutions. There exist several variants of algorithms based on the ant colony 

optimisation framework. For more references see (Dorigo et al., 1996; Blum and 

Roli, 2001). 

Particle Swarm Optimisation 

A swarm of individuals exploring a large solution space can benefit from sharing the 

experiences gained during the search with the other individuals in the population. 

This social behaviour has inspired the development of the particle swarm 

optimisation algorithm (PSO) (e.g. Kennedy and Eberhart, 1999). In most versions of 

this metaheuristic, individuals are not selected to survive or die in each generation. 

Instead, all the individuals learn from the others and adapt themselves by trying to 

imitate the behaviour of the fittest individuals. However, selection can also be 

implemented to simulate the social rejection of those individuals that are not well 

adapted to the group performance. 

Cultural Algorithms 

Cultural algorithms have been developed inspired by the way in which cultural 

evolution is achieved in social systems (Reynolds, 1999). In the evolution of social 

systems and in particular human societies, culture is a vehicle for transmitting 

information at three levels: between generations, between populations and between 
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individuals in the same population. In a social system some individuals may have 

more experience and knowledge, which are of high value for the society. Then, these 

individuals are voted to have a deeper influence in the population beliefs and hence 

the cultural evolution of the society. More instances of these desirable individuals 

may be promoted while those individuals who are not so desirable may be 

eliminated. The culture or beliefs of the society is then adjusted and used to guide the 

evolution of the population in each generation. 

3.5.14.  Hybrid Metaheuristics 

With the exception of memetic algorithms, the metaheuristics described above can be 

considered pure in the sense that they are not a combination of two or more 

approaches. When applying metaheuristics to solve an optimisation problem, one 

way to pursue success is to adapt the technique using knowledge from the problem 

domain. This adaptation can be achieved by modifying its components and/or tuning 

its parameters. Another approach that is commonly adopted is to combine two or 

more algorithms to develop a hybrid approach better suited for the given problem. 

Hybrid metaheuristics have proven to be successful in many optimisation problems 

and particularly in practical or real-world problems. It is not within the scope of this 

thesis to provide an extensive survey on hybrid metaheuristics. Instead, the reader is 

referred to some of the surveys and compilations of metaheuristics applications 

available in the literature (Glover and Kochenberger, 2003; Voss et al., 1999; Aarts 

and Lenstra, 1997; Osman and Kelly, 1996; Osman and Laporte, 1996; Rayward-

Smith et al., 1996; Reeves, 1995). 

The hybridisation of metaheuristics has been proposed at various levels and in 

different ways. For example, the components of one metaheuristic can be embedded 

into another (using tabu lists within a genetic algorithm) or one metaheuristic can be 

used as a component to enhance the performance of another (simulated annealing as 

the local search phase in variable neighbourhood search). The many ways in which 

metaheuristics can be combined makes it very difficult to describe or list all of them. 

Instead, it is perhaps more effective to differentiate between the designing principles 

used. In order to achieve this, it would be useful to have a nomenclature or 

framework that covers and permits the description of the majority of the hybrids 
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proposed in the literature. Some attempts towards this have been made although it 

seems that still no common scheme for classifying hybrid metaheuristics has been 

adopted among researchers. 

For example, (Hertz and Klober, 2000) proposed a framework for describing a 

wide range of evolutionary algorithms including their hybrids with local search. 

Seven main features are identified and used to describe an evolutionary algorithm 

with their framework: individuals, evolution process, neighbourhood, information 

sources, infeasibility, intensification and diversification. The authors illustrate their 

framework by using it to describe various evolutionary algorithms including genetic 

algorithms, scatter search and ant systems. In their final remarks the authors note that 

“a good description of the main features of evolutionary algorithms can help to 

understand the philosophy of the method and better analyse the reasons that explain 

the good performance of a particular evolutionary algorithm”. A similar taxonomy 

called Table of Evolutionary Algorithms (TEA) was proposed by (Calegari et al., 

1999) to compare the principles of various evolutionary algorithms also including 

some hybrids. 

Hybrid EA 

 

Sequential    Parallel 
 

Synchronous    Asynchronous 
 
 
Homogeneous                 Heterogeneous 

 
 

Global  Partial  Functional 

Figure 3.10. Hierarchy of hybrid evolutionary algorithms of (Preux and Talbi, 1999). 

Another taxonomy of hybrid metaheuristics (focused also on evolutionary 

algorithms) is the one proposed by (Preux and Talbi, 1999). In their scheme the 

authors define the hierarchy shown in figure 3.10. Sequential hybrids refer to a set of 

algorithms that are applied one after another. For example, solutions initialised with 

a greedy heuristic are then evolved with a genetic algorithm and the final population 

improved by a local search method such as tabu search. The classification of parallel 

hybrids is more elaborate. The algorithms can be precisely synchronised 
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(synchronous hybrids) or cooperating with no specific coordination mechanism 

(asynchronous hybrids). In the asynchronous approach, homogeneous hybrids occur 

if all the cooperating algorithms are the same while in heterogeneous hybrids the 

cooperating algorithms are different. From a different perspective, the parallel 

asynchronous hybrids are divided into the following categories: global, partial and 

functional. A global implementation occurs when all the algorithms search the same 

solution space. In a partial approach the solution space is decomposed and each 

algorithm searches a part of it. In the functional hybrid, each of the algorithms solve 

a different problem. 

In their paper, Preux and Talbi not only illustrate how some previously proposed 

hybrid algorithms can be classified using their taxonomy, but they also argue that the 

building blocks induced by their scheme can be combined in other ways to inspire 

other hybridisations (like the ones proposed in this thesis). They note that “parallel 

asynchronous hybrid algorithms are strongly appealing for three main reasons: 

cooperation of individuals proves an efficient strategy on the long run, the 

stochasticity induced by the asynchronous cooperation has not been thoroughly 

explored as yet and the model ideally meets the requirements of implementation on 

parallel computers”. A classification scheme similar to the one by Preux and Talbi 

but including many more references to hybrid metaheuristics was suggested by 

(Talbi, 2002). 

The local search template of (Vaessens et al., 1998) is another classification 

scheme that attempts to capture most of the variants of local search algorithms. This 

template is based on three features: the number of levels (different searching 

strategies and neighbourhoods), the population size (point-based and population-

based) and the cluster size (number of current solutions used to generate candidate 

solutions). Using their template, the authors describe algorithms such as tabu search, 

simulated annealing, threshold accepting, genetic algorithms, genetic local search 

and others. Note that they include genetic algorithms within their template although 

some researchers may argue that these algorithms are not local search methods. At 

the time of publication Vaessens et al. noted that “some hybrids induced by their 

template had not been proposed or were not well known yet”. In particular they 

suggest that multi-level local search algorithms deserve special attention since 
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existing techniques that fall into this classification have proven to be successful. 

These include genetic local search and other algorithms using more than one strategy 

or neighbourhood structure. 

3.5.15.  Evaluating the Performance of Metaheuristics 

Metaheuristics are approximate algorithms and many of them will produce solutions 

of various qualities in different runs on the same problem instance. The stochastic 

nature of metaheuristic approaches is one of the main reasons for this (not unusual) 

behaviour. Obviously, if the optimal solutions for the problem are known, the 

performance of the metaheuristic technique can be assessed by comparing the 

solutions obtained by the metaheuristic technique to the optimal solutions. If the 

optimal solutions for the problem being solved are not known, assessing the quality 

of the solutions obtained using metaheuristics can be done in two ways: by referring 

to known upper and lower bounds or by referring to benchmark results (Reeves, 

1995). Three aspects are of particular interest when assessing the performance of 

metaheuristic methods: effectiveness, efficiency and robustness. Effectiveness usually 

refers to the quality of the solutions produced by the method. Efficiency usually 

refers to how much computation time and memory the method uses. Robustness 

usually refers to how consistent the method is in producing the same or very similar 

results over many runs on the same problem instance. 
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Chapter 4.   General Metaheuristic Approaches 

4.1.  Introduction 

This chapter presents an initial investigation into applying metaheuristics to automate 

the solution of the academic space allocation problem described in chapter 2. The 

aim of this initial study is to assess the suitability of applying some well-known 

heuristic search methods in order to have an insight into the difficulty of solving the 

space allocation problem. Before starting an investigation into heuristic search, 

several decisions have to be made. The following aspects should be considered:  

§ The selection of solution representation and associated data structures. 

§ The definition of neighbourhood structures. 

§ The implementation of efficient fitness evaluation routines. 

§ The design of solution initialisation strategies. 

§ The selection of search algorithms. 

§ The tuning of algorithm parameters. 

The rest of this chapter describes how these issues were addressed with respect 

to the problem studied here. The following four search techniques were selected to 

carry out this initial investigation: 

§ Iterative improvement local search. 

§ Simulated annealing algorithm. 

§ Tabu search algorithm. 

§ Genetic algorithm. 

These methods were chosen because they have been applied to a great variety of 

problems, are considered robust in the general sense, many papers exist that provide 

guidelines for implementing them and various comparative studies between these 

and other techniques exist in the literature. See for example (Corne and Ross, 1995; 
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Hasan et al., 2000; Youssef et al., 2001). These four techniques can be considered as 

general search methods that need to be adapted and tuned for specific applications in 

order to obtain good results (Pirlot, 1996). From the work presented in this chapter, 

the material corresponding to the tabu search metaheuristic is included in the 

[Bur2003b] paper, while the material corresponding to the other three approaches is 

included in the [Bur2000] paper (see the appendix on page 199). 

A considerable number of publications report on the improvement and tuning of 

the various components of the techniques above to make them more effective, 

efficient and robust. For example, in genetic algorithms different replacement 

policies have been proposed to manage the incorporation of the new generated 

individuals into the next generation and the preservation of the fittest individuals 

(elitism) from the current generation (Bäck et al., 1997). Several selection 

mechanisms, genetic operators and techniques for tuning the probabilities of these 

genetic operators have also been investigated (e.g. Tuson and Ross, 1998; Julstrom, 

1995). As mentioned in section 3.5.10, with respect to simulated annealing, various 

cooling schedules including both deterministic and adaptive approaches have been 

studied in order to control the variation of the acceptance probability (Aarts and 

Korst, 1998; Ingber, 1996). In tabu search, there are different implementations of 

short-term and long-term memory structures or tabu lists including the use of 

learning techniques. The incorporation of preferred candidate lists, i.e. lists of 

promising moves or attributes of moves has also been explored. The aspiration 

criteria to be used when overriding the tabu status of a candidate move is another 

aspect that has received attention from the community and the use of different 

aspiration criteria during the search in an adaptive way has also been proposed 

(Glover and Laguna, 1997).  

Various researchers have carried out experiments to compare the performance of 

the above metaheuristics on different problem domains. For example, the 

performance of simulated annealing, tabu search and a genetic algorithm are 

compared when solving an unconstrained Pseudo-Boolean function in (Hasan et al., 

2000). In that paper the authors conclude that, after extensive experiments using 

well-tuned parameters for the three methods, the genetic algorithm performed the 

best although no reasons for this were identified. Another comparison between these 
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three metaheuristics was carried out in (Youseef et al., 2001) for the floorplanning of 

VLSI circuits. Four aspects were taken into account: quality of the best solution 

found, progress of the search, progress of the best fitness and number of solutions 

discovered at successive intervals of the fitness function. In that paper, the authors 

aimed to study the behaviour of the three algorithms instead of demonstrating the 

superiority of one of them. However, they reported that the best performance was 

exhibited by tabu search, closely followed by the genetic algorithm while simulated 

annealing stayed far behind. It was also noted that the genetic algorithm required the 

most effort with respect to the complexity of implementation and tuning of 

parameters. 

4.2.  Solution Representation and Data Structures 

There are, in general, two types of solution representations for combinatorial 

problems: direct and indirect representations (also called explicit and implicit 

respectively). A direct representation encodes a solution while an indirect 

representation encodes the steps to construct a solution. For the academic space 

allocation problem investigated here, it was decided to represent an allocation or 

solution using the direct encoding described in section 2.4.2 where a solution x is a 

string in which each position represents an entity and the value in that position 

indicates the room to which the entity has been allocated. Other representations (e.g. 

each position in the string representing a room) were also considered, but having a 

string where each position represents an entity makes it easier to maintain the 

feasibility of solutions in terms of the condition that each entity must be allocated to 

exactly one room (eq. 2.8). In addition to this direct vector representation, it was also 

decided to design an appropriate data structure in which to keep all the information 

corresponding to the problem instance being solved (penalties, list of entities, list of 

rooms, etc.) and the details of each particular allocation or solution (penalties, used 

rooms, fitness, etc). All the information is organised using a data structure based on 

linked lists as described below.  

The data for a problem instance is organised in three lists of objects 

corresponding to the following groups: entities, rooms and constraints. 
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§ Entities. This list holds the details of each entity to be allocated: name, associated 

weight level or priority, owner department, associated group, etc. 

§ Rooms. This list holds the details of each room: id, capacity, building, floor, list of 

adjacent rooms, type of room, special features, etc. 

§ Constraints. This list holds details of each constraint (hard and soft): label, 

description, associated penalty, associated entities/rooms, etc. 

The lists described above hold information about the problem instance being 

solved but another data structure is required to keep details of an allocation or 

solution. The data structure used to represent a solution or allocation is based on the 

three objects described below. 

§ EntityGene. This includes: fitness statistics for this entity, pointer to the respective 

entity in the global entities list, pointer to the RoomGene to which this entity is 

allocated, pointer to the next EntityGene that is allocated to the same room and 

pointer to the first ConstraintGene in the list of constraints affecting this entity. 

§ RoomGene. This includes: fitness statistics for this room, pointer to the 

corresponding room in the global rooms list, pointer to the first EntityGene in the 

list of entities allocated to this room and pointer to the first ConstraintGene in the 

list of constraints affecting this room. 

§ ConstraintGene. This includes: pointer to the corresponding constraint in the 

global constraints list and pointer to the next ConstraintGene that is also assigned 

to the same entity or the same room. 

Using the structures described above, the linked list model shown in figure 4.1 

holds all the details of the problem instance and the allocation or solution. Note that 

the lists Entities, Rooms and Constraints are common to all solutions and are created 

only once. In this example, the problem consists of allocating the 5 entities (E1 to 

E5) to the 5 available rooms (R1 to R5) subject to 4 constraints (C1 to C4). Entity E1 

is allocated to room R5, entity E2 and E4 are allocated to room R3 and entity E5 is 

allocated to room R1. Room R2 is empty and entity E3 is not allocated. Constraint 
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C1 applies to room R5, constraint C2 applies to entity E1 and constraints C3 and C4 

apply to entity E5.  

This data structure, based on linked lists, has the flexibility to easily change 

details about the problem instance and the solution. Also, the linked list model 

permits the easy implementation of local search moves that maintain the feasibility 

of the solution in terms of hard constraints (eq. 2.9) and the implementation of 

efficient solution evaluation routines as it is described later in this chapter. Other 

researchers have also found that the use of linked lists is advantageous for 

representing combinatorial optimisation problems and their solutions (Randall and 

Abramson, 2001). So, an allocation or solution for the academic space allocation 

problem is represented in this thesis using the string of length n and stored using the 

data structure shown in figure 4.1. The combination of the string and the linked list 

structure helps to maintain the feasibility conditions in this problem. 

Figure 4.1. Data structure used for the space allocation problem. The global lists Entities, Rooms and 
Constraints hold data corresponding to the problem instance being solved. The linked lists of genes 
hold details of a particular allocation or solution.  
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4.3.  Neighbourhood Structures 

Three neighbourhood structures or moves are defined to perform local search. These 

structures are given below together with their respective size in terms of the number 

of entities to allocate (n) and the number of available rooms (m). 

§ Relocate an entity to a different room. |NR| = n ( m - 1 ). 

§ Swap the rooms between two entities. |NS| = n ( n - 1 ) / 2. 

§ Interchange the allocated entities between two rooms. |NI| = m ( m - 1 ) / 2. 

In the above, n is the number of entities to allocate, m is the number of available 

rooms, and NR, NS and NI refer to the relocate, swap and interchange neighbourhoods 

respectively. These neighbourhood structures are naturally associated to the problem 

studied in this thesis. They were selected so that targeted changes can be 

implemented in the existing allocation and the feasibility of solutions is fully or 

nearly maintained. Also, more elaborate moves or chains of moves can be generated 

from these three basic neighbourhood structures. A feasible move modifies the 

solution maintaining the feasibility conditions while a suitable move is a feasible 

move that also improves the solution quality. From the description of the problem 

given in chapter two, it can be noted that the improvement of solution quality can be 

achieved by reducing the amount of space misuse and/or by reducing the violation of 

soft constraints. Then, given the types of constraints in this problem, it is also 

possible to design specific moves or neighbourhood structures aimed to improve the 

solution quality. However, it was decided not to have such a high degree of 

specialisation so that the metaheuristic approaches proposed in this thesis could 

eventually be applicable to different problem instances (given the variety of soft 

constraints) and perhaps similar problem domains.  

4.4.  Fitness Evaluation Routines 

After modifying a solution by means of the moves described above or using the 

genetic operators described later in this chapter, the fitness of the new allocation has 

to be calculated. Unfortunately, an exact evaluation of the new fitness cannot be 

carried out locally. The reason for this is that not only the entities and rooms 

involved in the move have to be taken into account but also the entities and rooms 
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affected indirectly by the modification. The level of satisfaction of other soft 

constraints not directly related to the implemented move may also be affected and 

then, an exact fitness evaluation would require consideration of all the soft 

constraints. Such an exact fitness evaluation routine is very time consuming and 

therefore, an approximate fitness evaluation routine, also known as delta evaluation 

(Corne et al., 1994), is also implemented. Such approximate evaluation takes into 

account the changes in space utilisation and the changes in the soft constraints 

satisfaction directly related to the entities and rooms involved in the selected move. 

But this approximate evaluation does not consider the potential changes produced in 

the soft constraints satisfaction related to other entities and rooms not involved in the 

move. 

Consider the situation illustrated in figure 4.2 where the selected move is to swap 

the assigned rooms between entities E3 and E4. The approximate evaluation takes 

into account the changes in space utilisation in rooms R5 and R6 and the change in 

the satisfaction of constraint C2 but not the satisfaction of constraint C1, which is 

also affected. The purpose of implementing two fitness evaluation routines 

(approximate and exact) is to use each of them in the appropriate case so that the 

search can be performed more efficiently. The exact evaluation is used when an 

improved solution has been found, in order to update the solution fitness accurately. 

The approximate evaluation is used while exploring the neighbourhood of a solution, 

in order to carry out a quick assessment of the suitability of implementing a move. 

 

 

 

 

 

Figure 4.2. The approximate fitness evaluation routine. This procedure only considers the entities and 
rooms involved in the implemented move.  
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4.5.  Constructive Heuristics and Neighbourhood Exploration 

In this section, the heuristics employed to initialise an allocation and to perform 

neighbourhood search are described. Various degrees of greediness and exploration 

can be used when performing initialisation and neighbourhood search respectively. 

That is, there exist a number of strategies for constructing an initial solution that 

ranges from random selection to complete greedy heuristics including peckish 

methods, i.e. a greedy heuristic that occasionally makes mistakes (Corne et al., 

1994). Similarly, while performing neighbourhood search, the selection of the next 

neighbouring solution can be done at random or after evaluating all the solutions in 

the neighbourhood. 

Several researchers have noted that a trade-off needs to be established between 

the size of the neighbourhood and the efficiency and effectiveness of the exploration 

(Liu, 1999; Marett and Wright, 1996). Another aspect that must be considered is the 

connectedness of the solution space and the difficulty to explore it. The degree of 

intensification used to construct initial solutions and to explore the neighbourhood 

can have an effect on the performance of the metaheuristic used to perform the 

search (Dowsland, 1996; Corne et al., 1994). 

4.5.1.  Constructive Heuristics 

The initialisation of an allocation is accomplished by iteratively allocating entities to 

rooms. Two selections have to be made: the next entity to allocate and then, the room 

to which the entity should be allocated. The constructive heuristic can vary from 

complete random selection of both the entity and the room to a greedy strategy that 

selects the best assignment. The following simple heuristics were implemented here: 

AllocateBestAll. Selects the pair (unallocated entity,room) that produces the largest 

improvement in the solution fitness and allocates the entity to the room. 

AllocateRnd-Rnd. Selects an unallocated entity and room at random and allocates 

the entity to the room. 

AllocateRnd-BestRnd. Selects an unallocated entity at random, then explores a 

number of randomly selected rooms evaluating the suitability of each of them. Then, 

the chosen entity is allocated to the best of the subset of explored rooms. 
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AllocateWgt-BestRnd. The unallocated entities are sorted in decreasing order of 

their weight (required space). In each iteration, the unallocated entity with the largest 

weight is selected (breaking ties at random) and the room to allocate this entity is 

chosen using the same procedure as in the heuristic AllocateRnd-BestRnd. 

AllocatePrty-BestRnd. The unallocated entities are sorted in decreasing order of 

their importance (for example managers, professors, technicians, etc.). In each 

iteration, the unallocated entity with the highest priority is selected (breaking ties at 

random) and the room to allocate this entity is chosen with the same procedure as in 

the heuristic AllocateRnd-BestRnd. 

AllocateCsrt-BestRnd. This heuristic was designed specifically to allocate entities 

subject to hard constraints. If the selected unallocated entity is subject to hard 

constraints that limit the possible rooms to which this entity can be allocated (e.g. Be 

located in or Be together with), the feasible assignment that produces the best 

improvement in the allocation fitness is implemented. By using this heuristic to 

allocate entities subject to hard constraints, it is easier to guarantee the feasibility of 

the generated initial solutions. 

Note that all the above heuristics select the entity to be allocated and then search 

for an adequate room using random or tournament selection. Heuristics selecting first 

the room to fill and then searching for adequate entities for the chosen room were 

also tried. However, the strategy of driving the initialisation by entity selection 

instead of by room selection produced better results overall. The main reason 

observed for this was that most of the constraints (soft and hard) are associated to 

entities rather than to rooms. This means that there is more flexibility when searching 

a room for a given entity and achieving satisfaction of constraints even with a small 

detriment in the room space utilisation efficiency. 

4.5.2.  Neighbourhood Structure Selection 

The first step is to decide which type of neighbourhood structure (relocate, swap or 

interchange) to use and then to explore the chosen neighbourhood with a 

predetermined strategy. A heuristic was designed to select the type of neighbourhood 

structure or move before initiating the neighbourhood exploration to select the actual 

move. This heuristic is shown in figure 4.3. 
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Note that the strategy shown in fig. 4.3 considers the cases when all the entities 

are already allocated and also when there are unallocated entities. Although it was 

specified in chapter 2 that one of the feasibility conditions considered in this thesis is 

that all the entities in the problem instance must be allocated (eq. 2.8), the heuristic 

presented in figure 4.3 permits flexibility to consider other problem conditions (for 

example, when unallocated entities are allowed) and adaptability to various search 

strategies (considering or not infeasible solutions during the search). Moreover, this 

heuristic can be used for initialising solutions as well as for neighbourhood 

exploration. In this case, the heuristic tries to allocate as many entities as possible to 

produce a feasible solution by using the allocate move, but it also tries to avoid 

getting stuck by examining the relocate, swap and interchange neighbourhoods when 

no more allocate moves are possible. 

Step 1. If all n entities are allocated then do 
 Step 1.1. Select the move type at random: relocate, swap or interchange. 
Step 2. If not all n entities are allocated then do 
 Step 2.1. If the number of attempts ≥ maximum attempts permitted then do 
 Step 2.1.1. If the previous selected move type was allocate then select a move 

between relocate, swap and interchange at random. 
 Step 2.1.2. If the previous selected move type was not allocate then select the 

allocate move. 
  Step 2.1.3. Set the number of attempts equal to zero. 
 Step 2.2. If the number of attempts < maximum attempts permitted then do 
 Step 2.2.1. If the previous selected move type was not allocate then select a move 

between relocate, swap and interchange at random. 
Step 3. Explore the neighbourhood and return a move of the selected type. 

Figure 4.3. Local search heuristic HLS selects the type of move or neighbourhood structure and then 
explores the selected neighbourhood to find a move. The number of attempts refers to the number of 
previously consecutive failed (i.e. no accepted) moves. The value maximum attempts refers to the 
maximum number of failed attempts permitted. 

To select the type of move, this heuristic takes into account the current state of 

the allocation and the history of success in applying each type of move. The type of 

move that is undertaken in each iteration, depends on the number of allocated entities 

and the number of prior failed attempts to find a feasible move of the selected type. 

That is, if all entities are allocated in the current solution, only the moves relocate, 

swap and interchange are explored. In the case that not all entities are allocated, a 

certain number of maximum attempts normally set to n/10 (decided by preliminary 

experimentation) is given to either of the three move types. For example, suppose 

that in the current solution there are still 5 unallocated entities from a total of 100 in 
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the allocation problem. Then, if after 20 failed attempts, none of these entities have 

been successfully allocated, the algorithm examines the feasibility of modifying the 

solution using the relocate, swap and interchange moves up to a maximum of 20 

failed attempts. The number of failed modification attempts is set to zero when a 

move has been accepted by the driving metaheuristic (e.g. iterative improvement, 

simulated annealing or tabu search). 

4.5.3.  Neighbourhood Exploration 

Once the neighbourhood structure (type of move) is chosen, exploring the selected 

neighbourhood consists of visiting one, some or all the solutions in the vicinity of the 

current solution and selecting one of them. As in solution initialisation, the 

neighbourhood exploration strategy can vary from random (visiting one neighbour at 

random) to exhaustive (visiting all neighbours). The heuristics that were 

implemented in this thesis to carry out the neighbourhood exploration are described 

below. 

RelocateRnd-Rnd. Selects an allocated entity and a room at random and moves the 

entity from its previous room to the selected room. 

RelocateRnd-BestRnd. Selects an allocated entity at random, then explores a 

number of randomly selected rooms evaluating the suitability of each of them to 

relocate the selected entity. Then, the chosen entity is allocated to the best of the 

subset of explored rooms. 

RelocatePnty-BestRnd. The allocated entities are sorted in non-increasing order of 

their individual penalties (violation of soft constraints). In each iteration, the 

allocated entity with the highest penalty is selected and the room to relocate this 

entity is chosen with the same procedure as in the heuristic RelocateRnd-BestRnd.  

SwapRnd-Rnd. Two entities allocated to different rooms (so that the swap move can 

take place) are selected at random. Then, the assigned rooms are swaped between 

these two entities. 

SwapRnd-BestRnd. Selects one allocated entity at random, then explores a number 

of randomly selected entities allocated to a different room evaluating the suitability 
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of the swap. Then, the pair that produces the largest improvement in the solutions 

fitness is selected. 

SwapPnty-BestRnd. The allocated entities are sorted in non-increasing order of 

their individual penalties (violation of soft constraints). In each iteration, the 

allocated entity with the highest penalty is selected and the entity to implement the 

swap is chosen with the same procedure as in the heuristic SwapRnd-BestRnd. 

InterchangeRnd-Rnd. Two rooms are selected at random and the interchange move 

is conducted betweent these two rooms. 

InterchangeRnd-BestRnd. Selects one non-empty room at random, then explores a 

number of randomly selected non-empty rooms evaluating the suitability of the 

interchange. Then, the pair of rooms that produces the largest improvement in the 

solution fitness is selected and the interchange move is conducted. 

InterchangePnty-BestRnd. The non-empty rooms are sorted in non-increasing 

order of their individual penalties (space misuse and violation of soft constraints). In 

each iteration, the room with the highest penalty is selected and the room to 

implement the interchange is chosen with the same procedure as in the heuristic 

InterchangeRnd-BestRnd. Then, the interchange move is conducted using these two 

rooms. 

The number of rooms explored when the BestRnd variant is used in the above 

moves was set to n/3 by preliminary experimentation. The various neighbourhood 

structures and heuristics described above permit the implementation of the heuristic 

HLS (figure 4.3) in many different ways considering (or not) infeasible solutions and 

using different degrees of intensification. As mentioned above, the neighbourhood 

exploration is carried out faster because the approximate fitness evaluation routine is 

used. Another mechanism used in this thesis to speed up the neighbourhood search 

was to estimate the percentage of space that may be wasted or overused when 

implementing the selected move and to consider the move only if this percentage of 

misused space is within certain limits (±50% of the required space w(j) for the jth 

entity). If this space deviation is not calculated, the move is evaluated even if the 

rooms involved in the move are too big or too small for implementing the move. The 

selection of a suitable move with the above neighbourhood search heuristics does not 
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imply that the current solution will be improved. The moves are locally evaluated 

with the approximate fitness evaluation routine and the selected move is passed to 

the driving metaheuristic which will decide whether the move is accepted or not after 

the exact fitness of the new solution is calculated. That is, the HLS local search 

heuristic samples the neighbourhood and returns a promising move to the driving 

metaheuristic. The following sections describe the metaheuristics implemented in 

this thesis. 

4.6.  Iterative Improvement Algorithm 

The iterative improvement local search that was implemented in this thesis is shown 

in figure 4.4. By selecting different heuristics to explore the neighbourhood in the 

HLS heuristic, this iterative improvement local search can be implemented with 

various degrees of neighbourhood exploration. 

Various configurations were compared in order to select the best one. The 

experiments and results are described later in this chapter. Although this iterative 

improvement local search approach is quite simple, it is used in this thesis as a non-

trivial algorithm against which to compare the performance of other more elaborate 

approaches. 

Step 1. Generate initial current solution x. 
Step 2. Generate candidate solution x’ using the HLS heuristic. 
Step 3. If fitness(x’) > fitness(x)  then x = x’. 
Step 4. If stopping condition met finish, otherwise go to Step 2. 

Figure 4.4. Iterative improvement local search uses the HLS heuristic for neighbourhood sampling. 

4.7.  Simulated Annealing 

Simulated annealing is a metaheuristic approach that has been applied to many 

optimisation problems. In particular, there are several papers in the literature 

reporting on the performance of this approach on scheduling related problems and 

the correlation between the observed performance of this algorithm and the 

neighbourhood exploration strategies, cooling schedules and acceptance probability 

functions used. For example, (Liu, 1999) studied the impact of different 

combinations of the neighbourhood structure size and cooling schedules on the 
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performance of simulated annealing for the flowshop scheduling problem. Liu 

observed that large neighbourhood sizes were more appropriate for fast annealing 

processes, small sizes did better for slow annealing processes while variable sizes 

gave the best results with respect to the effectiveness of the whole process. 

Step 1. Generate initial current solution x. 
Step 2. Set temperature = initial temperature. 
Step 3. Generate candidate solution x’ using HLS heuristic. 
Step 4. ∆F = fitness(x’) - fitness(x). 
Step 5. If ∆F > 0 then x = x’. 
Step 6. If ∆F ≤ 0 then do 

Step 6.1. Calculate acceptance probability = exp (- ∆F/temperature). 
Step 6.2 If acceptance probability > random [0,1] then x = x’. 

Step 7. Update temperature according to the cooling schedule. 
Step 8. If stopping condition met finish, otherwise go to Step 3. 

Figure 4.5. The simulated annealing approach uses the HLS heuristic to explore the neighbourhood and 
the Boltzman-like distribution as the acceptance probability function. 

The simulated annealing algorithm that was implemented in this thesis is 

described in figure 4.5. Several of the cooling schedules proposed in the literature 

were tested in the preliminary experiments carried out in this thesis. However, no 

significant difference was observed in the performance of the metaheuristic and 

therefore only the arithmetic and geometric cooling schedules are considered here 

due to their simplicity and good performance. 

4.8.  Tabu Search 

As was the case with the simulated annealing algorithm, tabu search has also been 

applied to a great number of optimisation problems including many scheduling 

related problems. Many ways to implement the four main components of tabu search, 

short-term memory, long-term memory and intensification and diversification 

strategies have been proposed and compared in the literature (e.g. Glover and 

Laguna, 1997). The common strategy to implement short-term memory and long-

term memory in tabu search is to store move attributes rather than to store visited 

solutions (which is not very efficient). One disadvantage of storing move attributes is 

that by forbidding certain moves, solutions that have not yet been visited may be 

avoided and some solutions may still be re-visited since they might be generated by a 

different sequence of moves. The heuristic HLS uses three types of moves and 
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therefore the attributes that define the move that has been implemented may be 

different. For example, the attributes describing a relocate move can be the entity 

together with the previous and new assigned rooms. In the case of the swap move, 

the attributes can be the two entities being swapped together with their corresponding 

assigned rooms. The attributes for describing an interchange move can be the two 

rooms being involved in the move together with the corresponding allocated entities 

in each of the rooms. Of course, simplified attributes could be used to describe the 

moves and then all moves sharing the same attributes would be considered to be the 

same. Even the same set of attributes could be used to describe the three types of 

moves, such as the entity together with its previous room and its new assigned room. 

Various strategies of storing move attributes were tried, but managing lists of moves 

attributes is another aspect that contributed to slowing down the neighbourhood 

exploration. Therefore, instead of dealing with lists of moves, a mechanism that 

maintains pools of genes (parts of solutions) was used to implement the short-term 

memory, the long-term memory and the intensification and diversification strategies 

in the tabu search algorithm. Other researchers have also used matrices to store parts 

of solutions in order to implement short-term memory and long-term memory (Diaz 

and Fernandez, 2001; White and Xie, 2001). 

4.8.1.  Matrices of Tabu and Attractive Genes 

Two matrices of size n x m are used and in both of them the cell (j,i) corresponds to 

the allocation of the jth entity to the ith room for j = 1,..,n and i = 1,..,m. The matrix 

MT stores those pairs (entity,room) that will be considered as tabu for a number of 

iterations while the matrix MA stores those pairs (entity,room) that will be considered 

attractive during the search. The tabu matrix MT is updated each time a move 

suggested by the heuristic HLS produces a detriment in the fitness of the current 

solution while the attractive matrix MA is updated each time the move produces an 

improvement. 

Updating a cell in MT means setting its value to current_iteration + tenure so that 

a move involving the pair (entity,room) corresponding to that cell is set as tabu for 

tenure number of iterations. Some researchers have proposed the random variation of 

the tenure value within certain limits (Di Caspero and Schaerf, 2001; Schaerf, 
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1999b). Preliminary experiments carried out in this thesis for tuning the tabu search 

parameters, showed that a tenure value of around n and kept constant throughout all 

the iterations produced good results. Updating a cell MA refers to incrementing the 

value of the cell in one unit, i.e. MA(j,i) = MA(j,i) + 1. In each type of move, the cells 

that are updated are the ones corresponding to the pairs (entity,room) after 

implementing the move. For example, if the 6th entity is relocated from the 2nd to the 

4th room, then the value in the cell MA(6,4) is incremented in one if the move 

produced a better solution but if the move generated an inferior solution the value in 

the cell MT(6,4) is set to the value current_iteration + tenure. Note that in a swap 

move two cells are updated while in an interchange move more cells can be updated.  

The tabu matrix acts as the short-term memory component while the attractive 

matrix acts as the long-term memory component. Since both matrices store pairs 

(entity,room), this mechanism can be regarded as a way of memorising parts of 

allocations or genes that come from bad solutions (MT) or good solutions (MA). 

4.8.2.  Intensification and Diversification Strategies 

Commonly, the intensification strategies incorporated in tabu search implementations 

use the short-term memory for exploring the neighbourhood of promising solutions. 

In the case of diversification, various strategies have been proposed. For example, 

one common way is to identify unvisited areas of the solution space with the aid of 

the memory components and then encourage the exploration of these areas. Some 

researchers have suggested to periodically change the weights in the fitness function 

during the search, a mechanism known as strategic oscillation (Costa, 1994; Alvarez-

Valdes et al., 2000; Diaz and Fernandez, 2001; Schaerf, 1999b). Another way to 

diversify the search is to replace the current solution with the best solution so far 

after a number of non-improving iterations (Higgins, 2001). Tabu relaxation has also 

been proposed for diversification and it consists of re-initialising the tabu lists after a 

number of non-improving iterations (White and Xie, 2001). 

In the tabu search algorithm implemented here, the matrices MT and MA are used 

to implement the strategies for intensifying and diversifying the search as described 

next. In the heuristic HLS, the neighbourhood exploration attempts to find a feasible 

move of the selected type (step 3 in figure 4.3). If a feasible move is found and its 
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attributes are considered tabu according to MT, another move is sought unless the 

aspiration criterion is satisfied. The aspiration criterion used here is that the 

candidate solution generated by the move should be better (measured with the 

approximate fitness evaluation routine) than the current solution. If the 

neighbourhood exploration cannot find a feasible move, then a relocate move is 

heuristically created using the information stored in MA. To do this, an entity j is 

selected at random and the highest value in the jth row is identified in MA 

(corresponding to the most attractive room i to allocate entity j). If the entity j is not 

already allocated to room i then the move proposed is to relocate the entity to that 

room (provided it is feasible). If this assignment already exists in the current 

solution, another entity is selected at random and the same process in carried out 

until a feasible relocate move is found. The tabu search implemented in this thesis is 

described in figure 4.6. 

Step 1. Generate initial current solution x. 
Step 2. Initialise the tabu and attractive matrices MT and MA. 
Step 3. Explore a set of candidate solutions as follows. Generate a set of candidate solutions X’ from 
current solution x using the modified HLS heuristic. As described above, the modified version 
incorporates the intensification and diversification strategies using the memory components MT and 
MA. Select the best candidate solution x’ from the set X’ only if x’ (associated move attributes) is not 
tabu or if the aspiration criterion is satisfied. 
Step 5. If fitness(x’) > fitness(x)  then x = x’ . 
Step 6. Update tabu and attractive matrices MT and MA. 
Step 7. If stopping condition met finish, otherwise go to Step 3. 

Figure 4.6. The tabu search approach uses matrices to store parts of good and bad solutions in order to 
implement the short-term and long-term memory components. 

4.9.  Genetic Algorithm 

A simple genetic algorithm was designed as described in figure 4.7 but several ways 

to implement its components were compared in order to obtain a relatively well-

tuned version of this metaheuristic for the problem investigated here. The 

subsections below describe the various components of this genetic algorithm in more 

detail.  

Step 1. Generate an initial current population. 
Step 2. Evaluate the current population. 
Step 3. Until the new population if completed do the following: 

Step 3.1. Select two individuals that will act as parents. 
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Step 3.2. If crossover probability ≥ random [0,1] then recombine the two selected parents to 
create two offspring. 
Step 3.3. If crossover probability < random [0,1] then copy the two selected parents as the 
offspring. 
Step 3.4. Apply the mutation operator with a given probability to the offspring. 
Step 3.5. Copy the two offspring to the new population. 

Step 6. Apply the elitist strategy consisting on replacing the worst individual in the new population 
with the best individual in the current population. 
Step 7. Copy new population to the current population. 
Step 8. If stopping condition met finish, otherwise go to Step 2. 

Figure 4.7. The genetic algorithm approach implemented in this thesis. 

4.9.1.  Selection of Parents 

Two variants were tried: fitness proportional selection (also called roulette-wheel 

selection) and tournament selection (Coley, 1999). Both selection methods produced 

comparable results and it was decided to use tournament selection with a tournament 

size between 2 and 5. 

4.9.2.  Genetic Operators 

Four crossover operators were implemented and compared: single-point, uniform, 

heuristic uniform and heuristic non-uniform. Both single-point and uniform operators 

are well-known and their descriptions can be found in the literature (Coley, 1999). In 

the heuristic uniform operator, each pair of corresponding genes (entity,room) in 

both parents are compared in terms of their local fitness, i.e. the fitness of the 

corresponding entity. The gene with the highest fitness is copied to one of the 

offspring while the other gene is copied to the second offspring. In the heuristic non-

uniform crossover operator, the first step is to copy both parents to the two offspring 

and then identify a number of genes (a parameter set usually to n/5) with the lowest 

fitness (the fitness of the entity) in each offspring. Then, for each of the offspring, 

these less fit genes are copied from the other offspring. That is, suppose that the 5th 

entity is allocated to the 6th room in the first offspring and allocated to the 9th room in 

the second offspring. Assuming that this gene has been identified as one of the less 

fit (the penalty due to the violation of soft constraints is high for this pair) in the first 

individual, then the 5th entity will be relocated from the 6th to the 9th room in the first 

offspring. 
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Both the single-point and uniform crossover operators performed reasonably 

well but very elaborate routines for repairing the allocations (satisfy the feasibility 

conditions imposed by the hard constraints) were required. On the other hand, the 

heuristic uniform and heuristic non-uniform operators produced solutions with not 

too many hard constraint violations (so are easily repaired) due to the fact that the 

fitness of each gene also reflects the degree of hard constraints violations. The 

heuristic non-uniform crossover operator was the one that produced the best results 

overall and it was selected for the final implementation of the genetic algorithm. 

The mutation operator implemented here is a simple mechanism in which for 

each gene in the chromosome and with certain probability, a new room is selected at 

random and assigned to the corresponding entity. If the chosen room is not feasible 

for allocating the entity then the next gene is processed. 

4.10.  Experiments and Results 

This section describes the experiments carried out in order to assess the performance 

of the metaheuristics described above and reports on the results obtained in these 

experiments. The goals were to tune the approaches to produce the best results 

possible with these methods and to identify those components of each metaheuristic 

that can be used to design a hybrid approach. 

4.10.1.  The Initialisation Heuristics 

The first set of experiments compared the quality of solutions (in terms of fitness and 

diversity) generated by each of the initialisation heuristics described in section 4.5.1. 

The experiments consisted of generating 50 solutions with each of the heuristics for 

three of the test instances described in section 2.5. The results are reported in tables 

4.1 to 4.3. 

Total Penalty F(x) 
Initialisation Heuristics 

maximum average minimum 
V(p) 

AllocateBestAll 1817.10 1817.10 1817.10 0.0 
AllocateRnd-Rnd 9686.72 8892.05 8246.58 82.71 
AllocateRnd-BestRnd 6294.67 4639.40 2966.13 60.26 
AllocateWgt-BestRnd 8479.87 8269.83 8097.73 5.50 
AllocatePrty-BestRnd 5583.31 4284.81 2789.26 36.38 
AllocateCsrt-BestRnd 3713.60 2521.13 1717.52 44.43 
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Table 4.1. Performance of the initialisation heuristics on the test instance nott1. 

Total Penalty F(x) 
Initialisation Heuristics  

maximum average minimum 
V(p) 

AllocateBestAll 6070.47 6070.47 6070.47 0.0 
AllocateRnd-Rnd 6637.38 6235.83 5854.21 71.76 
AllocateRnd-BestRnd 6418.23 6100.41 5852.30 67.98 
AllocateWgt-BestRnd 7335.64 6917.46 6581.47 20.44 
AllocatePrty-BestRnd 5614.65 5221.08 4986.64 20.89 
AllocateCsrt-BestRnd 5735.85 5453.26 5210.24 57.03 

Table 4.2. Performance of the initialisation heuristics on the test instance trent1. 

Of course, the greedy heuristic AllocateBestAll always generates the same 

solution which can be used as a reference to assess the quality of the solutions 

generated by the other heuristics. As may be expected, the heuristic AllocateRnd-

Rnd produces sets of solutions with the highest diversity but also with low quality. 

The heuristic AllocateWgt-BestRnd generates solutions with low quality and also 

low diversity. This gives an indication that in this problem, guiding the initialisation 

of solutions by space utilisation appears to be inadequate perhaps due to the 

existence of additional constraints. Therefore, although the problem studied here can 

be seen as a variant of the knapsack problem, it would probably not be wise to use 

initialisation heuristics that have been proposed for knapsack problems to generate 

solutions for the academic space allocation problem since those heuristics are mainly 

based on the optimisation of space. 

Total Penalty F(x) 
Initialisation Heuristics 

maximum average minimum 
V(p) 

AllocateBestAll 1974.03 1974.03 1974.03 0.0 
AllocateRnd-Rnd 7079.90 6449.81 5596.82 80.55 
AllocateRnd-BestRnd 2264.54 1470.26 857.18 32.17 
AllocateWgt-BestRnd 8112.36 8041.62 8112.36 4.38 
AllocatePrty-BestRnd 2989.34 2054.71 1473.20 22.78 
AllocateCsrt-BestRnd 2189.87 1395.62 931.04 31.62 

Table 4.3. Performance of the initialisation heuristics on the test instance wolver1. 

The heuristic AllocatePrty-BestRnd generates solutions with higher quality but 

the population diversity V(p) is still low. The heuristics AllocateRnd-BestRnd and 

AllocateCsrt-BestRnd appear to be the ones that provide the best compromise 

between quality and diversity in the set of generated solutions. Comparing these two 

heuristics, it can be observed that AllocateRnd-BestRnd produces solutions with 
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higher diversity and competitive fitness while AllocateCsrt-BestRnd obtains sets of 

solutions with lower diversity but better quality. Comparing the sets of solutions 

generated by each of the proposed initialisation heuristics permits the choice of the 

appropriate strategy to generate initial solutions when assessing the performance of 

the metaheuristics investigated in this thesis. In the rest of the experiments in this 

chapter, the heuristic AllocateRnd-BestRnd is used to initialise solutions. The 

reason for this selection is that with this strategy, solutions with a wider range of 

fitness values can help to better assess the performance of metaheuristics instead of 

using mostly very high quality initial solutions like those generated by the 

AllocateCsrt-BestRnd heuristic. 

4.10.2.  The Neighbourhood Exploration Heuristics 

The next set of experiments was carried out to compare the various neighbourhood 

exploration strategies described in section 4.5.3. Different versions of the three 

metaheuristics that use neighbourhood search (iterative improvement, simulated 

annealing and tabu search) were implemented using the various neighbourhood 

exploration strategies as shown in table 4.4. The same neighbourhood exploration 

heuristic was used for the three moves in each variant, i.e. Rnd-Rnd in table 4.4 

means that this strategy was used in the three moves relocate, swap and interchange. 

No combinations between different heuristics of the three moves were used in these 

experiments. 

Neighbourhood Exploration Heuristics 
Metaheuristics 

Rnd-Rnd Rnd-BestRnd Pnty-BestRnd 
Iterative Improvement IIRnd-Rnd IIRnd-BestRnd IIPnty-BestRnd 
Simulated Annealing SARnd-Rnd SARnd-BestRnd SAPnty-BestRnd 

Tabu Search TSRnd-Rnd TSRnd-BestRnd TSPnty-BestRnd 

Table 4.4. Variants of the three approaches using neighbourhood search. 

The algorithm parameters used in these experiments were as described next 

(some of the parameters were tuned according to the size of the problem instance). 

For the simulated annealing algorithm the arithmetic cooling schedule was used with 

initial temperature = 1000, decrement step = 200 and decrement interval = n/2. For 

the tabu search algorithm, tenure = 2n. The termination condition in all runs was a 

maximum of 5000 iterations. Each metaheuristic variant was tested 20 times with 
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each data set and the best results obtained by each variant are presented in tables 4.5 

to 4.7. The aim here was to assess the effect of the different neighbourhood 

exploration heuristics on the performance of the three metaheuristics. Therefore, 

each table compares the performance between the variants of the same metaheuristic 

on the three problems. Each table shows the best solution, the execution time in 

seconds needed to complete the run and the iteration at which the best solution was 

obtained. 

From the results presented in tables 4.5 to 4.7 it can be observed that the variants 

with the Rnd-Rnd and the Rnd-BestRnd heuristics are comparable in terms of the 

solution quality and execution time in most of the cases. On the other hand, the 

variants with the Pnty-BestRnd heuristic produce competitive results in terms of 

solution quality in some cases but the execution time is the longest in most of the 

cases too. Although there is not clear evidence that the Rnd-BestRnd strategy is the 

best, it appears from the results presented here that this heuristic for neighbourhood 

exploration benefits the performance of the three metaheuristics tested here since 

good quality solutions are obtained in short execution time and also the best solutions 

are found in the earliest iterations in most of the cases. 

Problem Instance Metric IIRnd-Rnd IIRnd-BestRnd IIPnty-BestRnd 
total penalty F(x) 2227.19 774.22 1733.17 
execution time (s) 39 31 57 nott1 
iteration best 4905 2924 4957 
total penalty F(x) 2712.43 4440.12 5914.62 
execution time (s) 30 33 66 trent1 
iteration best 4939 2730 121 
total penalty F(x) 717.23 634.19 1164.02 
execution time (s) 25 20 37 wolver1 
iteration best 4309 1465 234 

Table 4.5. Results for the iterative improvement metaheuristic variants. 

Problem Instance Metric SARnd-Rnd SARnd-BestRnd SAPnty-BestRnd 

total penalty F(x) 4591.96 839.50 1371.96 
execution time (s) 34 33 83 nott1 
iteration best 87 4522 4543 
total penalty F(x) 3558.76 4646.73 5144.22 
execution time (s) 28 29 76 trent1 
iteration best 4898 3490 2052 
total penalty F(x) 1391.87 1627.55 1110.38 
execution time (s) 16 20 28 wolver1 
iteration best 54 1433 4123 
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Table 4.6. Results for the simulated annealing metaheuristic variants. 

Problem Instance Metric TSRnd-Rnd TSRnd-BestRnd TSPnty-BestRnd 

total penalty F(x) 2111.15 735.37 1626.76 
execution time (s) 54 37 46 nott1 
iteration best 4719 3424 4637 
total penalty F(x) 3214.61 3903.82 3728.87 
execution time (s) 38 57 73 trent1 
iteration best 4938 4658 4833 
total penalty F(x) 1867.14 1431.77 1726.65 
execution time (s) 26 20 34 wolver1 
iteration best 5000 635 4129 

Table 4.7. Results for the tabu search metaheuristic variants. 

4.10.3.  Comparing the Four Metaheuristics  

After selecting the initialisation and neighbourhood exploration heuristics as 

described in the previous sections, experiments were carried out to compare the 

performance of the four metaheuristics: iterative improvement, simulated annealing, 

tabu search and the genetic algorithm. For the first three algorithms, the parameters 

were set as described in the previous section and the Rnd-BestRnd variants were 

used in these experiments. The parameters for the genetic algorithm were set as 

follows: population size = 20, tournament size = 3, crossover probability = 80% and 

mutation probability = 5%. Each algorithm was executed 20 times with each problem 

instance and the best results in terms of solution quality are presented here. The 

termination condition for the single-solution algorithms (iterative improvement, 

simulated annealing and tabu search) was a maximum of 10000 iterations while for 

the genetic algorithm the maximum number of generations was set to 1000.   

The results obtained are presented in table 4.8. For each of the test problems, a 

reference solution exists and its corresponding quality is also given in table 4.8. This 

reference solution is a manually constructed allocation that was obtained from the 

space officers in the universities that provided us with the test data sets. The quality 

of this reference solution is shown here for comparison with the quality of the 

solutions generated by the four algorithms tested here. 

Problem Instance Metric Iterative 
Improvement 

Simulated  
Annealing 

Tabu  
Search 

Genetic  
Algorithm 

total penalty F(x) 754.45 849.62 772.28 2145.21 nott1 
reference = 599.56 execution time (s) 60 58 57 221 
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 iteration best 4220 3700 4957 812 
total penalty F(x) 4341.77 4385.99 3924.03 7924.10 
execution time (s) 59 60 66 237 trent1 

reference = 3873.51 
iteration best 6840 9940 9480 901 
total penalty F(x) 634.19 1217.81 634.19 1312.01 
execution time (s) 39 44 45 178 wolver1 

reference = 1141.01 
iteration best 1020 1024 1300 620 

Table 4.8. The best solutions obtained by the four approaches in the three test instances. The quality of 
a reference (manually constructed) solution is also shown for comparison. 

4.10.4.  Further Discussion of Results 

From the results shown in table 4.8 it can be observed that the best results in terms of 

the solution quality and execution time are produced by the iterative improvement 

and the tabu search algorithms in the three test problems. The simulated annealing 

algorithm produces good results but which are slightly inferior to those obtained with 

iterative improvement and tabu search. Overall, the genetic algorithm seems to be the 

worst performer in terms of the solution quality and execution time. However, it is 

interesting to note that the genetic algorithm seems to be competitive in terms of 

solution quality for the problem wolver1 but is well outperformed in problems nott1 

and trent1. That is, it seems that the genetic algorithm is capable of finding 

competitive solutions for the less constrained problem (wolver1). This gives an 

indication of the importance of the additional constraints that exist in the academic 

space allocation problem. Even when the genetic operators were reasonably tuned to 

deal with these constraints, still the recombination of solutions appears to be a 

difficult issue in this problem. 

The time required for manually constructing an allocation varies from weeks to 

months according to space officers. It is observed that the metaheuristic approaches 

implemented here offer a promising alternative for automating the academic space 

allocation process in a shorter time. From the approaches investigated here, iterative 

improvement and tabu search appear to be the ones that are able to produce the best 

results but still do not match the quality of the manually constructed allocation when 

the problem is highly constrained (nott1 and trent1). Again, for the less constrained 

problem (wolver1) these two methods are able to produce solutions that are better 

than the reference solution measured with the fitness function used in this thesis. 

Constructing a completely new allocation is not a frequently needed task, but the 
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experts spend days, even months, on it, while the heuristic methods implemented 

here produce competitive initial solutions in seconds or minutes. 

4.11.  Summary and Final Remarks 

This chapter presented an initial investigation into the application of metaheuristics 

for searching good solutions to the academic space allocation problem. A direct 

solution representation and associated data structures based on linked lists were used 

to store the information about the instance being solved and the allocation or 

solution. The use of these two components was beneficial in three ways. They 

permitted the implementation of faster solution evaluation routines. It was also easier 

to design the local search and genetic operators. In addition, these data structures can 

be easily updated if the features of the problem instance change, i.e. number of 

entities and rooms, constraints, etc. 

Various initialisation heuristics were designed and compared in terms of the 

quality and diversity of the set of generated solutions. Having different strategies to 

generate initial allocations permits the production of sets of solutions with various 

quality and diversity values that help to better analyse the performance of the 

metaheuristics investigated in this thesis. Two of the initialisation heuristics generate 

sets of solutions with a good compromise between solution quality and population 

diversity. The heuristic finally chosen to generate initial solutions for the rest of the 

experiments was AllocateRnd-BestRnd, which selects one entity at random and 

then evaluates the suitabiliy of a set of rooms to allocate the entity and chooses the 

best of these rooms. 

Heuristics for neighbourhood exploration with various degrees of intensification 

were compared with respect to their effect on the performance of the local search 

based metaheuristics (iterative improvement, simulated annealing and tabu search). 

The neighbourhhod exploration strategy that obtained the best results is the one in 

which the search of the move of the selected type (relocate, swap or interchange) is a 

trade-off between random and exhaustive search (Rnd-BestRnd). 

This chapter proposed implementations of four well-known approaches: iterative 

improvement, simulated annealing, tabu search and a genetic algorithm and 
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compared their performance on some test instances of the space allocation problem. 

The iterative improvement algorithm is a simple non-trivial method used as a 

reference to compare the performance of other more elaborate approaches. In the 

simulated annealing method, several cooling schedules were compared. The best 

results were obtained with the arithmetic and geometric schedules with reheating. 

For the tabu search method, two matrices were proposed to implement the short-term 

and long-term memory components. These matrices maintain pools of genes (parts of 

solutions) that are used in the intensification and diversification strategies. For the 

genetic algorithm, several recombination operators were implemented. The best 

results were obtained with the heuristic non-uniform operator which was designed 

specifically for the space allocation problem in order to avoid the excessive violation 

of hard constraints. The simple mutation operator implemented in this thesis changes 

the assigned room (maintaining feasibility) of an entity selected at random.  

Overall, after comparing the four metaheuristics, iterative imporvement and tabu 

search are the best performers, simulated annealing produces good results and the 

genetic algorithm is the worst performer mainly because of the highly constrained 

nature of the problem. Since no similar previous work has been reported in the 

literature, this investigation is a useful reference not only for the work presented in 

the following chapters but also for other researchers and practitioners interested in 

the application of metaheuristics to solve the space allocation problem in academic 

institutions. 
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Chapter 5.   Hybrid Metaheuristic Approaches 

5.1.  Introduction 

This chapter describes hybrid metaheuristics that were designed by combining 

components of the algorithms investigated in the previous chapter and adding some 

additional features described here. By preliminary experiments, it was possible to 

identify suitable sets of parameters that produced good performance on the 

approaches tested in chapter four and also to identify those components that seemed 

to contribute the most to their best performance. Two hybrid metaheuristics are 

proposed here. The first is a single-solution method that incorporates various features 

such as local search heuristics, adaptive cooling schedules, short-term memory, long-

term memory and mutation operators. The second hybrid approach proposed here is a 

population-based variant of the first one. Both approaches make an automatic 

selection of the parameter settings according to the size of the problem instance and 

surpass the best performance of the metaheuristics implemented in the previous 

chapter. 

In chapter two we noted that in the space allocation problem, like in many other 

optimisation problems, it is often desirable to obtain a set of high quality candidate 

solutions so that the decision-makers can select the best among them. However, it 

may also be the case that only one high quality solution is required. One particular 

feature of the hybrid population-based metaheuristic described later in this chapter is 

that by controlling a common cooling schedule for the whole population, it is 

possible to adapt the cooling schedule to favour either the generation of one high 

quality solution in short time or a set of high quality solutions at the expense of more 

computation time. The experiments and corresponding results presented in this 

chapter show that these hybrid approaches produce competitive solutions for the 

academic space allocation problem. The research work described in this chapter is 

included in the papers [Bur2001b], [Bur2001c] and [Bur2001d] (see the appendix on 

page 199). 
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5.2.  A Single-Solution Hybrid Metaheuristic 

Preliminary experiments revealed that some of the components of the metaheuristics 

tested in chapter four were beneficial when incorporated into a hybrid approach. For 

example, the aggressive exploration of the iterative improvement algorithm 

permitted us to construct solutions of reasonable quality in a relatively short 

computation time compared with the other techniques. Also, the oscillating effect in 

the acceptance function in simulated annealing and the memory structures in tabu 

search had a considerable contribution to the good performance of those algorithms. 

The mutation operator in the genetic algorithm was the operation that permitted us to 

better explore the solution space by adding diversity to the population without 

introducing too many problems of infeasibility. The pseudocode for the proposed 

single-solution hybrid metaheuristic is shown in figure 5.1.  

Step 1. Generate an initial current solution x. 
Step 2. Execute heuristic for parameters setting. 
***** Heuristic Iterative Improvement Phase ***** 
Step 3. For iterations = 1 to IterationsII do 

Step 3.1. Generate a candidate solution x’ using the modified HLS heuristic that incorporates 
the intensification and diversification strategies using the memory components MT and MA. 
Step 3.2. If fitness(x’) > fitness(x) then x = x’. 

Step 4. Copy current solution to the best solution so far, i.e. x* = x. 
***** Simulated Annealing with Reheating Phase ***** 
Step 5. Set AcceptanceProbability = InitialAcceptance. 
Step 6. Generate a candidate solution x’ using the modified HLS heuristic that incorporates the 
intensification and diversification strategies using the memory components MT and MA. 
Step 7. If a feasible move was found then calculate ∆F = fitness(x’) - fitness(x). 
Step 8. If ∆F > 0 then x = x’ and if fitness(x’) - fitness(x*) > 0 then update the best so far, x* = x’. 
Step 9. If ∆F ≤ 0 then if AcceptanceProbability > random [0,1] then x = x’. 
Step 10. Update the AcceptanceProbability according to the geometric cooling schedule. 
Step 11. If no feasible move was found then increment FailedMoveAttempts. 
Step 12. If FailedMoveAttempts > MaxFailedAttempts implement the Heavy Mutation Operator to 
disturb the current solution x. 
Step 13. If stopping condition satisfied finish, otherwise go to Step 6. 

Figure 5.1. The single-solution hybrid metaheuristic incorporates elements from various methods. 

The hybrid approach consists of the components listed below: 

§ Heuristic Neighbourhood Search. Selects the neighbourhood to be explored and 

in consequence the moves to try while attempting to improve the current solution. 

§ Heuristic Iterative Improvement. Initialises the solution and achieves a certain 

level of quality in the initial allocation. 
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§ Simulated Annealing with Reheating. Improves the solution produced by the 

heuristic iterative improvement algorithm and avoids being trapped in poor local 

optima by exploring different areas of the solution space by using an oscillation 

strategy driven by the acceptance probability. 

§ Heavy Mutation Operator. Modifies the current solution by unallocating some 

entities from the current solution and encourages a better exploration of the 

solution space. 

§ Heuristic Parameters Setting. Selects the algorithm parameters according to the 

problem characteristics. This heuristic might not produce the optimal parameter 

values for each problem, but will find a good set of parameters in general. 

5.2.1.  The Hybrid Components 

Heuristic Neighbourhood Search 

The strategy used to explore the neighbourhood of the current solution in the hybrid 

approach was the HLS heuristic of figure 4.3 extended with the incorporation of the 

tabu and attractive matrices described in chapter four, i.e. the neighbourhood 

exploration in the hybrid algorithms is done in the same way as in the tabu search 

algorithm of section 4.8. 

Heuristic Iterative Improvement 

After generating an initial solution, the iterative improvement algorithm described in 

chapter four is executed for IterationsII. The purpose of this component is to quickly 

improve the initial solution by using the heuristic neighbourhood search component. 

Given the improved solution (not necessarily local optima) produced by this 

component, a further exploration of the solution space is accomplished in the 

subsequent phases of the single-solution hybrid metaheuristic. 

Simulated Annealing with Reheating 

The simulated annealing phase takes the improved feasible current solution obtained 

from the previous phase and uses the heuristic neighbourhood search component to 

search the solution space and attempt to find a better solution. This simulated 
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annealing phase uses a cooling schedule that is simpler than the one used in the 

implementation of chapter 4. It is a simple geometric cooling schedule (see section 

3.5.10) that sets the AcceptanceProbability parameter to the value of 

InitialAcceptance and decrements it after a number of iterations. When the 

AcceptanceProbability is below a certain minimum, the cooling schedule maintains 

this value while the search process attempts to find improvements in the best solution 

so far. If, after a number of iterations ReheatInterval, no improvement is achieved in 

the best solution so far, the parameter AcceptanceProbability is again set to 

InitialAcceptance, i.e. the process is reheated. 

Heavy Mutation Operator 

A mutation operator was designed to disrupt the current solution and explore other 

areas of the solution space after a number of failed attempts to find a feasible move. 

The disruption consists of removing from their assigned room, those allocated 

entities that contribute the most to the total penalty. This operation releases the space 

assigned to those entities so that new possibilities of allocating them can be explored. 

This heavy mutation operator works as follows. A maximum of RemoveLimit entities 

to be unallocated is determined according to the size of the problem instance. The 

allocated entities are sorted in decreasing order of their associated penalty, i.e. the 

violation degree of the soft constraints associated to each of them. Then, starting 

from the most penalised one, entities are unallocated up to the maximum 

RemoveLimit. Once the current allocation is disrupted in this way, the simulated 

annealing component will reallocate the unallocated entities because the 

neighbourhood exploration heuristic will select the allocate move until all entities are 

allocated again as described in section 4.5.2. The purpose of this heavy mutation 

operator is to modify the current allocation after the algorithm gets stuck but this 

modification is directed so that only bad parts of the solution (penalised entitities) are 

disturbed. 

Heuristic Parameters Setting 

This component selects the algorithm parameters according to problem instance 

being solved. The parameters for the simulated annealing component are set as 

follows. The maximum acceptance probability InitialAcceptance is set to a value 
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between 95% and 100%. The decrement factor α in the geometric cooling schedule 

is set to a value between 0.97 and 0.99. The number of iterations after which 

AcceptanceProbability is reduced is set to a value between 1 and 3. Once 

AcceptanceProbability temperature has been reduced to 0.001 or below (the process 

is cooled), it is reset to the value of InitialAcceptance if after ReheatInterval = 10⋅n 

iterations no further improvement has been achieved in the best solution so far. The 

number of iterations for the iterative improvement phase is set to IterationsII = 5⋅n. 

The value for the maximum number of failed move attempts is set to 

MaxFailedAttempts = n/10. 

5.3.  On the Performance of the Single-Solution Hybrid 

In this section the performance of the proposed hybrid approach is assessed and 

compared against the three single solution metaheuristics implemented in chapter 3: 

iterative improvement, simulated annealing and tabu search. The experiments carried 

out for this purpose are described next followed by a presentation and discussion of 

the results obtained. The genetic algorithm was not considered here because of the 

poor performance shown in section 4.10.3. 

5.3.1.  Experimental Settings 

Three problem instances: nott1, trent1 and wolver1 were used for the experiments. 

For each of these test problems, 20 initial solutions were generated using the 

AllocateRnd-BestRnd heuristic described in section 4.5.1. Then, each algorithm 

was executed with each of these 20 initial solutions. Preliminary experiments were 

carried out to determine, for each algorithm, the execution time after which no 

further improvements on the best solution so far were observed. Then, the 

termination condition was set to an amount of execution time large enough to allow 

the four algorithms to achieve their best performance in each test problem. This 

execution time for problems nott1, trent1 and wolver1 was set to 300, 120 and 15 

seconds respectively. 
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5.3.2.  Results and Discussion 

Table 5.1 below shows for each test instance, the quality of the reference solution 

and the results obtained in the experiments described above. Similarly to the results 

from the experiments carried out in the previous chapter, the iterative improvement 

and the tabu search algorithms produce very competitive results while the simulated 

annealing implementation exhibits comparable performance only in the nott1 

instance. However, note that the hybrid metaheuristic outperforms the other three 

algorithms and it is also capable of finding better solutions than the reference 

allocations for the three test instances. It also appears that the performance of the 

hybrid metaheuristic is more robust than the other three algorithms with respect to 

the quality of the solutions produced in different runs as reflected by the values for 

the worst and average fitness. 

The contribution of the space misuse and violation of soft constraints to the total 

penalty in the solutions obtained is presented in figure 5.2. This permits to have a 

closer look at the improvements achieved using the single-solution hybrid 

metaheuristic over the solutions produced with the other three algorithms and over 

the reference solution. Each bar in the graphs represents the average space misuse 

and the average soft constraint violation for each set of 20 solutions obtained by each 

algorithm in the experiments described above. 

Problem Instance Total Penalty F(x) 
Iterative 

Improvement 
Simulated  
Annealing 

Tabu  
Search 

Single-Solution  
Hybrid 

Metaheuristic 
worst 887.65 806.81 844.63 674.49 
average 716.79 703.14 698.77 592.24 
best 568.36 548.52 546.67 527.15 

nott1 
reference = 599.56 

execution time (s) 300 300 300 300 
worst 4531.50 4671.72 4302.54 3838.03 
average 4303.11 4435.04 3960.90 3676.36 
best 3968.48 4162.94 3572.19 3526.27 

trent1 
reference = 

3873.51 
execution time (s) 120 120 120 120 
worst 920.20 1935.64 872.15 714.05 
average 716.70 1583.05 717.47 642.17 
best 634.19 1142.16 634.19 634.19 

wolver1 
reference = 

1141.01 
execution time (s) 15 15 15 15 

Table 5.1. Quality of the solutions obtained by the four single-solution approaches in the three tests 
problems. The quality of the reference (manually constructed) solution is shown for comparison. 

It can be observed from figure 5.2 that, regarding space utilisation, it is apparent 

that all the solutions obtained with the four algorithms are comparable with the 
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reference solution. The difference between the performance of the single-solution 

hybrid metaheuristic and the other three approaches appears to be mainly in the 

satisfaction of soft constraints. That is, the single-solution hybrid metaheuristic 

obtains solutions of better quality because it is capable of finding solutions with less 

violation of soft constraints than the solutions produced by the other three 

algorithms. By comparing the solutions obtained with the single-solution hybrid 

metaheuristic to the reference allocations, it can be observed that in all problems the 

hybrid approach is capable of finding solutions with better space utilisation which 

contributed to produce solutions with lower total fitness overall. However, for the 

problem nott1, none of the algorithms is capable of finding better solutions than the 

reference one with respect to the satisfaction of soft constraints. This gives an 

indication of the particular difficulty of this problem instance for which none of the 

algorithms implemented so far has been capable of finding solutions that are better 

than the manually constructed allocation in terms of the satisfaction of soft 

constraints. 

Figure 5.2. Contribution of space misuse and soft constraints violation to the total penalty. For each 
problem, the reference solution (REF) and average solutions obtained with the iterative improvement 
(ITE), simulated annealing (SA), tabu search (TS) and hybrid metaheuristic (HMH) are shown. 

5.3.3.  Further Comparison with Previous Results 

The results presented and discussed above show that the single-solution hybrid 

metaheuristic produces the best solutions for the three test instances. The aim of the 

experiments described above was to assess the ability of each algorithm on finding 

good solutions after considerable execution time. This is the reason why the best 
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solutions obtained in these experiments using the three ‘pure’ metaheuristics 

(iterative improvement, simulated annealing and tabu search) are better than those 

produced by the same algorithms in chapter 4 (table 4.8, see section 4.10.3). 

Therefore, to further assess the performance of the hybrid approach proposed in this 

chapter, this hybrid algorithm was executed using the same initial solutions and 

termination condition (10000 iterations) of the experiments in section 4.10.3. The 

results are presented in table 5.2. In this table, the values for the three ‘pure’ methods 

are those given in table 4.8. 

Problem Instance Metric Iterative 
Improvement 

Simulated  
Annealing 

Tabu  
Search 

Single-Solution 
Hybrid 

Metaheuristic 
total penalty F(x) 754.45 849.62 772.28 715.42 
execution time (s) 60 58 57 54 

nott1 
reference = 599.56 

iteration best 4220 3700 4957 812 
total penalty F(x) 4341.77 4385.99 3924.03 3803.14 
execution time (s) 59 60 66 71 

trent1 
reference = 3873.51 

iteration best 6840 9940 9480 4193 
total penalty F(x) 634.19 1217.81 634.19 634.19 
execution time (s) 39 44 45 31 

wolver1 
reference = 1141.01 

iteration best 1020 1024 1300 843 

Table 5.2. Quality of the solutions obtained by the four single-solution approaches in the three tests 
problems when the number of iterations is set to 10000. 

It is confirmed with the results presented in table 5.2 that even with a limited 

number of iterations, the single-solution hybrid metaheuristic obtains better solutions 

that the other three approaches. For the three test instances, the hybrid approach 

generates better solutions and the best solution is achieved in a shorter number of 

iterations. With respect to the total execution time required for the 10000 iterations, it 

can be observed that the time spent by the hybrid approach is very similar to the time 

spent by the other three algorithms. . From the results presented and discussed here, 

it is clear that the single-solution hybrid metaheuristic is the algorithm that produce 

the best solutions so far. 

5.4.  A Population-Based Hybrid Metaheuristic 

In this section we show how the single-solution hybrid metaheuristic described in the 

previous section was extended towards a population-based approach. A population of 

individuals is initialised and then it is subjected to further improvement using the 

heuristic iterative improvement component described in the previous section. This 
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iterative improvement phase is executed for a number of IterationsII as in the single-

solution approach. Then, the simulated annealing with reheating phase also described 

above is applied to each of the individuals in the improved population. The feature of 

the approach presented here is that instead of having a cooling schedule for each 

individual (this would be like a parallel implementation of the single-solution hybrid 

metaheuristic), a common cooling schedule is set for the whole population. The way 

in which the parameters for the common cooling schedule are set is described below. 

Since in the simulated annealing phase, inferior solutions may be accepted with some 

probability, two populations are maintained. The current population consists of the 

current solution for each individual in the population and the best population consists 

of the best solution found by each individual during the search process so that a set 

of best solutions can be presented at the end of the algorithm. The pseudocode for 

this population-based approach is presented in figure 5.3. 

Step 1. Generate the initial current population. 
Step 2. Execute heuristic for parameters setting. 
***** Heuristic Iterative Improvement Phase ***** 
Step 3. For each individual xi in the current population Do 

Step 3.1. Generate candidate solution xi’  from xi using the modified HLS heuristic that 
incorporates the intensification and diversification strategies using the memory components 
MT and MA. 
Step 3.2. If fitness(xi’ ) > fitness(xi) then xi = xi’ . 

Step 4. If stopping condition (usually a maximum of IterationsII iterations) for the heuristic iterative 
improvement phase is met then go to Step 5, otherwise go to Step 3. 
Step 5. Copy the current population to the best population, i.e. xi*  = xi for i = 1,...p. 
***** Simulated Annealing with Reheating Phase ***** 
Step 6. Set global AcceptanceProbability = InitialAcceptance. 
Step 7. For each individual xi in the current population Do 

Step 7.1. Generate candidate solution xi’  from xi using the modified HLS heuristic that 
incorporates the intensification and diversification strategies using the memory components 
MT and MA. 
Step 7.2. If a feasible move was found then calculate ∆F = fitness(xi’ ) - fitness(xi) otherwise 
increment failed move attempts(i). 
Step 7.3. If ∆F > 0 then Do  

Step 7.3.1. Update the current solution for the individual, xi = xi’ . 
Step 7.3.2. If fitness(xi’ ) - fitness(xi* ) > 0 then update the best solution for the 
individual, xi*  = xi’ . 

Step 7.4. If ∆F ≤ 0 then if AcceptanceProbability > random [0,1] then xi = xi’ . 
Step 7.5. If the AcceptanceProbability equals zero (process is cooled) and 
FailedMoveAttempts(i) > MaxFailedAttempts then implement the Heavy Mutation Operator 
to disturb the current solution xi. 

***** Common Cooling Schedule Update ***** 
Step 8. Update AcceptanceProbability according to common cooling schedule. 
Step 9. If stopping condition satisfied finish, otherwise go to Step 7. 

Figure 5.3. The population-based hybrid metaheuristic uses a common cooling schedule to control the 
simulated annealing phase for the whole population of individuals. 
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To summarise, the population-based hybrid metaheuristic incorporates a 

population of individuals that cooperate during the search by using the common 

neighbourhood search strategy and memory structures. Also, the annealing process 

for the whole population is driven by a common cooling schedule in which the 

control of the acceptance probability is distributed over all individuals in the 

population. The various features of the proposed algorithm are further described in 

the following subsections. 

5.4.1.  The Shared Memory Structures 

Instead of maintaining a single solution, a set of individuals are evolved in the 

extended algorithm. Therefore, in order to take advantage of the collective searching 

process, the memory structures containing tabu and attractive genes (matrixes MT 

and MA) are shared among all individuals in the population. In this way, the heuristic 

HLS for neighbourhood exploration can be seen as a cooperative mechanism by 

which the good and bad parts of solutions encountered by the various members of the 

population are stored so that a more effective search can be performed collectively.  

Then, the neighbourhood search in the population-based hybrid metaheuristic is 

performed as in the previous chapter by using the heuristic HLS with the same 

memory structures and diversification and intensification mechanisms. Referring to 

the pseudocode in figure 5.3, xi represents the current solution for the ith individual in 

the population, xi*  represents the best solution found so far by the i th individual and 

the shared memory structures are updated accordingly each time a candidate solution 

xi’  is generated for the ith individual. Experiments were carried out to assess the 

contribution of the shared memory structures to the performance of the extended 

algorithm and the results obtained are presented later in this chapter. 

5.4.2.  The Common Cooling Schedule 

The other feature which is characteristic of the population-based hybrid 

metaheuristic is that a common cooling schedule is used to control the evolution of 

the whole population. This strategy of using a common cooling schedule for the 

whole population makes it possible to have a set of co-operating individuals that 

react differently to the annealing process. The way in which the common annealing 



Hybrid Metaheuristic Approaches 

 109 

process is controlled permits the algorithm to find one high quality solution in a short 

computation time or a set of good solutions provided more computation time is 

available. This section describes how the common annealing schedule (step 8 in 

figure 5.3) operates upon the population.  

The AcceptanceProbability is decreased (process is cooled) after IntervalCounter 

iterations (complete executions of step 7 in figure 5.3) as AcceptanceProbability = 

AcceptanceProbability⋅α  where α takes values between 0.97 and 0.99 as in the 

single-solution hybrid metaheuristic. A counter ReheatCounteri is maintained for 

each individual i in the population and it is incremented in one each time the 

candidate solution xi’  does not improve upon the current solution xi and the 

AcceptanceProbability equals zero. There is a global counter GlobalReheatCounter 

that is set to the highest ReheatCounteri of all individuals each time the step 7.5 in 

figure 5.3 is processed. This means that as soon as one of the individuals cannot be 

improved for ReheatInterval iterations, the common AcceptanceProbability is raised 

again. The effect of this common annealing strategy is that while one (maybe more) 

individual is stuck during the search, the others may not be yet. Then, by switching 

to the random phase of the simulated annealing algorithm (AcceptanceProbability 

above 0.001) the exploration of the search space can continue. It may appear that 

waiting for all the individuals to achieve the most improvement possible before 

raising the global acceptance probability makes more sense. However, our 

experiments showed that when this was done, few individuals in the population were 

likely to achieve further improvement after getting stuck in a possible local optima. 

On the other hand, using the strategy proposed above permitted more individuals to 

explore other areas of the search space and more improvements were obtained which 

allowed the algorithm to produce better results overall. 

5.5.  On the Performance of the Population-Based Hybrid 

5.5.1.  Experiments and Results 

Since in the previous section it was observed that the single-solution hybrid 

metaheuristic obatined the best results among all the single-solution algorithms, the 

first set of experiments in this section seeks to compare the performance of the 
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single-solution hybrid metaheuristic and the population-based variant. Experiments 

were also carried out to assess the contribution of the shared memory structures and 

the heavy mutation operator on the performance of the population-based algorithm. 

For each test problem, the same initial population of p = 20 individuals used for the 

single-solution variant was also taken as the initial population for the population-

based hybrid metaheuristic. The overall computing time assigned to each algorithm 

was the same. That is, while each of the 20 runs (one run for each individual) of the 

single-solution hybrid metaheuristic was given a certain execution time trun according 

to the test instance, the execution time for one run of the population-based approach 

was set to 20⋅trun. Another run of the population-based approach without the shared 

memory structures and without the heavy mutation operator but using the same 

initial population was executed. This experiment was repeated 10 times. That is, 200 

solutions were produced in total with each of the theree algorithms compared. 

Problem Instance 
Total Penalty 

F(x) 

Single-solution  
hybrid 

metaheuristic 

Population-based 
hybrid 

metaheuristic 

Population-based 
hybrid 

metaheuristic’ 
best-average 576.15 619.02 681.69 
average 592.24 633.10 668.61 
minimum 527.15 575.51 641.38 
std. dev. 47.21 44.67 67.33 
diversity V(p) 32.85 61.96 62.58 

nott1 
reference = 599.56 

execution time (s) 300 6000 6000 
best-average 3614.85 3787.56 4279.78 
average 3676.36 3817.34 4319.19 
minimum 3526.27 3669.97 4238.67 
std. dev. 120.54 115.90 69.88 
diversity V(p) 30.72 80.65 80.94 

trent1 
reference = 3873.51 

execution time (s) 120 2400 2400 
best-average 639.94 664.12 681.63 
average 642.17 677.85 690.73 
minimum 634.19 634.25 634.19 
std. dev. 61.23 53.16 74.02 
diversity V(p) 28.41 45.31 44.63 

wolver1 
reference = 1141.01 

execution time (s) 15 300 300 

Table 5.3. Quality and diversity of the final population obtained by the single-solution hybrid 
metaheuristic and the population-based variant on the three tests problems. Population-based hybrid 
metaheuristic’ refers to the modified algorithm when the shared memory structures and the mutation 
operator are not implemented. The quality of the reference solution is also shown for comparison. 

Table 5.3 shows the results of these experiments. For each algorithm and each 

test instance, this table reports the following: the minimum penalty (the best of the 

200 obtained solutions), average penalty (average of all 200 solutions), best-average 

penalty (the best value selected from the averages of the 10 repetitions), the standard 
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deviation (measured for all 200 solutions), the diversity of solutions (for all 200 

obtained solutions) measured as described in section 2.4.3 and the execution time in 

seconds. The values in the third column are the results obtained by the single-

solution hybrid metaheuristic apoproach in section 5.3 (see table 5.1). The fourth 

column shows the results obtained by the population-based hybrid metaheuristic 

(complete version) while the last column shows the results obtained by this approach 

when no shared memory structures are used during the neighbourhood search and no 

mutation operator was implemented. 

It can be observed that the population-based algorithm (the complete version) 

produces solutions that are very competitive with those obtained by the single-

solution approach for the three test problems. In particular, note that the best 

solutions found by both algorithms are of similar quality. It appears that in terms of 

the quality of solutions, the results produced by the single-solution approach are 

better that those obtained with the population-based variant. That is, the average and 

best-average values obtained with the single-solution method are better than those 

produced with the population-based variant in the three test cases and the standard 

deviations are very similar. However, an interesting observation can be made by 

looking at the results obtained with respect to the diversity of solutions. It is clear 

that the population-based algorithm produces more diverse sets of solutions for the 

three test instances. In other words, although the sets of solutions obtained with the 

single-solution approach seem to be of better quality, the diversity values obtained 

(around 30%) suggest that all the 20 solutions are in fact very similar in structure. On 

the other hand, the population-based variant produces sets of solutions of slightly 

lower quality but which are more diverse in structure. As discussed above, this can 

be particularly important in some scenarios where a set of solutions that actually 

represent very different allocations are required so that the decision-makers can 

choose the most appropriate. These results on the diversity of solutions motivated a 

further investigation of this aspect in the next chapter. The interest on this arises from 

the fact that obtaining a set of diverse solutions is an important goal in areas such as 

multicriteria decision-making and multiobjective optimisation. 

From the results presented and discussed above, it appears that the population-

based variants achieve solutions that are not only competitive with those produced by 
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the single-solution method in terms of the solution quality, but also the diversity of 

the population is clearly higher. It is also noted that when the shared memory 

structures and mutation operator are eliminated from the population-based approach, 

the performance of this algorithm is worsened as reflected by the results shown in the 

last column of table 5.3, although the diversity of the obtained populations is still 

high. 

5.5.2.  Variants of the Population-Based Hybrid 

So far, the single-solution hybrid metaheuristic has produced the best solutions in 

two of the three test instances. The population-based approach generated solutions of 

slightly less quality. The aim of this section is to further investigate the performance 

of this population-based approach and present a variant of it that seems to outperform 

the best results produced by the single-solution hybrid metaheuristic. In the previous 

section, the termination criterion for the experiments was a fixed computation time. 

An insight into the behaviour of the population-based algorithm is observed when the 

termination criterion is a maximum number of iterations without improvement (idle 

iterations) on the best solution achieved by each individual. In order to assess the 

effect of the strategy selected to control the evolution of the population in the 

population-based approach, more experiments were carried out using a maximum 

number of iterations without improvement over the best solutions so far as the 

termination criterion in the iterative improvement and the simulated annealing phases 

(steps 4 and 9 respectively in figure 5.3). This permits us to produce a set of 

solutions of uniform quality or one high quality solution with the rest of the 

population being considerably less fit. Suppose that the termination condition is a 

number of iterations without improvement upon the best solution, i.e. for the ith 

individual, the counter NoImprovesCounteri is incremented each time the candidate 

solution xi’  does not improve upon the best solution xi* . Obviously, some individuals 

would reach this condition before others. If the algorithm is stopped after the first 

individual reaches this condition, one high quality solution is obtained after a 

relatively short computation time. But if the algorithm is stopped after all individuals 

have reached the above condition, a set of solutions of uniform high quality will be 

obtained at the expense of more computation time. 
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Two versions of the population-based hybrid metaheuristic were implemented: 

the population-based hybrid metaheuristic-single and the population-based hybrid 

metaheuristic-multiple (referred to as PMHS and PMHM respectively in the results 

presented below). The termination condition for the iterative improvement and 

simulated annealing phases was set to 5⋅n and 2⋅ReheatInterval (i.e. 20⋅n) iterations 

without improvement respectively. In the PMHS approach, these two phases are 

terminated when the first individual in the population reaches the corresponding 

termination condition. In the PMHM approach, these phases are terminated until all 

individuals in the population reach the termination condition. The single-solution 

approach of section 5.2 was also implemented using 2⋅ReheatInterval idle iterations 

as the termination condition (step 13 in figure 5.1). As before, 20 individuals were 

generated and the same initial population was used for each of the three algorithms. 

Ten repetitions of the experiment were executed for each algorithm and each test 

instance. The results obtained in these experiments are presented in table 5.4. 

Problem instance Total Penalty 
F(x) 

Population-based 
hybrid metaheuristic 

single strategy   
PMHS 

Population-based 
hybrid metaheuristic 

multiple strategy 
PMHM 

Single-solution  
hybrid 

metaheuristic 

best-average 1001.76 780.90 835.89 
average 825.18 698.75 780.27 
minimum 664.19 619.21 647.61 
std. dev. 102.26 50.67 89.19 
diversity V(p) 67.44 61.25 32.77 

nott1 
reference = 599.56 

time (s) 526 2150 620 
best-average 4166.59 3892.93 4260.69 
average 3937.63 3789.43 4056.22 

minimum 3711.75 3580.10 3909.87 
std. dev. 155.66 85.36 112.75 
diversity V(p) 82.56 80.79 39.51 

trent1 
reference = 3873.51 

time (s) 890 2220 720 
best-average 834.59 905.27 638.09 
average 725.71 735.71 634.58 
minimum 637.22 638.36 634.19 
std. dev. 65.30 88.11 1.20 
diversity V(p) 47.82 46.95 41.73 

wolver1 
reference = 1141.01 

time (s) 225 300 210 

Table 5.4. Solutions obtained by the single-solution hybrid metaheuristic over 20 runs and the 
population-based variants with a population of 20 individuals when a number of idle iterations is used 
as termination criterion. 

Several observations can be made from the results summarised in table 5.4. Both 

population-based variants seem capable of finding solutions of higher quality than 

those obtained with the single-solution approach with the exception on the wolver1 
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test instance were all 20 solutions are of high quality as reflected by the low standard 

deviation value. It is clear that the population of solutions produced by the PMHM 

algorithm are the best for the trent1 and nott1 test problems. For these instances, this 

variant obtains a population of high quality solutions while the PMHS approach 

obtains populations in which an outstanding high quality solution can be identified 

with the rest of the population being noticeably less fit, which is also reflected by the 

values of the standard deviation. It is observed that the single-solution variant is 

capable of producing high quality solutions for the three test instances but the 

variation between the results over the runs is also considerable. With respect to the 

computation time spent in these runs, as was expected, the PMHS variant finds a 

good quality solution quickly while the PMHM variant requires more execution time 

to achieve a set of high quality solutions. The execution time required by the single-

solution hybrid metaheuristic is the lowest in the wolver1 and trent1 test problems 

but not in the nott1 instance where the best computation time is that of the PMHS 

approach. An additional observation is that as before, the diversity of the populations 

produced by the single-solution approach is the lowest while both population-based 

variants produce sets of solutions that are very different in their structure. This aspect 

is further investigated in chapter 6 where a multiobjective approach is adopted. 

Figure 5.4. Contribution of the space misuse and soft constraints violation to the total penalty. For 
each test instance, the reference allocation (REF) and average solutions obtained with the single-
solution iterative hybrid metaheuristic (HMH), the population-based hybrid metaheuristic single 
(PMHS) and the population-based hybrid metaheuristic multiple (PMHM) varianst are presented. 
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Figure 5.4 shows the contribution of space misuse and violation of soft 

constraints to the total penalty with respect to the average quality in the populations 

produced by each of the algorithms compared in this section. As before, the reference 

solution for each test problem is also shown for comparison. In the wolver1 instance, 

the single-solution approach finds solutions that are the best even than the reference 

solution and with no soft constraint violations. For the trent1 problem, the three 

algortihms are comparable. The PMHM variant and the single-solution approaches 

obtain solutions with slightly better space utilisation than in the reference solution. 

Finally, it is also observed that for the nott1 instance, none of the algorithms match 

the manually constructed solution with respect to the satisfaction of soft constraints, 

although all the solutions found are better than this reference solution on the space 

utilisation. Then, it is confirmed that the nott1 test instance seems to be particularly 

difficult to solve due to the high number of constraints that should be satisfied in this 

problem. 

5.6.  Summary and Final Remarks 

In this chapter, competitive hybrid metaheuristic approaches for the space allocation 

problem were described and tested on some test instances. Van Veldhuizen and 

Lamont expressed that “the selection of an appropriate solution technique must 

follow after a detailed examination of the problem to solve has been accomplished to 

integrate both problem and algorithm domains” (Van Veldhuizen and Lamont, 

2000). The approaches presented here were designed by a combination of the best 

features of several algorithms and a certain amount of knowledge about the problem 

domain. As a result, improved solutions have been produced with these hybrid 

algorithms over those generated with the ‘pure’ approaches investigated in chapter 4. 

The single-solution approach described in section 5.2 is a hybrid that 

incorporates elements from the various techniques investigated in chapter 3: iterative 

improvement, simulated annealing, tabu search and genetic algorithms. The hybrid 

algorithm clearly outperforms the other techniques in the experiments carried out in 

this thesis. In the population-based approach described in section 5.4, the 

combination of adaptive cooling schedules in simulated annealing, population-based 

techniques and shared memory structures is proposed as an effective technique to 
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tackle the space allocation problem. The population-based technique produces very 

competitive results when compared to the single-solution hybrid but still the latter 

obtains the best solutions. However, with respect to the population diversity, the 

population-based variant produces much better results than those obtained with the 

single-solution approach. In addition, it was shown that when the shared memory 

structures and the mutation operator are not present in the population-based 

algorithm, the performance of this technique deteriorates considerably. 

The population-based metaheuristic was modified in order to produce one single 

high quality solution in a short amount of time (PMHS algorithm) or a population of 

high-quality allocations provided more computation time is available (PMHM 

algorithm). The two variants of the population-based technique and the single-

solution hybrid were again compared in section 5.5.2. The advantage of having a 

population of solutions is evident when the cooling schedule is controlled over a 

maximum number of iterations with no improvement (idle iterations). Under this 

condition, the PMHM algorithm was capable of producing sets of solutions with 

better quality and which are more diverse than those obtained with the single-

solution approach for two of the test instances. The techniques proposed in this 

chapter seek to combine the best features from the metaheuristics studied in chapter 4 

so that better results can be obtained for the problem studied in this thesis. If a 

diverse set of high quality solutions is required, then the population-based 

approaches are more appropriate but if the required non-similarity between 

allocations is low, then the single-solution hybrid metaheuristic is the most 

appropriate approach. 

As with other combinatorial optimisation problems, in the real instances of the 

academic space allocation problem it is usually desirable to present a set of high 

quality solutions so that a human administrator can decide which allocation will be 

finally implemented (Burke and Varley, 1998). In such situations, two possible ways 

of achieving this are suggested here: reinitiate the single-solution hybrid 

metaheuristic to find several solutions, or use the population-based approaches. It is 

shown that the population-based techniques described here are capable of finding 

sets of high quality solutions. Given the considerable non-similarity between the 

solutions obtained (population diversity), it is clear that these solutions represent 
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very different allocations, which is valuable in some scenarions where one solution 

has to be chosen by the decision-makers. This observations motivated the 

investigation presented in chapter 6 on the multiobjective nature of this problem. 
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Chapter 6.   Multiobjective Approaches 

6.1.  Introduction 

In the previous chapters, the space allocation problem has been approached as a 

single-objective optimisation problem. The single goal has been the minimisation of 

the total penalty F(x) (eq. 2.7), i.e. the sum of space misuse and violation of soft 

constraints. This chapter investigates the space allocation problem from a 

multiobjective perspective based on the concepts of Pareto optimisation (Rosenthal, 

1985; Steuer, 1986). We consider the multiple objectives separately and use the 

concept of dominance to assign fitness to solutions. Instead of combining all the 

criteria into a single scalar value, the solution fitness is represented by a k-

dimensional vector containing all the k criteria. A solution x is said to be non-

dominated with respect to a set of solutions if there is no other solution x’ in that set 

that is as good as x in all the criteria and better in at least one of them. The Pareto 

optimal front is the set of non-dominated solutions with respect to the whole solution 

space. The aim in Pareto optimisation is to find the Pareto optimal front or a set of 

non-dominated solutions that constitutes a good approximation to that front. 

Two main issues are investigated in this chapter. First, the hybrid metaheuristics 

developed in chapter 5 are adapted to approach the space allocation problem from a 

multiobjective perspective. Then, an investigation of the influence that different 

fitness evaluation methods have on the performance of some multiobjective 

optimisation algorithms is carried out. Since non-dominated solutions represent the 

goal, the dominance relation is frequently used to establish preference between 

solutions in Pareto optimisation. It has been argued that using aggregating functions 

to evaluate the solution fitness in multiobjective optimisers is not adequate (Deb, 

2001). Recently, relaxed forms of the dominance relation have been proposed in the 

literature for improving the performance of multiobjective optimisers (Kokolo et al., 

2001). It is shown in this chapter that the method used to evaluate the fitness of 

candidate solutions during the search affects the performance of the algorithms tested 

here and it appears that the dominance relation is not always the best method to use, 

in particular if the search space is highly constrained. The research work presented in 
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this chapter is included in the papers [Bur2002] and [Bur2003] (see the appendix on 

page 199). 

6.2.  A Brief Review of Multiobjective Optimisation 

6.2.1.  Multiple Criteria Decision-Making 

In multiobjective combinatorial optimisation problems, various criteria exist to 

evaluate the quality of the solution and there is an objective (minimisation or 

maximisation) attached to each of these criteria. It is commonly the case that some of 

the criteria are in conflict, i.e. an improvement in one of them can only be achieved 

at the expense of worsening another. Moreover, some of the criteria may be 

incommensurable, i.e. the units used to measure the compliance with each of the 

criteria are not comparable at all. 

The first decision that has to be made when dealing with a multiobjective 

optimisation problem is how to combine the search and the decision-making 

processes. This can be done in one of three ways (Steuer, 1986; Goicoechea et al., 

1982): 

§ Decision-making and then search. Also known as the a priori approach because 

the preferences for each of the objectives have to be set by the decision-makers 

and then, one or various solutions satisfying these preferences have to be found. 

§ Search and then decision-making. This is also known as the a posteriori 

approach because various solutions have to be found and then, the decision-

makers select the most adequate. All the solutions presented to the decision-

makers should normally represent a trade-off between the various objectives. 

§ Interactive search and decision-making. In this approach the decision-makers 

intervene during the search in order to guide it towards promising solutions by 

adjusting the preferences in the process. 

Another important decision in multiobjective optimisation is how to deal with 

the multiple objectives. At present, three methods can be identified in the literature 

(Coello Coello, 2000; Coello Coello et al., 2002): 
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§ Combine the objectives. This is one of the classical methods to evaluate the 

solution fitness in multiobjective optimisation. It refers to converting the 

multiobjective problem into a single-objective one by combining the various 

criteria into a single scalar value. The most common way of doing this is by 

setting weights to each criterion and then adding them all together using an 

aggregating function. This is the approach used in previous chapters in this thesis. 

§ Alternating the objectives. This approach refers to optimising one criterion at a 

time while imposing constraints on the others. The difficulty here is establishing 

the ordering in which the criteria should be optimised since this can have an effect 

on the success of the search. 

§ Optimising all objectives simultaneously (Pareto optimisation). In this method, 

a vector containing all the objective values represents the solution fitness and the 

concept of dominance is used to establish preference between solutions. 

Commonly, in the first two methods, preferences are established a priori 

(decision-making and then search) while in Pareto optimisation, no preferences are 

considered or are available before the search (search and then decision-making). 

6.2.2.  Pareto Optimisation 

Formally, the dominance relation is described as follows (Dasgupta et al., 1999): 

Suppose we have two distinct vectors V = ( v1,v2,…,vk ) and U = ( u1,u2,…uk ) 

containing the objective values of two solutions for a k-objective minimisation 

problem, then: 

§ V strictly dominates U if  vi < ui , for i = 1,2,..,k. 

§ V loosely dominates U if  vi ≤ ui , for i = 1,2,..,k  and vi < ui , for at least one i. 

§ V and U are incomparable if neither V (strictly or loosely) dominates U nor U 

(strictly or loosely) dominates V. 

Other researchers refer to strict dominance and loose dominance as dominance 

and weak dominance respectively (Zitzler, 1999). Minimisation is considered here 

because of the problem tackled in this thesis, but the above definitions are altered in 
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the obvious way for the case of maximisation problems. It is important to note that 

using strict or loose dominance can have an effect on how the search is performed. 

This is because if a solution is strictly dominated then it is outperformed by the other 

solution in all criteria while if the solution is loosely dominated it means that it is 

outperformed in some of the criteria but as good as the other solution in at least one 

of them. Then, finding a new solution that strictly dominates the current one may be 

more difficult than finding a solution that loosely dominates it. This is particularly 

true in some combinatorial problems in which the connectedness of the search space 

is such that some solutions are more difficult to reach from the current one. In such 

cases, using loose dominance may enable more solutions to be reached (Ehrgott and 

Klamroth, 1997). 

In this thesis, strict dominance is used to distinguish a dominated solution from a 

non-dominated one, i.e. only solutions that are strictly dominated are rejected. This 

means that solutions that are loosely dominated are also considered because of the 

interest in obtaining diversity in the solution space. In the rest of this document, strict 

dominance is referred to as dominance. 

A solution x is said to be non-dominated with respect to a set of solutions S if 

there is no other solution in S that dominates x. The Pareto-optimal front in 

multiobjective optimisation is the set of all non-dominated solutions in the whole 

solution space (Coello Coello et al., 2002; Deb, 2001; Steuer, 1986). When there is 

no knowledge of the localization of the Pareto-optimal set, the set found should be 

referred to as the obtained non-dominated set or the known Pareto front. In the test 

instances of the problem tackled in this thesis, there is no knowledge about the 

localization or shape of the Pareto-optimal front. 

The appeal of Pareto optimisation derives from the fact that in most 

multiobjective optimisation problems there is no single-best solution or global 

optima and it is also very difficult to establish preferences among the criteria before 

the search process is carried out. Even when this is possible, it may be that these 

preferences change and having a set of solutions eases the decision-making process. 

One of the conditions that must be satisfied for a problem to be considered to be truly 

multiobjective is that the criteria are in conflict. Two objectives are in conflict if the 
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complete satisfaction of one of them prevents the complete satisfaction of the other. 

If any improvement in one of the objectives induces a detriment on the other, then 

the objectives are said to be strictly conflicting (Bagchi, 1999). It has been argued by 

some researchers that even if the conflicting nature of the criteria is not proved, 

Pareto-based metaheuristics would be able to find the ideal solution that is the best in 

all criteria (Fonseca and Fleming, 1995).  

Since in Pareto optimisation the final outcome must be a set of non-dominated 

solutions, another important aspect to consider is how to evaluate the quality of the 

obtained non-dominated front. This is a multiple criteria problem on its own because 

several aspects have to be considered to determine how good the obtained front is. 

Among these aspects there are the following (Zitzler, 1999; Deb, 2001):  

§ The number of non-dominated solutions obtained. 

§ The closeness between the obtained front and the Pareto optimal front (if known). 

§ The coverage of the front, i.e. the spread and distribution of the non-dominated 

solutions. 

Several methods have been proposed to evaluate the quality of the obtained non-

dominated front in Pareto optimisation and therefore, assess the performance of 

multiobjective optimisers (Fonseca and Fleming, 1996; Van Veldhuizen and Lamont 

2000b; Knowles and Corne, 2002). Since the Pareto optimal front is defined with 

respect to the objective space, is it common that most of the metrics proposed are 

also defined with respect to the objective space. One aspect that is frequently 

overlooked is the diversity of the obtained front with respect to the solution space. In 

fact, when researchers report on the quality of the obtained non-dominated sets it is 

very rare for information to be provided regarding the diversity in the solution space. 

This is extremely important because although the obtained non-dominated solutions 

may be well spread and distributed over the front in the objective space, it may be 

that the solutions are structurally very similar between them. Considering diversity in 

the solution space when assessing the quality of the obtained front becomes even 

more important in real-world multiobjective combinatorial optimisation problems 

(like the one tackled in this thesis) because this type of similarity directly relates to 

how different the solution structures are. 
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Large multiobjective combinatorial optimisation problems are particularly 

difficult to tackle. One reason for this is that the size of the search space grows 

exponentially as the problem size increases. Also, theoretical understanding of the 

solution space is lacking and as a consequence, in many problems of this type, there 

is no notion of the localization and shape of the Pareto optimal front (Ulungu and 

Teghem, 1994).  

6.2.3.  Metaheuristics for Multiobjective Optimisation 

This section provides an overview of some proposed techniques for Pareto 

optimisation but no attempt is made to present an exhaustive survey of the field. This 

brief review is limited to multiobjective metaheuristics, in particular to evolutionary 

algorithms and approaches based on local search, and does not cover classical 

techniques because they are not relevant to the work reported in this thesis. The 

classical methods (also called traditional methods in the literature) include weighting 

approaches, goal programming, constraint methods, the Tchebycheff method and 

others. For reviews on classical techniques for multiobjective optimisation refer to 

(Steuer, 1986; Belton et al., 2002; Goicoechea et al., 1982; Miettinen, 2001). 

In recent years, metaheuristics have received considerable attention in the area of 

multiobjective optimisation. Several surveys on the application of metaheuristics to 

multiobjective optimisation are available in the literature (Coello Coello, 1999; 

Coello Coello, 1999a; Van Veldhuizen and Lamont, 2000; Ehrgott and Gandibleux, 

2000; Jones et al., 2001). Also, there are several studies that focus on measuring and 

comparing the performance of different algorithms for multiobjective optimisation 

(Zitzler and Thiele, 1998; Zitzler et al., 2000; Van Veldhuizen and Lamont, 2000b; 

Zydallis et al., 2001; Tan et al., 2001; Purshouse and Fleming, 2001). 

Multiobjective Evolutionary Algorithms 

A number of multiobjective evolutionary algorithms have been proposed in recent 

years and the increasing interest in these methods has motivated the extension of 

evolutionary algorithms (originally proposed for single-objective optimisation) to 

multiobjective variants. See (Coello Coello, 2001) for a brief tutorial on this topic. 

Some of these algorithms are briefly described next.  
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Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985). This is perhaps 

the first genetic algorithm that used dominance for evaluating and selecting 

individuals. In each generation, a group of individuals is selected according to one of 

the k objectives in the problem until k groups are formed. That is, each group of 

individuals excels in one of the k criteria. Then the k groups are shuffled together and 

the genetic operators are applied to produce the new population. 

Multiobjective Genetic Algorithm (MOGA)  (Fonseca and Fleming, 1993). In this 

algorithm each individual is assigned a rank according to the number of individuals 

in the population by which it is dominated, i.e. all non-dominated solutions are 

assigned rank 1. The fitness is assigned to each individual using an interpolation 

between the best and the worst rank. A scheme for niche formation is used in which 

fitness in the objective domain is shared among non-dominated individuals in order 

to maintain a uniform distribution of individuals over the trade-off surface. The 

fitness of all individuals in the same rank is averaged and this value is assigned to all 

of them. A more recent version of this algorithm is described and compared against 

other methods in (Purshouse and Fleming, 2001). 

Niche Pareto Genetic Algorithm (NPGA) (Horn et al., 1994). The selection of 

individuals is carried out using a tournament scheme based on the concept of 

dominance. The two individuals competing for selection are compared against a 

subset of the population and the one that is non-dominated (assuming the other is 

dominated) is selected for reproduction. If both competitors are dominated or non-

dominated, a sharing scheme based on the size of the niche (equivalence class 

sharing) is used to break the tie. The improved version of this algorithm, called 

NPGA-2 is described in (Erickson et al., 2001). 

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1995). 

This algorithm also classifies individuals according to dominance in a ranking 

scheme similar to the one used in (Fonseca and Fleming, 1993). However, a dummy 

fitness value proportional to the population size is determined for each dominance 

class. Fitness sharing within the same class is also implemented to help maintain a 

well-distributed population over the trade-off front. Once the whole population is 

classified, a stochastic remainder proportionate selection scheme is used to ensure 
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that the individuals in the first front get more copies for reproduction than the rest of 

the population. Updated versions of this algorithm incorporating elitism are 

described in (Deb, 2001). 

Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999). This 

algorithm was proposed as an approach that incorporates several of the desirable 

features of other multiobjective evolutionary algorithms. The three features common 

to other approaches and put together here are: the use of dominance to evaluate and 

select solutions, the use of additional populations to store non-dominated solutions 

and the use of a niching or clustering scheme. The particular feature in this approach 

is that the non-dominated individuals in the external population are used to determine 

the fitness of individuals in the current population and also participate in the 

selection process for reproduction. In addition, a niche method based on Pareto 

dominance is proposed which does not require any measure of distance between 

individuals as in other clustering techniques. The improved version of this technique, 

called SPEA2 is described in (Zitzler et al., 2001). 

Pareto-Archived Evolutionary Strategy (PAES) (Knowles and Corne, 2000). This 

algorithm starts with one randomly initialised solution and then, one candidate 

solution is generated in each iteration by means of mutations. An external archive (of 

limited size) is maintained to collect non-dominated solutions. An adaptive grid that 

divides the objective space is used to evaluate how much crowded the region (in 

which each solution lies) is. The candidate solution is discarded if it is dominated by 

the current solution or any other solution in the external archive. The candidate 

solution is added to the archive and becomes the current solution if it dominates the 

current solution. If none of them dominates the other, the decision as to which 

solution becomes the current solution and whether to add or not the candidate 

solution to the archive is made based on the crowding mechanism. Other variants of 

this algorithm with population sizes greater that one, were also proposed (Knowles, 

2001). 

Other Multiobjective Evolutionary Algorithms.  The algorithms above are just a 

sample of the vast number of methods proposed in the literature in recent years. 

Other approaches include the multiobjective messy genetic algorithm (MOMGA) I 
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and II (Van Veldhuizen and Lamont, 2000) and the Pareto converging genetic 

algorithm  (PCGA) (Kumar and Rockett, 2002). Another multiobjective genetic 

algorithm was proposed in (Murata et al., 1996; Murata et al., 1996b). Subsequent 

variants of this algorithm were presented in (Ishibuchi et al., 1997; Ishibuchi and 

Murata, 1998; Murata et al., 2000; Murata et al., 2001; Ishibuchi et al., 2002; 

Ishibuchi et al., 2002a). In the last two years, many other extensions of evolutionary 

algorithms for multiobjective optimisation have been proposed. For example, 

variants of micro-genetic algorithms, cellular genetic algorithms, particle swarm 

optimisation methods, agent-based algorithms and others can be found in 

proceedings of recent conferences in this area (EMO 2001, EMO 2003, CEC 2002, 

GECCO 2002, GECCO 2003, PPSN VII). 

Other Multiobjective Metaheuristics 

Another class of metaheuristics for Pareto optimisation are those that explicitly use 

local search or neighbourhood exploration (instead of genetic operators) to drive the 

search or as an important component of the process (hybrid approaches). Several 

multiobjective metaheuristics using local search have been put forward in the 

literature. Some of these multiobjective metaheuristics are briefly described below. 

Simulated Annealing for Multiobjective Optimisation (Serafini, 1992). This was 

perhaps the first extension of simulated annealing for multiobjective optimisation 

reported in the literature. The proposed idea was to modify the acceptance criteria of 

candidate solutions in the original algorithm. Various alternative criteria were 

investigated in order to increase the probability of accepting non-dominated 

solutions. A special rule given by the combination of several criteria was proposed in 

order to concentrate the search almost exclusively on the non-dominated solutions. 

Multiobjective Tabu Search (MOTS) (Hansen, 1997). This algorithm is a 

population-based extension of the tabu search metaheuristic that uses a set of weights 

to guide the search towards the Pareto frontier. Each solution maintains its own tabu 

list and the weights are adjusted in order to keep the solutions away from their 

neighbours and therefore, attempt to cover the whole trade-off surface. 
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Pareto Simulated Annealing (PSA) (Czyzak and Jaskiewicz, 1998). This is a 

population-based extension of simulated annealing proposed for multiobjective 

combinatorial optimisation problems. The population of solutions explore their 

neighbourhood in a similar manner to classical simulated annealing, but weights for 

each objective are tuned in each iteration in order to assure a tendency to cover the 

trade-off surface. The weights for each solution are adjusted in order to increase the 

probability of moving away from the closest neighbourhood in a similar way as in 

the multiobjective tabu search algorithm (Hansen, 1997). From simulated annealing, 

this hybrid metaheuristic borrows the idea of neighbourhood search, probabilistic 

acceptance of candidate solutions and the dependence of this acceptance from a 

temperature parameter. From genetic algorithms, the approach incorporates the idea 

of using a sample population of interacting solutions. 

Multiobjective Simulated Annealing (MOSA) (Ulungu et al., 1999). This approach 

is another extension of simulated annealing in which a weighted aggregating function 

is used to evaluate the fitness of solutions to attempt approximating the various 

regions of the trade-off surface. The algorithm works with only one current solution 

but maintains a population with the non-dominated solutions found during the 

search. 

Evolutionary Local Search Algorithm (ELSA) (Menczer et al., 2000). This is an 

evolutionary algorithm that uses local selection as the main component in order to 

minimise the interaction between the individuals in the population. The idea behind 

this approach is that a population of competing individuals can search the space in a 

parallel fashion. This algorithm does not use recombination and the only operator to 

generate new solutions is mutation. The authors stressed that the major strengths of 

this algorithm are its potential to be implemented in parallel and that it maintains the 

diversity of the population in a way similar to fitness sharing but more efficiently. 

Memetic PAES (M-PAES) (Knowles and Corne, 2000b). This is a memetic variant 

originated from the PAES method. This memetic algorithm incorporates a population 

and a crossover operator but uses the same selection mechanism as PAES. Two 

archives are used, one is the global archive of non-dominated solutions and another 

serves as the comparison set in the local search phase. The second archive is emptied 
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after each local search and filled again with solutions from the global archive. The 

authors reported that this memetic version outperformed the original algorithm on 

test instances of the multiobjective knapsack problem. 

Genetic Local Search (GLS) (Jaszkiewicz, 2002). This algorithm is a hybrid 

between genetic algorithms and local search in which a weighted aggregating 

function is generated at random in each iteration. This function is used to select the 

solutions that will be recombined to form the offspring and to guide the local 

optimisation of this offspring. 

Simulated Annealing for Multiobjective Optimisation (Suppapitnarm et al., 

2000).  This is another extension of simulated annealing in which one temperature is 

associated to each objective in the problem. The algorithm uses only one solution 

and the annealing process adjusts each temperature independently according to the 

performance of the solution in each criterion during the search. An archive is used to 

store all the non-dominated solutions visited. 

Other Multiobjective Metaheuristics Using Local Search. Many other approaches 

have been proposed and investigated in the literature. For example, the tabu search 

variant of (Baykasoglu et al., 1999) maintains a single solution but additional lists of 

non-dominated solutions found during the search are kept in order to seed and guide 

the search. Another tabu search approach using weights adaptation was proposed 

specifically for the bi-objective knapsack problem in (Gandibleux and Freville, 

2000). Other multiobjective variants of ant colony optimisation, hybrids between 

tabu search and evolutionary algorithms and other implementations of multiobjective 

genetic local search can be found in proceedings of recent conferences (EMO 2001, 

EMO 2003, CEC 2002, GECCO 2002, GECCO 2003, PPSN VII). 

6.3.  Conflicting Objectives in Space Allocation 

Using the dominance relation when dealing with a multiobjective optimisation 

problem makes sense only if the objectives are partially or totally conflicting. If the 

objectives are uncorrelated or reinforce each other, it is often adequate to combine all 

of them into a single scalar value and approach the problem as a single-objective one. 

More than two objectives could be considered in the space allocation problem as 
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described in chapter 2. In fact, it can be argued that this problem is an eight-objective 

optimisation problem, i.e. the satisfaction of each of the six types of constraints listed 

in section 2.4.1 plus the minimisation of space wastage and space overuse (eq. 2.10).  

Sets of experiments were carried out in order to investigate the conflicting nature 

of the objectives in the space allocation problem. For the test problems nott1, trent1 

and wolver1 described in section 2.5, eight sets of ten runs were executed using the 

single-solution hybrid metaheuristic described in section 5.2. In each set of ten runs, 

one of the eight objectives was subject to optimisation, i.e. only the value of that 

objective was used to assign fitness to solutions while the value of the other seven 

objectives were traced to observe their response. Since in each set of runs one of the 

objectives is subject to optimisation, it is possible to calculate the correlation 

between that objective and the others. A positive correlation is an indication that the 

two objectives are reinforcing each other or moving together, i.e. improvements in 

one objective are associated to improvements in the other. A negative correlation is 

an indication of the conflict between two objectives, i.e. improvements in one 

objective are associated with detriments in the other. A correlation value near to zero 

is an indication that the two objectives being unrelated or not affecting each other.  

  Objective being traced 
  ws os ai af at tg sh gp 

ws --- 0.98 0.04 -0.04 -0.15 -0.70 -0.50 -0.40 

os 0.99 --- -0.35 -0.23 -0.61 -0.50 0.55 0.48 

ai -0.21 0.34 --- 0.18 0.88 0.24 0.02 0.02 

af -0.48 0.02 0.06 --- 0.04 0.06 0.28 0.03 

at -0.82 -0.74 0.08 0.07 --- 0.34 -0.01 0.53 

tg -0.69 -0.69 0.30 0.05 0.30 --- 0.60 0.60 

sh -0.83 -0.83 0.06 0.01 -0.01 0.06 --- 0.08 O
bj

ec
tiv

e 
be

in
g 

op
tim

is
ed

 

gp -0.24 -0.50 -0.04 0.02 0.72 0.77 0.54 --- 

Table 6.1. Correlation between objectives for the nott1 test instance. 

The correlation values obtained in each set of ten runs were averaged for each 

pair of objectives. Results are presented in table 6.1 for the nott1 test problem. Each 

row corresponds to the objective being subject to optimisation and the columns in 

that row contain the correlation with each of the other (traced) seven objectives. The 

corresponding abbreviation for each objective is as follows: ws is wasted space, os is 

overused space, ai is allocated in, af is away from, at is adjacent to, tg is together 
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with, sh is not sharing and gp is grouped with. The negative correlation values 

corresponding to pairs of conflicting objectives are highlighted in table 6.1. 

It can be observed that there is a high positive correlation between the 

minimisation of space wastage (ws) and the minimisation of space overuse (os). It 

appears then that these two objectives reinforce each other or cooperate strongly. On 

the other hand, it can be noted that in most of the cases, the correlation values 

between these two objectives and those corresponding to the satisfaction of soft 

constraints are negative or very near to zero. Only the minimisation of space overuse 

(os) has a relatively high positive correlation with the satisfaction of not sharing (sh) 

constraints and the satisfaction of grouped with (gp) constraints. It seems that the 

minimisation of space misuse is in conflict with the satisfaction of soft constraints in 

general. With respect to the correlation values between the six objectives associated 

to the satisfaction of constraints, it is observed that most of the values are positive 

and near to zero. Only two (very low) negative values were obtained corresponding 

to the correlations between at and sh. It appears that in general, the satisfaction of 

one type of soft constraints is not in conflict with the satisfaction of another type of 

soft constraint.Similar observations were made in the results obtained for the other 

two test instances. These results permit us to conclude that, at least on the test 

instances used in this thesis, not all the eight objectives are conflicting. We then 

grouped the eight objectives into two conflicting objectives: the minimisation of 

space misuse and the minimisation of soft constraint violation. It should be noted that 

the conflicting nature of the objectives will depend very much on the constraints that 

exist in each particular problem instance and therefore, an analysis similar to the one 

described here would be appropriate in order to illustrate the multiobjective nature of 

the problem.  

In order to confirm that the two objectives considered here are conflicting, the 

experiments described next were carried out to observe the behaviour of each 

objective while the other was subject to optimisation. Two sets of ten runs were 

executed for each test instance (nott1, trent1 and wolver1) and each run was executed 

for a fixed number of iterations (20000, 10000 and 5000 respectively). In each set of 

runs, only one of the objectives was subject to optimisation (i.e. considered for 

evaluation of the solution quality) while the values of the other objective were 
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monitored during the search. For clarity, only two of each set of ten runs are shown 

in figures 6.1 to 6.3, but similar results (discussed below) were obtained in all runs. 

 

 

 
 
 
 
 
 
 
Figure 6.1. Response of one of the objectives while minimising the other using the single-solution 
hybrid metaheuristic on the nott1 instance. 

 

 

 

 

 
Figure 6.2. Response of one of the objectives while minimising the other using the single-solution 
hybrid metaheuristic on the trent1 instance. 

The graphs presented in figures 6.1 to 6.3 show, to some extent, the conflicting 

nature of the two objectives in the space allocation problem: the minimisation of 

space misuse and the minimisation of soft constraints violation. For example, in 

figure 6.1.a it is observed that in both runs the space utilisation has to be worsened 

(space misuse increases in the graph) at some stages during the optimisation of the 

soft constraints satisfaction. Similarly, figure 6.1.b shows that the violation of soft 

constraints has to be increased if the space misuse is to be optimised. Note also that 

this behaviour can occur in an unpredictable way. While in the two runs in figure 
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6.1.a the conflict appears to be accentuated towards the end of the run, in figure 6.1.b 

the conflict between the two objectives occurs at different stages in each run. 

Moreover, if their corresponding graphs are compared, it is also apparent that the 

conflicting performance of the objectives is different for the three test problems. It 

should be noted that in the case of the wolver1 test instance, the particular shape of 

the graphs presented in figure 6.3.a can be explained because the problem has a small 

number of soft constraints which are satsified very easily at the begining of the 

search. 

 

 

 

 

 

 

 

 
 
Figure 6.3. Response of one of the objectives while minimising the other using the single-solution 
hybrid metaheuristic on the wolver1 instance. 

6.4.  Pareto Optimisation of Space Allocation 

6.4.1.  Adapating the Hybrid Algorithms 

This section assess the suitability of the hybrid metaheuristics presented in the 

previous chapter for the Pareto optimisation of the space allocation problem. The two 

algorithms were slightly modifed in order to apply them to the space allocation 

problem treated as a two-objective optimisation problem. A mechanism to archive 

non-dominated solutions found during the search was added. Solutions visited during 

the search can be considered for updating this external archive. Since both the single-

solution and the population-based algorithms employ the HLS neighbourhood search 

heuristic of section 4.5.2, candidate solutions are generated which may replace the 

current solution if they are considered to be better than the existing one. Every time a 

candidate solution is generated, the dominance relation is used to decide if the new 

solution replaces the current solution or not. The external archive is not used for this 
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purpose, i.e. it is enough for the candidate solution to dominate the existing current 

solution in order to replace it. However, every candidate solution is considered for 

updating the archive of non-dominated solutions because even if the current solution 

is not replaced by the new one, the candidate solution may dominate some of the 

solutions in the archive. The purpose here is to investigate if these adapted versions 

of the algorithms  (which perform well on the single-objective case) are capable of 

producing good results on the two-objective version of the space allocation problem. 

6.4.2.  Experiments and Results 

In these experiments only the nott1 and trent1 test problems were used. Two reasons 

exist for this. On one hand the wolver1 test instance has been consistently the easiest 

to solve by the algorithms tested so far and, on the other hand, only few soft 

constraints exist in that instance so that it becomes almost a single-objective problem 

(as shown in figure 6.3). The experiments here consisted of applying the single-

solution hybrid metaheuristic and the two versions of the population-based hybrid 

metaheuristic (PMHS and PMHM) to the test problems. Ten runs of each algorithm 

were executed on each test instance. The termination condition in each run was a 

number of idle iterations equal to 2⋅ReheatInterval as in the experiments of the 

previous chapter. Figure 6.4 shows the offline non-dominated populations (i.e. the 

non-dominated solutions collected after the ten runs) found by each algorithm. 

Figure 6.4. Non-dominated solutions obtained by the single-solution hybrid metaheuristic (HMH) and 
the two variants of the population-based hybrid metaheuristic (PHMS and PHMM) on the nott1 and 
the trent1 test instances. 

Although the three algorithms are capable of producing non-dominated 

solutions, it is clear from figure 6.4 that for the nott1 test instance, the PMHM 
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algorithm multiple produces the best results since the solutions found by this 

approach dominate all the solutions found by the two other approaches. In the case of 

the test instance trent1, the solutions obtained with the single-solution hybrid 

metaheuristic dominate all solutions produced by the PMHS algorithm and some of 

the ones produced by the population-based hybrid metaheuristic multiple. However it 

is clear that in terms of the distribution and spread of the solutions, the results 

produced by the single-solution hybrid metaheuristic are not competitive. Similar 

experiments were carried out with the nott1b and nott1c tests instances and the same 

observations were made. From these results, it was clear that among these three 

methods, the PMHM algorithm obtains the best sets of non-dominated solutions 

overall. Since this approach is slightly different (dominance-based fitness evaluation 

and archive of non-dominated solutions added) from the one described in chapter 

five, in the rest of this chapter this modified version is referred to as the population-

based hybrid annealing algorithm (PBAA). 

6.5.  The Influence of the Fitness Evaluation Method 

6.5.1.  Assigning Fitness to Solutions in Pareto Optimisation 

In Pareto optimisation we usually wish to establish the way in which the various 

objectives will be handled in order to assign fitness to candidate solutions during the 

search and therefore, decide which solutions will survive and which ones will be 

discarded. Three ways of doing this are investigated here: an aggregating function, 

the dominance relation and a relaxed form of the dominance relation. With 

aggregating functions, the two objective values are combined into a single scalar 

value as shown in section 2.4.2 (eq. 2.7). With this method, the solution with the 

smaller value of F(x) is preferred or considered to be better. In Pareto dominance, the 

solution fitness is represented using a two-dimensional vector containing the values 

of the two objectives (F1(x),F2(x)) and preference between solutions is established 

as described in section 6.2.2. The relaxed dominance method is described in the next 

section. 
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6.5.2.  Relaxed Pareto Dominance 

Relaxed forms of Pareto dominance have been proposed by researchers as a means to 

improve the performance of multiobjective optimisers. For example, Kokolo et al. 

suggested the use of α-dominance for dealing with what they call dominance 

resistant solutions, i.e. solutions that are fairly inferior quantitatively but other 

solutions that dominate them are scarcely found (Kokolo et al., 2001). This variant of 

dominance establishes lower and upper bounds for trade-off between the objectives. 

In α-dominance, small detriments in one of the objectives are considered to be 

acceptable if this leads to an attractive improvement in the other objective. 

Figure 6.5. Three fitness evaluation methods: aggregating function, dominance relation and α-
dominance (relaxed dominance) in a two-objective minimisation problem. Solutions in region A 
dominate x. Solutions in regions B, C and D α-dominate x. Solutions above the sloping line have a 
better aggregated value than x. 

Figure 6.5 illustrates the concept of α-dominance for a two-objective 

minimisation problem and it also compares it to the other two evaluation methods 

considered here: dominance and aggregation of objectives. Solutions in regions B, C 

and D all α-dominate solution x. Then, in region C for example, βuv represents the 

maximum detriment permitted in objective u given the minimum improvement γvu in 

objective v. In region D, βvu and γuv are defined in a similar way. Solution x is 

dominated by all solutions in region B while solution x dominates all solutions in 

region A. When using the aggregation of objective values, a line that splits the 

objective space into two regions can be drawn. All the solutions above the line are 

considered to be worse than x and all solutions below the line are considered better 
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that x. A line at 45 degrees of inclination is used here according to equal weight 

values for the two objectives but different slopes will reflect different preferences. 

In α-dominance, given an optimisation problem with k objectives, the relation 

between βvu and γuv for each pair of objectives u ≠ v represents the relation between 

the detriment permitted in the objective v and the improvement obtained in the 

objective u. For the formal definition of α-dominance see (Kokolo et al., 2001). A 

similar form of relaxed dominance called ε-dominance was recently suggested by 

Laumanns et al. to implement better archiving strategies that permit us to overcome 

the difficulty of multiobjective evolutionary algorithms to converge towards the 

Pareto-optimal set and maintain a wide diversity in the population at the same time 

(Laumanns et al., 2002). In some sense, the relaxed forms of dominance (α-

dominance and ε-dominance) are similar to establishing preferences among the 

objectives using weights in an aggregating function. In both cases, a detriment in one 

or more of the objectives is permitted in an attempt to widen the search by accepting 

not only dominating solutions. The different perspectives in viewing candidate 

solutions affects the way in which surviving solutions are selected. An algorithm 

may find it difficult to discover feasible solutions that dominate the current one(s). 

This is particularly true in highly constrained combinatorial optimisation problems 

like the one presented here. Then, by accepting α-dominating (or ε-dominating) 

solutions or solutions for which the aggregated value is better, it is possible to 

provide the algorithm with a wider view of the potential ways to approach the 

Pareto-optimal front. 

The relaxed form of dominance implemented here for the two-objective space 

allocation problem follows the same principle as α-dominance and ε-dominance but 

it is slightly different. Let x be the current solution and x’ be a candidate solution 

with fitness vectors given by V = ( v1,v2,…,vk ) and U = ( u1,u2,…,uk ) respectively. If 

the first objective in the candidate solution is better than in the current solution, i.e. 

u1 < v1, the corresponding gain or improvement proportion is gain = (v1 – u1 ) / v1. 

The candidate solution x’ is considered to be better than the current solution x if the 

detriment proportion in the other objective is at most gain, i.e. if u2 < v2⋅(1+gain). 

This calculation is modified in the obvious way in the case ui < vi for i = 1,2,…,k. 
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6.5.3.  Multiobjective Algorithms Tested 

Justification 

The two algorithms used in this investigation are: the population-based hybrid 

annealing algorithm of section 6.4 and the (1+1)-Pareto archived evolutionary 

strategy proposed in (Knowles and Corne, 2000). It was observed in preliminary 

experiments that when applying the population-based hybrid annealing algorithm to 

the two-objective space allocation problem, better non-dominated fronts were 

produced if the aggregation of objectives or the relaxed concept of dominance was 

used instead of the dominance relation to assign fitness to solutions during the 

search. In order to investigate whether this behaviour is due to the search strategy 

used by the algorithm or due to the problem domain, a multiobjective optimiser that 

has been well-studied in the specialised literature was also implemented and tested. 

The (1+1)-Pareto archived evolutionary strategy is a modern multiobjective 

optimisation technique that is simple to implement, it has been tested across a range 

of problems and it is considered to be competitive with other modern multiobjective 

evolutionary algorithms (Knowles, 2001; Tan et al., 2001). 

The two approaches above are alike in the sense that both evolve solutions based 

on self-adaptation, i.e. the current solution is modified by mutation or local search 

and no recombination is used. Algorithms like these are often referred to as 

trajectory-based methods because the candidate solution is somehow similar to the 

existing one. The population-based hybrid annealing algorithm has been tested on 

various instances of the space allocation problem in previous chapters while the 

(1+1)-Pareto archived evolutionary strategy is an approach that has been applied to 

many other multiobjective optimisation problems but not to the one tackled in this 

thesis. Then, by using these two algorithms in this study, the effect of the fitness 

evaluation method can be further investigated without bias due to the algorithm 

design. Also, previous experience has shown that the recombination of solutions in 

this highly constrained problem almost always produces infeasible solutions (see 

chapter 4). Since both algorithms use local search as the main operator to generate 

candidate solutions, they show good performance when applied to the highly 

constrained two-objective space allocation problem. A brief description of the (1+1)-

Pareto archived evolutionary strategy is given below. 
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The (1+1)-Pareto Archived Evolutionary Strategy 

This algorithm starts with one initial solution and in each iteration, one candidate 

solution is generated by means of mutations. An external archive (of limited size) is 

maintained to collect non-dominated solutions. An adaptive grid that divides the 

objective space is used to evaluate how crowded the region in which each solution 

lies is. The candidate solution is discarded if it is dominated by the current solution 

or any other solution in the external archive. The candidate solution is added to the 

archive and becomes the new current solution if it dominates the old current solution. 

If none of them dominates the other, the decision on which solution becomes the 

current solution and whether to add or not the candidate solution to the archive is 

made based on the crowding mechanism, see (Knowles and Corne, 2000) for a 

detailed description. For the problem domain considered here, when a mutated 

solution is infeasible, successive mutations are tried until a feasible solution is 

generated. This is a very fast operation and it worked well in this implementation. 

6.5.4.  Experimental Settings 

The nott1, nott1b and trent1 test instances described in section 2.5 were used in these 

experiments. For each test instance and each fitness evaluation method (aggregation 

of objectives, dominance and relaxed dominance) ten repetitions of the experiments 

(as described next) were executed. An initial population of size 20 was generated as 

described above. The population-based hybrid annealing algorithm was executed for 

eval solutions evaluations. Since the Pareto archived evolutionary strategy evolves a 

single solution, one run of the algorithm corresponds to 20 executions for eval/20 

solution evaluations, one with each of the 20 initial solutions. That is, the same initial 

population was used in each set of runs comparing the three evaluation methods in 

the two algorithms, i.e. 10 different populations were generated and in total 90 runs 

were executed for each algorithm. 

For the population-based hybrid annealing algorithm, the parameters were set as 

follows: α = 0.95, IntervalCounter = n and ReheatCounter = 10⋅n (see figure 5.3). 

The number of maximum solution evaluations eval was set to 100000, 80000 and 

50000 for the nott1, nott1b, and trent1 test instances respectively. The number of 

non-dominated solutions in the external archive was limited to 30 in both algorithms 
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although in some cases fewer solutions were obtained in the final set. In the rest of 

this chapter, the population-based hybrid annealing algorithm and the (1+1)-Pareto 

archived evolutionary strategy are referred to as PBAA and PAES respectively. 

6.5.5.  The Offline Non-dominated Sets 

For each set of ten runs corresponding to the same triplet (algorithm, problem,fitness 

evaluation method) the offline non-dominated sets were collected and these are 

presented in figures 6.6 to 6.8. It is observed from figure 6.6 that for the nott1 

problem, the non-dominated sets obtained with both algorithms using the relaxed 

dominance and the aggregating function are better than those sets produced using the 

standard dominance relation. For both algorithms, the relaxed dominance clearly 

produces better results than the dominance relation. Also for both algorithms, a 

considerable section of the front obtained using the relaxed dominance is dominated 

by the front obtained using the aggregating function with the exception of a few 

solutions at the top end of these fronts. That is, using the aggregating function seems 

to benefit the performance of the algorithms in finding more solutions with low 

violation of soft constraints (small values of F2(x)) but none of the solutions obtained 

have values of space misuse (F1(x)) as low as some of the solutions obtained using 

the relaxed dominance relation. 

 

 

 

 

 

 

 

 

Figure 6.6. Offline non-dominated sets obtained by the PBAA and PAES algorithms with each 
evaluation method for the test instance nott1. 
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to clearly outperform the other. With PBAA some of the solutions obtained using 

dominance have better space utilisation while with the PAES many solutions 

obtained using relaxed dominance are better with respect to the satisfaction of soft 

constraints. It is noticeable that for both algorithms, none of the solutions obtained 

using the aggregating function is dominated by solutions produced with the other two 

fitness evaluation methods. However, as in the nott1 problem, using the aggregating 

function produces solutions that excell with respect to the minimisation of soft 

constraint violation (F2(x)) but solutions with very low values of space misuse 

(F1(x)) are not found. 

 

 

 

 

 

Figure 6.7. Offline non-dominated sets obtained by the PBAA and PAES algorithms with each 
evaluation method for the test instance nott1b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Offline non-dominated sets obtained by the PBAA and PAES algorithms with each 
evaluation method for the test instance trent1. 
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Figure 6.8 shows that for the trent1 problem, the comparison between the non-

dominated sets obtained using the standard dominance and the aggregating function 

is very tight. In the case of PBAA the aggregating method outperforms the 

dominance relation with respect to the solutions in the bottom half of the front, i.e. 

solutions with low values of soft constraint violation. But in the case of the PAES, 

using the dominance relation generates a few solutions that dominate a section in the 

middle of the front produced with the aggregating method. Note that the results 

obtained using the relaxed dominance are very poor for both algorithms. Only a few 

solutions in the top end of the front produced with the relaxed form of dominance are 

competitive with those produced by the two other evaluation methods. It seems that 

when the relaxed dominance is used in problem trent1, both algorithms have 

difficulty in finding solutions with low values of soft constraints violation (F2(x)). 

One of the reasons for this behaviour might be the levels established for the relation 

between improvement in one of the objectives and the corresponding detriment in the 

other. This is further investigated later in this chapter. 

6.5.6.  The Online Non-dominated Sets 

With respect to the online performance, the non-dominated populations obtained in 

the runs using the same algorithm on the same test instance but with the three 

different fitness evaluation methods were compared by using the metric proposed by 

(Zitzler et al., 2000). This metric was selected because it directly compares the 

quality of two non-dominated sets, it is not required to know the Pareto optimal front 

and it is simple to compute. Various other metrics are described in (Knowles and 

Corne, 2002). The metric by Zitzler et al. is described by the equation 6.1, where A, 

B are sets of non-dominated vectors. 

B

baAaBb
BAC

|}:;{|
),(

p∈∃∈=    (6.1) 

A value of C(A,B) = 1 indicates that all solutions in set B are dominated by at 

least one solution in set A while a value of C(A,B) = 0 indicates that no solution in 

set B is dominated by a solution in set A. Ten values of C(dom,agg), C(agg,dom), 

C(dom,reldom), C(reldom,dom), C(agg,reldom) and C(reldom,agg) were computed 
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and averaged for each set of runs comparing the three fitness evaluation methods 

using the same algorithm and test problem. These results are shown in table 6.2. 

By observing the comparison between the aggregating function results and the 

two other evaluation methods, it can be said that in general the aggregating function 

helps both algorithms to obtain the best results or at least it is as competitive as the 

relaxed dominance. Only for the PBAA method on the trent1 instance, the average 

coverage C(dom,agg) is slightly better than the average coverage C(agg,dom). When 

comparing the results obtained with the stardard dominance and relaxed dominance, 

it is clear that for the nott1 instance the relaxed dominance is better. In the case of the 

nott1b instance, both strategies appear to be comparable along the ten runs. However, 

as mentioned above, in the trent1 instance the performance of both algortihms when 

using the relaxed dominance is very poor and beaten clearly by the standard 

dominance too. The following section presents and discusses results in terms of the 

population diversity. 

 PBAA PAES 

 nott1 nott1b trent1 nott1 nott1b trent1 

C(dom,agg) 0.13 0 0.39 0.08 0.17 0.28 
C(agg,dom) 0.99 0.76 0.23 0.96 0.81 0.32 

C(dom,reldom) 0 0.58 0.94 0 0.51 0.92 
C(reldom,dom) 1 0.49 0.14 0.98 0.64 0.21 

C(agg,reldom) 0.65 0.54 0.97 0.77 0.62 0.96 
C(reldom,agg) 0.41 0.43 0.10 0.26 0.35 0.17 

Table 6.2. Comparing the online performance of each algorithm using the three evaluation methods, 
where agg = aggregating function, dom = dominance relation and reldom = relaxed dominance. 

6.5.7.  Results on Diversity 

Table 6.3 shows the results with respect to the diversity V(p) (see section 2.4.3) of 

the non-dominated sets obtained in the experiments described above. For each set of 

10 runs corresponding to the same triplet (algorithm, test problem, fitness evaluation 

method), the values of V(p) were averaged and these are shown as the online results 

in table 6.3. The values of V(p) were also computed for the offline populations 

collected after each set of ten runs and these are shown as the offline results in the 

same table. 
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It can be observed that with respect to the online performance, both algorithms 

obtain non-dominated sets with very similar diversities for the three fitness 

evaluation methods in the three test problems. In all cases, the relaxed dominance 

helps both algorithms to achieve slighlty more diverse populations but the difference 

with the other methods is almost insignificant. In the case of the offline non-

dominated sets, although the results obtained with the three fitness evaluation 

methods are still very similar, greater differences between the diversity values 

obtained can be observed. For example, the aggregating function benefits PBAA in 

problems nott1 and nott1b and PAES in problem nott1b. The relaxed dominance 

method favors PBAA in the trent1 problem and PAES in the nott1 problem. The 

standard dominance relation helps PAES to obtain a slightly more diverse offline 

population in problem trent1. In general, it can be said from these results, that none 

of the three fitness evaluation methods seems to be clearly more beneficial than the 

others with respect to the population diversity that the two algorithms achieve. 

However, some improvement in the diversity of the obtained solutions can be noted 

when using the relaxed dominance and the aggregating function. 

  PBAA PAES 

  nott1 nott1b trent1 nott1 nott1b trent1 
agregating 71.3 75.7 81.9 71.2 75.7 82.9 

dominance 72.1 76.9 81.5 73.6 75.9 81.8 
online 

(average) relaxed dominance 72.5 78.2 84.4 73.8 77.5 83.6 

agregating 32.2 53.8 32.0 28.1 48.8 30.5 

dominance 27.0 39.1 32.8 29.7 30.5 33.6 
offline 

relaxed dominance 26.3 34.6 40.0 32.5 32.3 23.5 

Table 6.3. Results on diversity for the online and offline non-dominated sets obtained with each 
algorithm when using the three different fitness evaluation methods. 

In the next section, further experiments are carried out in order to investigate the 

reasons why the relaxed dominance appears to adversely affect the performance of 

both algorithms in the trent1 instance as noted in section 6.5.5. 

6.5.8.  Compromise Between Objectives in Relaxed Dominance 

As described above, in the relaxed dominance relation used here, the detriment 

proportion acceptable in one of the objective values cannot be greater than the gain 

or improvement proportion obtained in the other objective value. If improvements 
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for one of the objectives are more difficult to achieve than for the other, then the 

above compromise may not be as beneficial as thought. This appears to be the case in 

the trent1 problem instance as revealed in the experiments and results presented next. 

Given the results obtained with the relaxed dominance as evaluation method in 

the trent1 problem, it was decided to carry out more experiments with different levels 

of compromise between the two objectives. Consider the current and candidate 

solutions x and x’ with fitness vectors V = (v1,v2) and U = (u1,u2) respectively. Four 

levels of trade-off between the two objectives were considered as described below. 

Relaxed Dominance. In this case the compromise is set as described in section 6.5.2. 

In the three cases below gain is calculated as before. 

Relaxed Dominance Variant A. Now, a greater detriment proportion is permitted in 

F1(x) given an improvement in F2(x). That is, when u2 < v2 then x’ is considered 

better than x if u1 < v1⋅(1+10⋅gain). When u1 < v1, the detriment permited in v2 is as 

before. 

Relaxed Dominance Variant B. In this case, a greater detriment proportion is 

permited in F2(x) given an improvement in F1(x). That is, when u1 < v1 then x’ is 

considered better than x if u2 < v2⋅(1+10⋅gain). When u2 < v2, the detriment permited 

in v1 is as before. 

Relaxed Dominance Variant C. Now, the detriment proportion permited in F2(x) 

given an improvement in F1(x) is less than in the previous case. That is, when u1 < v1 

then x’ is considered better than x if u2 < v2⋅(1+5⋅gain). When u2 < v2, the detriment 

permited in v1 is as before. 

The variant A refers to the case in which an improvement in the satisfaction of 

soft constraints (F2(x)) is more desirable and therefore more detriment in space 

misuse (F1(x)) is permitted. The other two variants reflect the case in which the 

improvement in space misuse (F1(x)) is considered more attractive and the detriment 

permited in the soft constraints satisfaction (F2(x)) is greater. Sets of runs were 

executed as described in section 6.5.4 but using only the above four variants of 

relaxed dominance relation on the trent1 instance. The results (offline non-dominated 

sets) of these experiments are presented in figure 6.9. 
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It is clear that the level of compromise between the objectives has an influence 

on the performance of both algorithms when solving the trent1 instance. Among the 

levels of compromise considered here, the best results are obtained when greater 

detriments in the satisfaction of soft constraints (F2(x)) are allowed given an 

improvement in the space misuse (F1(x)). This can be interpreted in two ways. It 

may be that improvements in F1(x) are difficult to achieve so they are highly 

welcomed no matter what the detriment caused in F2(x). The other possibility is that 

improvements in F2(x) are the ones that are difficult to achieve so that this objective 

is permitted to deteriorate sometimes in order to find improvements later in the 

search. In order to find out which of the above possibilities is ocurring here, counters 

were maintained for the number of times in which the combination of improvement 

in one objective and detriment in the other led to the candidate solution being 

considered to be better. The results given next correspond to the relaxed dominance 

variant B (the one producing better results above). 

 

 

 

 

 

 

 

Figure 6.9. Offline non-dominated sets obtained by the PBAA and PAES algorithms using the four 
variants of the relaxed dominance relation for the test instance trent1. 
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results are as follows: out of the total number of times in which an improvement in at 

least one of the objectives was achieved, 61% of the times F1(x) was improved and 

41% of the times F2(x) was improved. Out of the number of times in which F1(x) 

was improved, in 43% of these the detriment in F2(x) was acceptable and the new 

solution considered to be better than the current one. Out of the number of times in 

which F2(x) was improved, in 35% of these the detriment in F1(x) was acceptable 

and the new solution considered to be better than the current one. 

The above results suggest that, for the trent1 instance, finding candidate 

solutions with lower values of soft constraint violation (F2(x)) than the current 

solution is more difficult in general. Then, it seems that by relaxing the acceptance of 

solutions with higher values of F2(x) in the trent1 problem, the algorithms are 

provided with a wider view and these solutions may lead to better ones later on in the 

search. Finally, figure 6.10 compares, for the trent1 instance, the offline non-

dominated sets obtained with the relaxed dominance variant B and the other two 

evaluation methods, standard dominance and aggregating function. 

 

 

 

 

 

 

 

Figure 6.10. Offline non-dominated solutions obtained by the each algorithm with each evaluation 
method for the test instance trent1. 
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6.5.9.  The Evolution of Objective Values 

To investigate the effect of the fitness evaluation method on the evolution of the 

objectives, the values of F1(x), F2(x) and F(x) for each individual in the best 

populations of PBAA (see figure 5.3) were recorded. The same was done for the 

current solution in PAES. Only a sample of the results are presented here, but the 

graphs shown below are typical of the observations made in all the runs of the 

experiments for both algorithms and the three test problems. Figures 6.11 to 6.13 

show for the nott1 instance and the PBAA, the evolution of F1(x), F2(x) and F(x) for 

one individual when each of the evaluation methods was used.  

As expected, the values of F1(x) or F2(x) when using the aggregating function 

are sometimes worsened in favor of improving the aggregated value but frequently 

that detriment is temporal and the previous value is recovered or improved later on in 

the process. Similar observations can be made when the relaxed dominance is used to 

evaluate solution fitness. This, of course, cannot happen when using the standard 

dominance relation since the candidate solution is accepted only if at least one of the 

objectives is improved without worsening the other. 

 

 

 

 
Figure 6.11. Evolution of the objective values for one individual in the best population of PBAA 
during a typical run using the aggregating function. 

 

 

 

 

Figure 6.12. Evolution of the objective values for one individual in the best population of PBAA 
during a typical run using the standard dominance. 
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Figure 6.13. Evolution of the objective values for one individual in the best population of PBAA 
during a typical run using the relaxed dominance. 

6.5.10.  Further Discussion of Results 

There is an increasing interest by researchers in various fields in the application of 

metaheuristics to multiobjective optimisation problems. Most of the published 
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noted in section 6.2.3, a considerable number of papers report on the comparison 

between multiobjective optimisers on test and real-world problems. However, it is 
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optimisation succeed or fail in certain problem domains to achieve a better 

understanding of their functioning in order to design more effective and efficient 

approaches. Although some research has been published on the effect that some 

strategies have on the performance of some metaheuristics for multiobjective 

optimisation (Deb, 1999; Laumanns et al., 2001), we believe that more research on 

this subject is required. 

The research presented here aims to be a contribution to the better understanding 

of the mechanisms and conditions that influence the performance of multiobjective 

optimisers. The subject of study here has been the effect of the method used to assign 

fitness to solutions (and therefore select surviving ones) on the performance of some 

algorithms for Pareto optimisation. The fitness evaluation methods considered here 

were: the aggregation of objectives, the dominance relation and a relaxed form of 

this dominance relation. Arguments can be found in the literature in favor and 

against the use of aggregating functions or the use of dominance within 

metaheuristics for Pareto optimisation. For example:  
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§ Some researchers have expressed that Pareto-based evolutionary algorithms are 

more suitable for multiobjective optimisation than local search methods using 

aggregation of objectives (Coello Coello et al., 2002; Deb, 2001) while other 

researchers have shown that approaches that use local search and aggregating 

functions are suitable for dealing with various multiobjective optimisation 

problems (Jaszkiewicz, 2002; Czyak and Jaszkiewicz, 1998; Gandibleux and 

Freville, 2000; Menczer et al. 2000; Ulungu et al. 1999). 

§ Knowles proposed and evaluated several approaches (single-point and population-

based) for multiobjective optimisation based on a form of local search: mutation 

operators and using the dominance relation to evaluate solutions (Knowles, 2001).  

§ Jaszkiewicz expressed that “…Pareto ranking is not well suited for hybridization 

with local search” and found that weighted linear functions had better ability than 

Tchebycheff functions in finding potential non-dominated solutions within a 

genetic local search algorithm (Jaszkiewicz, 2002, page 54). 

§ Knowles et al. suggested that using the dominance relation can be beneficial even 

in single-objective optimisation for reducing the number of local optima (Knowles 

et al., 2001). 

§ Kokolo et al. illustrated the difficulty that approaches using dominance selection 

may exhibit in finding Pareto optimal solutions and suggested the use of relaxed 

dominance (α-dominance) instead (Kokolo et al., 2001). 

§ Laumanns et al. used ε-dominance (similar to α-dominance) to implement better 

archiving strategies that overcome the difficulty of multiobjective evolutionary 

algorithms to converge towards the optimal Pareto front and maintain a wide 

diversity in the population at the same time (Laumanns et al., 2002). 

§ The use of subcost guided search was proposed by Wright to deal with compound-

objective timetabling problems (Wright, 2001). An improvement of a subcost 

(objective) is preferred even if the overall cost or solution fitness is not improved 

at all or it is worsened. The hope is that the detriment suffered will be repaired 

later in the process since the improvement in one aspect of the solution (the 

subcost) enables a kind of guided diversification towards promising areas of the 

solution space. 
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The above points show the various opinions (some of these conflicting) that 

researchers have expressed when referring to the fitness evaluation method used 

when implementing algorithms for multiobjective optimisation. In relation to this, 

the investigation carried out in this chapter shows the reader that, although an 

approximation to the Pareto optimal set is the aim, the (standard) dominance relation 

is not always the best method to assign fitness to solutions. The results from the 

experiments described here suggest that the performance of the multiobjective 

metaheuristics investigated is very much influenced by the method used to evaluate 

the fitness of solutions during the search process. The problem tackled here is a 

highly constrained combinatorial optimisation problem and the existence of 

constraints seems to be a reason for the difference observed in the performance of 

both algorithms when using different fitness evaluation methods. It is apparent that if 

it is more difficul to achieve improvements in one of the objectives (F2(x) here) than 

in the other (F1(x) here). Then, a compromise that allows detriments in the objectives 

should be made so that the algorithms are provided with better mechanisms to 

explore other areas of the solution space. In terms of both online and offline 

performance, the inferiority of the dominance evaluation method is evident. Between 

the aggregating function and the relaxed dominance it seems that the first one helps 

us to achieve better values on the minimisation of soft constraints violation (F2(x)) 

while with respect to the minimisation of space misuse (F1(x)) the relaxed 

dominance benefits the most. It also appears that the relaxed dominance evaluation 

method helps to achieve a better coverage of the intended compromise surface. 

However, the distance between the obtained non-dominated fronts and the intended 

compromise surface is shorter when using the aggregating method. In terms of 

diversity in the solution space for the obtained sets, the three methods seem to be 

competitive but a small inferiority of the dominance relation can be observed. 

6.6. Summary and Final Remarks 

This chapter presented an investigation into the space allocation problem from a 

multiobjective perspective. First, experiments were carried out to compute the 

correlation between the various criteria (six soft constrainst types, space wastage and 

space overuse) in order to determine if they were in conflict or not (Wright and 
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Marett, 1996). It was shown that not all the criteria are in conflict and therefore, they 

were grouped into two conflicting objectives: the minimisation of soft constraints 

and the minimisation of space misuse. Additional experiments were carried out to 

confirm the conflicting nature of these two objectives in the test problems used here. 

It was observed that, in general, while optimising one of these two objectives the 

other one suffered considerable detriment. 

Given the two conflicting objectives, the hybrid metaheuristics developed in 

chapter 5 were adapted for the Pareto optimisation of the academic space allocation 

problem. These approaches were modified in order to collect a set of non-dominated 

solutions to be presented at the end of the search. It was observed by experimentation 

that the population-based hybrid annealing algorithm produced the best results 

overall. During the experiments, it was noted that this technique is capable of 

obtaining sets of non-dominated allocations that are also highly diverse. It can be 

suggested that this is because, instead of recombination, the algorithm is based on 

self-adaptation operators to evolve solutions. The cooperation among individuals 

within the population is encouraged by a mechanism to share information during the 

evolution process. Although it was shown that this population-based hybrid is an 

effective technique for the Pareto optimisation of the space allocation problem, 

experiments with other benchmark problems, like those proposed in (Deb, 1999; 

Zitzler, 1999; Knowles and Corne, 2000; Ulungu and Teghem, 1994), are required to 

validate the effectiveness of this approach in other problem domains. 

An investigation was also carried out in this chapter to assess the influence that 

different methods of assigning fitness to solutions have on the performance of 

multiobjective optimisers. We questioned the circumstances (problem domain and 

search strategy) under which the dominance relation is the best alternative to identify 

improvement during the search. As shown in section 6.5, sometimes it is more 

beneficial to use the combination of objectives (aggregating functions) or relaxed 

forms of dominance (that allow detriment of objective values) for assessing solutions 

during the search in Pareto optimisation. An interesting future research direction is 

the evaluation of solution fitness using different strategies within the population. For 

example, some solutions in the population can be evaluated using dominance while 

others using an aggregated function and others using relaxed dominance. 
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Chapter 7.   Hybrid Evolutionary Metaheuristics 
Based on Cooperative Local Search 

7.1.  Introduction 

As noted in the literature review of chapter 3 (section 3.5.14), the hybridisation of 

metaheuristics has proven to be very successful in many applications. Among the 

hybrid approaches reported in the literature, some common ideas have been 

comprehensively explored while other alternatives appear less frequently. This 

chapter focuses on the concept of cooperative local search and proposes this method 

for extending a range of single-solution local search algorithms to hybrid 

evolutionary metaheuristics. Instead of incorporating local search into a population-

based approach, a scheme that promotes the cooperation between various local 

searchers by sharing the information gained during the search is proposed.  

At a high level of abstraction there are two ways in which the hybridisation of 

population-based algorithms (such as genetic algorithms) with local search-based 

techniques (such as simulated annealing or tabu search) can be achieved. One is 

adding local search components that ‘help’ the population-based method by 

providing it with ‘intensification’ mechanisms (Reeves, 1996b). The second way is 

to consider a population of local searchers and a powerful cooperation mechanism 

that allows then to ‘help’ each other. The first approach has received considerable 

attention and the hybrids obtained are commonly known as memetic algorithms, 

genetic local search, hybrid genetic algorithms and other names (Moscato, 1999; 

Moscato and Cotta, 2003). It has been shown that by adding intensification local 

search techniques to the explorative capability of genetic algorithms better results 

can be produced in many optimisation problems. See for example (Fox, 1993; 

Reeves, 1996; Reeves, 1996b; Glover et al., 1995). 

The hypotheis presented here is that the second method of ‘keeping’ local search 

as the driving mechanism and ‘helping’ it when required to perform a better 

exploration can be effective in those combinatorial optimisation problems in which 

the recombination of solutions is not straightforward. This includes problems such as 

space allocation, scheduling, timetabling, grouping and other constrained problems 
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that require special attention when recombining solutions. In these cases, specific 

solution encodings, recombinative operators, reparing methods or unfeasibility 

penalty schemes have to be designed (Michalewicz, 1999). On the other hand, good 

local search heuristics can be (relatively) easily implemented for many of the 

problems mentioned above (Aarts and Lenstra, 1999). Then, by having a population 

of local searchers that share the information obtained during the search, a form of 

recombination can be achieved and the performance of the local search mechanism 

can be improved. In order to illustrate this form of hybridisation, a range of single-

solution local search algorithms are extended towards hybrid evolutionary 

approaches by adding a population and a mechanism that promotes cooperation 

between the members of the population during the search. Experiments are carrried 

out to compare the performance of the original and the extended variants of the 

algorithms when applied to test instances of the space allocation problem. The main 

goal of this chapter is to propose and evaluate some ideas for hybridising 

metaheuristics particularly for problems where several high quality and diverse 

solutions are required and the design of recombinative operators requires extra effort. 

The research presented in this paper is included in the paper [Bur2003b] (see the 

appendix on page 199). 

7.2.  Hybridising Recombinative and Local Search Methods 

The hybridisation of recombinative approaches and local search techniques has been 

extensively studied and, in particular, the integration of simulated annealing, tabu 

search and genetic algorithms has received considerable attention. See for example 

(Abboud et al., 1998; Chen and Lin, 2000; Fox, 1993; Glover et al., 1995). The 

hybrid metaheuristics proposed in the previous chapters are also examples of this 

type of hybridisation. Moreover, the incorporation of local search heuristics, 

specialised recombination/mutation operators and other ‘helpers’ specifically 

designed to exploit the knowledge of the problem domain into genetic algorithms has 

led to the development of so-called memetic algorithms (Moscato 1989, Moscato, 

1999; Moscato and Cotta, 2003). The name memetic algorithms is a relatively recent 

terminology that attempts to include all algorithms that fit the description given 

above but other names for this class of methods include genetic local search, hybrid 
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1. Generate initial population 
2. Select individuals for recombination 
3. Recombine 
4. Select individuals for mutation 
5. Mutate 
6. Select individuals to for the new population  
7. Got to the next generation 

problem  domain 
knowledge, specialised 
operators, specialised 
heuristics, etc. 

‘helpers’ 

genetic algorithms and others. See for example (Burke and Smith, 1999; Burke and 

Newall, 1999; Burke and Smith, 2000; Burke et al., 2001; Falkenauer, 1996; 

Ishibuchi et al., 1997; Jaszkiewicz, 2002; Reeves, 1996; Reeves, 1996b). 

One of the most common strategies used by researchers and practitioners to 

design memetic algorithms is to add ‘helpers’ to an evolutionary algorithm 

(commonly a genetic algorithm). That is, the structure of the evolutionary algorithm 

based on the concepts of generations, recombination, selection and mutation is 

maintained and the knowledge of the problem domain is added to ‘help’ to achieve a 

better performance. This strategy is illustrated in figure 7.1.  

 

Figure 7.1.  Common strategy for designing memetic algorithms. 

The design of specialised recombination/mutation operators is not 

straightforward for some combinatorial problems such as scheduling, timetabling, 

rostering and related problems (Aickelin and Dowsland, 2000; Burke et al., 1995; 

Erben, 2001; Falkenauer, 1994). Also, dealing with highly constrained problems 

adds additional difficulties to the application of recombinative techniques (Coello 

Coello, 2000; Kellerer and Pferschy, 1999; Thiel and Voss, 1999). It must be said 

that despite these difficulties, many successful applications of recombinative 

techniques to these and other problems exist. See for example (Aickelin and 

Dowsland, 2000; Brizuela et al., 2001; Burke et al., 1995; Chambers, 2001; Chu and 

Beasley, 1997; Chu and Beasley, 1998; Falkenauer, 1994; Falkenauer, 1996). 

However, it can also be noted that not many hybrids based on the opposite 

philosophy have been investigated. That is, given a local search method to 

incorporate ‘helpers’ perhaps inspired from population-based methods that improve 

the explorative ability of the algorithm. In fact, very efficient single-solution local 

search heuristics have been developed for some combinatorial problems and their 
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possible extension to population-based approaches deserves attention. One way in 

which this concept can be implemented is by, what in this chapter is called, 

cooperative local search which will be described in the next section. 

7.3.  Cooperative Local Search 

The goal here is to describe algorithms that were implemented following the idea of 

enriching local search methods with elements of recombinative approaches. In 

cooperative local search, there is a population of local searchers and each of them 

can be thought of as an explorer. Each explorer is associated with a particular 

solution. Several explorers can be made to cooperate by sharing the information that 

each of them obtains or learns during the search. This cooperation can be achieved, 

for example, by sharing promising parts of good discovered solutions. But also 

sharing ‘bad experiences’ among the population can prevent some explorers from 

being trapped in areas of poor solutions. This information sharing can be 

implemented by recombinative operators or by keeping track of good and bad moves. 

Moreover, these periods of cooperation are not necessarily driven by the principle of 

generations as in genetic algorithms. That is, each explorer searches the given 

solution space on its own and the cooperation occurs whenever it is required. It may 

be that some explorers achieve better results than others resulting in asynchronous 

converging times. Then those explorers that cannot achieve further improvement ask 

for the cooperation of others. This concept of cooperative local search is illustrated in 

figure 7.2. 

Figure 7.2.  The cooperative local search scheme where each individual carries out its own local 
search. When an individual gets stuck it asks for the cooperation of the population in order to find 
something to do to get unstuck and continue the search from another position in the solution space. 
The results achieved by each individual may be different at different times and this encourages 
diversity within the population. 

start searching cycle 
of each individual 

gets stuck 
finds something to 
do, gets unstuck 

self-improvement 
by local search 

ask for cooperation from other 
members of the population 

sharing moves, sharing 
parts of good and bad 
solutions, centralised 
control, etc. 

‘cooperation  mechanisms’ 
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Each explorer can have its own intensification and diversification mechanisms 

and some degree of cooperation during the intensification phases could be permitted 

(for example, by means of a common control scheme). However, the central idea is 

to allow each explorer to do its own search and implement the cooperative phases 

when required. Using the terminology presented by Preux and Talbi (section 3.5.14) 

the cooperation can be synchronous or asynchronous, the explorers can use the same 

(homogeneous) or different (heterogeneous) search strategies and can search the 

same of different solution spaces (global, partial or functional). Similar concepts to 

the ones illustrated in figure 7.3 were proposed by Salman et al. in their 

implementation of a cooperative team of heuristics to solve a variant of the multiple 

knapsack problem (Salman et al., 2002). 

7.4.  Hybrid Evolutionary Metaheuristics 

7.4.1.  Relation to Previous Work 

The application of various metaheuristic approaches, including genetic algorithms, to 

solve the space allocation problem has been investigated earlier in this thesis. It was 

shown in chapter 4, that despite designing specialised genetic operators to deal with 

the existing constraints, the genetic algorithm was outperformed by the other three 

local search techniques implemented: iterative improvement, simulated annealing 

and tabu search. Then in chapter 5, components from various metaheuristics were 

incorporated into one single-solution hybrid approach and it produced very good 

results. Also in that chapter, the single-solution hybrid approach was extended 

towards two population-based variants using the concepts of cooperative local search 

presented above. One population-based approach obtained a high quality solution 

(with the rest of the population being substantially less fit) in a short computation 

time while the other approach generated a set of high quality solutions at the expense 

of longer computation time. In this chapter, the cooperation mechanism described in 

section 5.4 has been enhanced as detailed next in section 7.4.2 and is used to extend a 

range of single-solution approaches to hybrid evolutionary variants. 
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7.4.2.  The Cooperation Mechanism 

As discussed in section 7.3, the design of a hybrid evolutionary approach based on 

the idea of cooperative local search could be implemented in several ways. The way 

in which this was done for the space allocation problem domain using the single-

solution algorithms presented in chapter four is illustrated next. The cooperation 

mechanism implemented here attempts to promote the idea that individual explorers 

should share information during the search and it differs from the one in chapter five 

on the heavy mutation operator. The two matrices ΜA and ΜT (described in section 

4.8.1) are shared among all individuals in the population in order to store the tabu 

and attractive moves explored by all individuals in a shared memory scheme. That is, 

this strategy can be regarded as a way of storing parts of attractive solutions in ΜA 

and parts of unattractive solutions in ΜT (genetic material in recombinative 

algorithms terminology). The information stored in the two matrices is used in the 

cooperative local search scheme in two ways: 

Information sharing . Each explorer performs the neighbourhood exploration but the 

matrices are updated by all individuals in the population so that the whole population 

contributes to the tabu and attractive moves stored in MT and MA. When a single-

solution explorer cannot get a feasible solution from the neighbourhood search 

heuristic HLS (see section 4.5.2), i.e. when the cooperation mechanism is invoked, a 

heuristic is used to modify the solution using the information stored in ΜA. This 

heuristic goes through each row i in the matrix and explores the most attractive 

allocations for that entity. That is, it starts with the cell having the highest value and 

continues to the one with the lowest value and makes the allocation entity to a room 

that is suitable (keeps the solution feasible) and is different from the one in the 

current solution. The changes are made even if the solution is worsened and in order 

to avoid a potential high disruption a maximum of n/20 changes are implemented in 

this way. 

Heavy mutation. A mutation operator that ‘heavily’ disrupts the current solution is 

implemented as follows. Those entities that are penalised the most (are involved in 

the violation of soft constraints or in the misuse of space) are removed from their 

assigned rooms. Then, the allocation of each of these (now unallocated) entities to 

various rooms is attempted. For each entity, the rooms from the first to the last one 
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are evaluated for a feasible allocation with the exception of those allocations marked 

as tabu in the matrix ΜT. The degree of disturbance carried out by the mutation 

operator is controlled by setting the maximum number of penalised entities that will 

be unallocated (many can be penalised). A maximum of n/5 entities are permitted to 

be unallocated here. The purpose of this ‘heavy’ disturbance is to encourage each 

explorer to search a (hopefully) very different area of the solution space. 

7.4.3.  Extending the Single-Solution Approaches 

Given a single-solution explorer (local searcher) LSSS that takes the current solution 

x and attempts to find a better next solution x’, a hybrid evolutionary approach LSPB 

based on cooperative local search can be designed. The three single-solution local 

search metaheuristics described in chapter 4 (iterative improvement, simulated 

annealing and tabu search) were extended to hybrid evolutionary algorithms as 

described in the pseudocode given in figure 7.3 in order to illustrate the idea of 

cooperative local search. 

Extended Population-based Approach LSPB 

Step 1. Generate the initial current population. 
Step 2. Archive the current population as the best population so far. 
Step 3. Do 

Step 3.1. Do population self-improvement (intensification) updating the best population so far, 
i.e. each individual in the population executes the single-solution local search approach 
LSSS using the information sharing mechanism and attempts to improve its own 
solution iteratively. This phase continues until no further self-improvement is possible, 
i.e. it terminates when none of the individuals in the population can improvement its 
current solution. 

Step 3.2. Do random variation of the population (diversification), i.e. since all individuals 
appear to be ‘stuck’, all of them are disturbed using the heuristic heavy mutation 
operator. 

Step 4. Until the termination criterion is satisfied. 

Figure 7.3.  Hybrid evolutionary scheme based on cooperative local search. 

The first phase (step 1) corresponds to the construction of a population of 

explorers each one associated to an initial solution. In the intensification phase (step 

3.1) each explorer aims to achieve self-improvement using the information sharing 

mechanism. In the diversification phase (step 3.2), each explorer randomly modifies 

its current solution using the heavy mutation operator. The best solution found by 

each explorer is maintained in the best population so far. This population serves as an 
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archive that keeps the best solution visited by each explorer in the population. Note 

that although the improvement rate of some of the explorers could be better than 

others, each explorer has its own solution and none is permitted to contribute more 

than one solution to the best population so far. This has been decided for two 

reasons: 1) to encourage diversity in the population by avoiding one or more 

explorers to dominate the search, and 2) to assess the effect of the cooperation 

mechanism in the experiments presented later. 

The detailed pseudocode for each hybrid evolutionary approach is not included 

here. However, note that the modification consists of replacing LSSS by each single-

solution technique in the pseudocode shown in figure 7.3 above. Then, the algorithm 

variants implemented here are the following: the iterative improvement algorithm of 

section 4.6 and its population-based variant (IISS and IIPB); the simulated annealing 

algorithm of section 4.7 and its population-based variant (SASS and SAPB) and the 

tabu search algorithm of section 4.8 and its population-based variant (TSSS and 

TSPB). 

7.5.  On the Performance of the Extended Approaches 

7.5.1.  Experimental Settings 

Several sets of experiments were carried out in order to assess the validity of the 

concepts presented and described in the previous sections. The main issue was to 

evaluate whether it is beneficial or not to extend a single-solution technique towards 

a population-based approach as proposed above. The experiments were designed to 

compare the performance of the population-based variant against the performance of 

the corresponding single-solution technique for finding a set of high quality 

allocations which are also diverse with respect to the solution space. A fair way to do 

that is to execute each method for an equal computation time. The number of 

solution evaluations or neighbourhood move explorations is another possibility for 

comparison but because the population-based approaches spend extra time using the 

cooperation mechanism this could be unfair for the single-solution methods. Given a 

short computation time, the single-solution approaches quickly achieve improvement 

but they get stuck relatively early too while the population-based approaches can 
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take more time (relatively to the single-solution variants) to reach high quality 

solutions. With this in mind, experiments were carried out to find the computation 

time tind for which the single-solution approaches achieved no further improvement 

for a considerable number of iterations.  

Given an initial population of size p, the single-solution approach was applied 

for tind computation time to each of the solutions in this population and the best 

solution at the end of each run was archived, i.e. p solutions are obtained. Then, the 

corresponding population-based approach was applied to the same initial population 

for p⋅tind computation time. This process was repeated ten times for each of the 

problem instances used here: nott1, nott1b, nott1c and trent1 (described in section 

2.5). For each set of p solutions obtained, the best, average and worst solution 

qualities were recorded and these values were averaged for each set of ten 

repetitions. In order to further compare the performance of each population-based 

variant against its corresponding single-solution algorithm, experiments were carried 

out using small and large populations with low and high diversity for each test 

instance as shown in table 7.1 below. The results obtained from the experiments 

described here are presented and discussed in the following subsections. 

 p = 20 p = 5 
 65% < Vip > 90%   20% < Vip < 40% 65% < Vip > 90%   20% < Vip < 40% 

nott1 , tind = 120 nott1A nott1A2 nott1B nott1B2 
nott1b , tind = 60 nott1bA nott1bA2 nott1bB nott1bB2 
nott1c , tind = 30 nott1cA nott1cA2 nott1cB nott1cB2 
trent1 , tind = 70 trent1A trent1A2 trent1B trent1B2 

Table 7.1. Initial populations of different sizes and diversity values for the four test problems. 

7.5.2.  Results on the Fitness of Solutions 

In this section, the single-solution approaches and corresponding population-based 

variants are compared with respect to the fitness of the solutions obtained. Each of 

the graphs in figures 7.4 to 7.7 summarises all the results obtained using the various 

initialised populations for one of the test instances. In each pair of bars in these 

graphs, the left bar refers to the results produced by the population-based variant of 

one algorithm, the right bar refers to the results obtained by the corresponding single-

solution approach and a line is drawn between the averaged solution fitness obtained 

so that the comparison is clearer. 
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From figures 7.4 to 7.7 it is apparent that the solutions obtained by the 

population-based variants are better than those produced with the single-solution 

approaches. It can be observed that the best, average and worst solution qualities are 

better for the extended algorithms in most cases of each test instance. This is clear 

for the nott1 and nott1c test instances as shown in figures 7.4 and 7.6 respectively. In 

the results for the nott1b instance shown in figure 7.5, the extended simulated 

annealing algorithm is outperformed by the single-solution approach when the initial 

population is small and the diversity is low (nott1bB2). Also, in some cases the worst 

solution found by the population-based variant of one algorithm has a lower quality 

than the one found by the corresponding single-solution approach. This is true for the 

simulated annealing algorithm on the nott1bA, nott1bA2, nott1bB and trent1A2 

cases and the tabu search algorithm on the nott1bB and nott1bB2 cases.  

 

 

 

 

 

 

Figure 7.4. Results obtained by the hybrid evolutionary approaches for the problem nott1. 

 

 

 

 

 

 

 

 

 
Figure 7.5. Results obtained by the hybrid evolutionary approaches for the problem nott1b. 
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Another important observation in these graphs is that in some cases, even the 

worst solution produced by the extended algorithm outperforms (or at least matches) 

the quality of the best solution found by the corresponding single-solution approach. 

This is true for the iterative improvement algorithm on most cases of the nott1c and 

trent1 problems, the simulated annealing algorithm on the nott1cA and trent1B cases 

and the tabu search algorithm on nott1cB, nott1cB2 and trent1A2 cases.  

 

 

 

 

 

Figure 7.6. Results obtained by the hybrid evolutionary approaches for the problem nott1c. 
 

 

 

 

 

 

 

 

 
Figure 7.7. Results obtained by the hybrid evolutionary approaches for the problem trent1. 
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the cases. An interesting result observed from the figures 7.4 to 7.7 is that in some 

cases the extended variant of a less sophisticated algorithm outperforms the single-

solution variant of another more elaborate technique. For example, in figure 7.4 it 

can be seen that the extended variant of the iterative improvement algorithm clearly 

outperforms the single-solution variant of the simulated annealing algorithm on the 

nott1B case. The next subsection presents and discusses the results obtained in terms 

of the population diversity. 

7.5.3.  Results on the Diversity of Solutions 

Tables 7.2 and 7.3 show the diversity for the initial population (indicated Vip) and the 

diversity of the set of solutions produced (indicated Vfp) by each algorithm variant on 

the experiments described above. Each value corresponds to the averaged (over the 

ten runs) percentages of the population diversity (see section 2.4.3). 

 Vfp values obtained by the single-solution and population-
based variants of each algorithm 

Test Case Vip IISS IIPB SASS SAPB TSSS TSPB 

P1A 75 57.5 59.9 58.3 59.5 57.6 55.9 

P1B 90 69.7 73.7 71.6 71.5 71.6 70.4 

P2A 78 68.3 72.0 70.7 71.8 68.2 67.9 

P2B 95 88.2 87.5 87.0 85.8 88.9 83.1 

P3A 65 37.9 46.6 39.4 47.0 37.6 45.4 

P3B 86 50.5 58.5 52.9 59.8 49.4 50.7 

nott1A 84 68.9 74.0 72.8 74.0 71.7 77.3 

nott1B 95 85.4 84.6 85.4 87.2 86.0 88.0 

Table 7.2. Average diversity in the final population when the diversity of the initial population is high. 

 Vfp values obtained by the single-solution and population-
based variants of each algorithm 

Test Case Vip IISS IIPB SASS SAPB TSSS TSPB 

P1A2 28 35.4 59.5 44.2 57.1 34.4 55.9 

P1B2 32 48.0 71.9 38.5 73.2 46.6 70.8 

P2A2 39 48.9 72.8 41.0 71.9 48.9 69.0 

P2B2 34 56.2 87.0 57.7 88.4 55.3 55.0 

P3A2 31 25.9 47.5 37.1 44.0 25.8 43.8 

P3B2 26 29.7 58.7 41.5 58.2 39.7 56.6 

nott1A2 23 40.9 73.7 42.4 72.7 51.8 76.5 

nott1B2 40 37.0 87.0 54.9 85.5 44.7 87.5 

Table 7.3. Average diversity in the final population when the diversity of the initial population is low. 
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Table 7.2 shows the results obtained when the initial population has a high 

diversity while table 7.3 shows the results obtained when the initial population has a 

low diversity. When comparing the results obtained with the two variants of each 

algorithm in each problem, the best diversity (highest value) is underlined to make 

the comparison clearer. In those cases in which the initial population is highly 

diverse, it is observed in table 7.2 that the population-based variants are capable of 

obtaining better results than the corresponding single-solution approaches in many 

cases. In the rest of the cases in table 7.2, the diversities of the populations produced 

by the extended approaches are very competitive with those of the single-solution 

variants. On the other hand, if the initial population has a low diversity (table 7.3), 

the extended approach is capable of improve upon the diversity of the initial 

population in some cases and although the single-solution variants also achieve a 

certain improvement in this respect, the diversities obtained by the extended 

approaches are far better in almost all cases. 

7.5.4.  On the Rate of Improvement 

From the results presented and discussed above it is clear that the population-based 

variants are capable of finding a high quality and diverse set of solutions regardless 

of the diversity (low or high) and size (small or larger) of the initial population. This 

section reports on the performance of the single-solution and extended methods with 

respect to the computation time required to achieve the results reported above. Figure 

7.8 shows typical runs for the single-solution and extended approaches over the 

computation time for the problem case trent1B in which the population size equals 5 

and the initial population is highly diverse. These graphs show the quality of the best, 

average and worst individuals in the population at each time during the run. Note that 

since the population size is 5, the processing time shown for the extended approaches 

is five times longer (5⋅tind) than the processing time shown for the single-solution 

methods. However, as explained in section 7.5.1 the total time spent by each variant 

to process the whole population is the same because in each run, the single-solution 

method was applied to each individual in the initial population. Only the graphs of 

typical runs for one problem case are shown here, but similar results were observed 

for all problems in runs with different population sizes and different initial 

diversities. 
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Figure 7.8.b shows that the single-solution variant of iterative improvement (IISS) 

achieves its best performance very quickly in slightly less than 20 seconds. For the 

population-based variant of the same algorithm (IIPB) comparable high quality 

solutions are found after 100 seconds, although further improvement and the best 

average are achieved after 250 seconds (figure 7.8.a). In other words, it takes about 

275 seconds for the extended approach to find the best values for the best, average 

and worst statistics in this population of 5 solutions. For the single-solution variant it 

takes about 20 seconds to achieve its best statistics for each of the individuals in the 

population.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 7.8. Rate of improvement over the computation execution time on the problem trent1B for each 
algorithm. The worst, average and best solutions for a typical run are show here. 
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As expected, the single-solution variant is less computationally expensive but no 

further improvements can be achieved. Although the population-based approach 

takes more time to produce a set of high quality solutions, even the worst solution 

found here outperforms the best result obtained with the single-solution method. 

Moreover, after a long processing time IIPB still improves the average quality of the 

population while IISS does not produce any better result. Assuming that we need to 

obtain only one good solution and that we do not have much computation time 

available, then IISS is a perfectly acceptable approach. However, if 5 good solutions 

are required in order to carry out comparisons and select the most appropriate one, 

then it will take about 20 x 5 = 100 seconds for the IISS to achieve this (by re-starting 

the algorithm). At this time IIPB has already achieved a much better best solution and 

the average is as good (if not better) than the one produced by IISS. However, it is 

clear that it is possible for IIPB to further improve the quality of the population after 

this computation time. Similar observations can be made for the variants of the 

simulated annealing and tabu search algorithms. 

It could be argued that the execution times used here present an advantage for the 

population-based approaches, therefore experiments were carried out to run the 

single-solution variants for the same time as the corresponding population-based 

approach. For example, for problem trent1B, IISS was executed for 350 seconds 

(5⋅tind) for each individual in the population. That is, the total time spent to obtain the 

set of 5 solutions was 1750 secs. These results were compared with those obtained by 

IIPB after an execution time equal to 350 seconds (the same as before). In any of the 

cases, the single-solution variant outperformed the extended approach even with this 

advantage of longer execution time. The same was observed for the three algorithms 

in all test problems, i.e. none of the single-solution methods achieved further 

improvements after longer execution times. 

7.6.  The Best Results for All Test Instances 

A single-solution hybrid metaheuristic and population-based variants of that 

approach were presented and tested in chapter 5. Those population-based methods 

incorporated a cooperation mechanism similar to one described in section 7.4.2. to 

share information within the population during the search. However, that mechanism 
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is less elaborate and effective than the one proposed in this chapter. The focus in 

chapter five was on implementing a common annealing schedule to control the 

evolution of the whole population. This section compares the performance of the 

hybrid evolutionary algorithms presented in this paper and the PMHM approach 

described in chapter five. In addition, the single-solution hybrid metaheuristic 

presented in chapter five is also extended as proposed here using the scheme of 

figure 7.3. That is, this extended variant MHPB differs from the PMHM approach 

with respect to the cooperation mechanism, which was enhanced in this chapter by 

incorporating a more ‘intelligent’ heavy mutation operator. 

Two goals were pursued in the experiments carried out here. First, to further 

assess the performance of the various hybrid evolutionary metaheuristics developed 

in this thesis and second, to report on the best produced results for all the test 

instances of the space allocation problem described in section 2.5. Ten repetitions of 

the experiments (as described next) were carried out. For each test instance, a 

population of 20 initial solutions were generated using the Allocate-Rnd-BestRnd 

heuristic described and tested in chapter 4. Then, each of the population-based hybrid 

algorithms was applied to that initial population for p⋅tind computation time. That is, 

ten different initial populations were generated for each test instance and in each 

repetition, the same initial solutions were used for all the algorithms. After collecting 

all the solutions obtained by each hybrid evolutionary algorithm on each test 

instance, the overall best and average solutions are reported in table 7.4. The best 

results among all the algorithms for each of these test instances are indicated in bold. 

Also as a reference, table 7.4 shows the quality of the manually constructed solution 

for each test instance. 

The first observation that can be made is that the wolver1 test problem is easily 

solved by all the algorithms and the solutions produced are far better than the 

manually contructed allocation. It is also observed that for this problem, the average 

solution quality obtained by the PMHM and the MHPB algorithms is the same as the 

best solution found, i.e. these algorithms are capable of finding the best solution in 

all the runs. As it was noted in previous chapters, this test problem seems easy to 

solve because of the low number of constraints that it contains. 
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nott1 
p⋅tind = 2400 

nott1a 
p⋅tind = 1600 

nott1b 
p⋅tind = 1200 

nott1c 
p⋅tind = 600 

trent1 
p⋅tind = 1400 

wolver1 
p⋅tind = 500 

 Best Aver Best Aver Best Aver Best Aver Best Aver Best Aver 

Manual 599.56 ----- 592.22 ----- 538.44 ----- 337.04 ----- 3873.56 ----- 1141.0 ----- 

II PB 568.13 728.42 574.53 731.61 468.47 544.02 348.27 424.69 3439.12 3736.22 634.19 821.41 

SAPB 543.78 687.07 575.76 704.53 470.72 575.38 342.55 418.73 2724.47 3756.46 634.19 697.24 

TSPB 491.25 680.14 558.40 684.79 432.69 547.76 323.82 391.46 2682.98 3510.64 634.19 669.58 

PMHM  525.93 647.74 540.65 693.56 458.06 505.84 334.91 378.54 3217.40 3618.78 634.19 634.15 

MH PB 482.21 621.56 521.91 648.05 417.16 479.50 315.41 392.16 2531.41 3104.01 634.19 634.13 

Table 7.4. Comparing the performance of the hybrid evolutionary metaheuristics on the test instances 
of the space allocation problem. 

For the rest of the test problems, it can be observed from table 7.4 that the new 

population-based variant of the hybrid metaheuristic (MHPB) outperforms the 

previous extended version (PMHM). That is, the enhanced cooperation mechanism 

proposed in this chapter permits this hybrid evolutionary algorithm to produce even 

better results. With the exception of test instance nott1a, the population-based tabu 

search approach also produces better results than those obtained with the PMHM 

algorithm. The IIPB and the SAPB approaches produce competitive results overall but 

are clearly outperformed by the other three algorithms. Only on test instance nott1c, 

the population-based variants of the iterative improvement and simulated annealing 

algortihms do not match the quality of the manually constructed solution. In the rest 

of the cases, all algorithms are capable of finding allocations with higher quality than 

the reference solution. Table 7.4 shows that, in all the test problems used in this 

thesis, the best solutions are also produced with the MHPB algorithm, i.e. the hybrid 

evolutionary approach obtained from extending the single-solution hybrid 

metaheuristic presented in chapter 5. 

7.7.  Summary and Final Remarks 

This chapter has reported results from a range of experiments on extending four 

single-solution techniques: iterative improvement, simulated annealing, tabu search 

and a hybrid algorithm, towards population-based approaches in order to illustrate 

the concept of cooperative local search that was proposed here. The cooperation 

mechanism implemented consists of adding an information sharing scheme and a 

heavy mutation operator that allows individuals in the population to share good and 
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bad parts of solutions during the evolution process. This cooperating local search 

scheme can be seen as an alternative to the design of elaborate recombination or 

repairing operators for highly constrained optimisation problems. Also, since each 

individual in the population uses mainly local search, no specific mechanism is 

required to maintain diversity (in the solution space) within the population. This way 

of approaching hybridisation seems to be a good alternative for improving upon the 

performance of other single-solution metaheuristics when a set of solutions is 

required. Other alternatives as discussed throughout the chapter are: designing a 

sophisticated version of the algorithm, fine-tuning the parameters, designing 

specialised heuristics and operators, hybridising using other schemes, etc. 

From the experiments carried out here, it is clear that the performance of the 

extended versions of the four metaheuristics, when solving the set of tests instances 

of the space allocation problem, is better than the performance of the corresponding 

single-solution algorithm. It also appears that population size and diversity in the 

initial population does not decrease the effectiveness of the extended variants. This is 

an attractive feature of the scheme proposed here since other population-based 

approaches such as genetic algorithms usually require larger populations in order to 

operate or they tend to converge prematurely unless mechanisms to maintian 

diversity are added (Horn, 1997). Note that the implementations described here are 

relatively simple and not a lot of parameter tuning was necessary. However, it would 

be important to evaluate the effect on the sensitivity to parameter tuning of the 

population-based variants with respect to the original single-solution methods, but 

this is left for future work.  

The main purpose of this chapter was to propose and illustrate the concept of 

cooperative local search towards the design of hybrid evolutionary metaheuristics. In 

addition, this chapter also justifies the effectiveness of the method by presenting the 

best available results on a set of test instances of the space allocation problem. It is 

shown that the best results overall are produced by the hybrid evolutionary 

metaheuristic MHPB and that very competitive results are obtained with the TSPB 

approach. The research and results presented here summarise the work carried out by 

the author over the last few years on the application of metaheuristics to the solution 

of the space allocation problems in academic institutions. 
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Chapter 8.   Conclusions and Future Work 

8.1.  Conclusions 

In order to draw some conclusions from the investigation presented in this thesis, it is 

important to consider the aims and scope that were established when this research 

programme was started. The overriding aim was to carry out an investigation on the 

suitability of applying metaheuristic techniques to tackle the space allocation 

problem in academic institutions. The complete construction of allocations was 

considered here. That is, we were concerned with allocating a set of entities into the 

available room space so that the space misuse and the satisfaction of soft constraints 

are minimised. The emphasis was in obtaining a set of high quality (i.e. not 

necessarily optimal) allocations that are also structurally non-similar (i.e. diverse 

with respect to the solution space) so that the decision-makers can select the most 

appropriate solution. Since very few publications in the literature have approached 

the space allocation problem, an additional aim here was to give a detailed 

description and appropriate formulation of this problem. 

8.1.1.  Description and Formulation of the Problem 

The overall space allocation process in UK universities was well described in (Burke 

and Varley, 1998). The present thesis focused on the construction of allocations and 

this problem was described and formulated here. A metric to measure the non-

similarity between allocations was proposed. This is a meaningful metric for 

decision-makers because it directly reflects how different the allocations are between 

them. Also, test data sets were prepared from real data provided by some UK 

universities (available from http://www.cs.nott.ac.uk/~jds/research/spacedata.html). 

All this work, will help researchers and practitioners to obtain a better understanding 

of this problem for future research in this area. 

8.1.2.  Design of Basic Operators 

Flexible data structures based on linked lists were proposed to represent the problem 

instance being solved and the allocation or solution. Using this representation was 

beneficial in three aspects. First, the characteristics of the problem instance and the 
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allocation can be easily updated. Second, fast solution evaluation routines can be 

implemented. And third, considering the highly constrained nature of the problem, 

the flexibility of the data structures assisted the implementation of the local search 

and genetic operators. A number of heuristics for initialising solutions were designed 

and the best are the AllocateRnd-BestRnd and the AllocateCsrt-BestRnd 

heuristics, which generate sets of solutions with a good compromise between quality 

and diversity. Three neighbourhood structures were designed: relocate, swap and 

interchange. The heuristic (HLS) designed to choose the neighbourhood to explore 

takes into consideration the current status of the allocation and the history of the 

search. Several heuristics were designed to explore the neighbourhood structures. It 

was found that the best strategy (Rnd-BestRnd) is to choose one of the elements of 

the move (entity or room) at random and then to explore a subset to choose the 

second element of the move (entity or room). Various genetic operators were 

implemented including two for the recombination of solutions that were specifically 

designed for the space allocation problem. Even with these tailored operators, 

maintaining the feasibility of allocations while recombining solutions proved to be a 

difficult task in the space alloction problem. 

8.1.3.  Suitability of Metaheuristics 

To the best knowledge of the author, this thesis presents the first investigation on the 

application of metaheuristic techniques to the space allocation problem in academic 

institutions. It was shown that metaheuristics can produce good solutions in much 

shorter time than required when constructing allocations manually. Four well-known 

metaheuristics were implemented in the first step of this research: iterative 

improvement, simulated annealing, tabu search and a genetic algorithm. The methods 

were reasonable adapted to the problem and benchmark results were provided. Tabu 

search and iterative improvement performed the best, simulated annealing produced 

acceptable results while the genetic algorithm exhibited a poor performance. The 

strong intensification feature of iterative improvement and tabu search and the 

memory structures for genes collection in the latter, helped these two algorithms to 

produce the best results among the four metaheuristics. The difficulty of recombining 

solutions and maintaining feasibility in this problem, contributed to the failure of the 

genetic algorithm which performed well only in the less constrained test instance. 
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8.1.4.  The Hybrid Algorithms Proposed  

The single-solution hybrid metaheuristic designed in this thesis, surpassed the 

performance of the other four methods previously implemented. Although this hybrid 

produced solutions of better quality than the manually constructed allocation in the 

test problems, this is because the obtained allocations have less space misused than 

the reference solutions but the satisfaction of soft constraints is higher. This confirms 

the difficulty of solving the space allocation problem due to the high number of 

constraints present. The population-based hybrid metaheuristic (extended variant of 

the single-solution hybrid) designed in this thesis permitted us to obtain sets of good 

quality allocations that are also highly diverse. It was shown that the shared memory 

structures and heavy mutation operator are crucial components of this approach 

because without them, the performance of the algorithm deteriorates considerably. 

8.1.5.  The Two-Objective Problem 

Although multiple objectives can be considered when tackling the space allocation 

problem, experimental justification was provided in this thesis for approaching it as a 

two-objective minimisation problem. It was also shown that the hybrid algorithms 

developed are suitable for generating good sets of non-dominated solutions without 

the need to incorporate complex mechanisms to maintain diversity. From these 

hybrids, the PHMM algorithm produced the best non-dominated fronts. 

8.1.6.  Influence of Fitness Evaluation in Pareto Optimisation 

The problem tackled here is highly constrained and the recombination of solutions 

while maintaining feasibility is difficult. The algorithms that performed well are 

based on the self-adaptation of solutions. Given these circumstances, it was shown 

that the method used to evaluate solutions during the search in Pareto optimisation 

has an impact on the performance of the algorithm. The aggregation of objectives 

and relaxed forms of dominance can be more beneficial than the standard dominance 

relation. This is because they allow detriments in some objectives in order to achieve 

improvements in others, facilitating the generation of promising candidate solutions. 

A tunable (for the trade-off between objectives) form of relaxed dominance which is 

very intuitive and simple to compute was also proposed in this thesis. 
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8.1.7.  Cooperative Local Search 

The concept of cooperative local search for the hybridisation of metaheuristics was 

proposed and illustrated here. It was shown that by adding elements of population-

based techniques to algorithms based on local search, effective hybrid evolutionary 

approaches are created. A crucial element for this type of hybridisation is the design 

of a cooperation mechanism that permits the population of explorers to share the 

information gained during the search. The cooperation mechanism implemented here 

consisted of collecting good and bad genes (parts of solutions) in shared memory 

structures. Four single-solution algorithms were extended using the cooperative local 

search scheme and the population variants produced much better results than the 

single-solution methods. This hybridisation scheme is simple to implement and is 

particularly appropriate when the recombination of solutions requires considerable 

extra effort. The performance of the hybrid evolutionary approaches is not affected 

by the size and diversity of the initial population. For all the test data sets used in this 

investigation, the best known solutions are also reported which are obtained by the 

MH PB hybrid evolutionary algorithm. 

8.1.8.  Scope of the Conclusions 

Since the investigation presented in this thesis was focused on the space allocation 

problem in academic institutions, it should be kept in mind that the conclusions given 

above are within this context. However, the experiences of this study can also be 

beneficial for research in related areas such as space planning, shelf space allocation, 

academic timetabling, constrained knapsack problems, etc. Also, the algorithms 

described and tested here can be the starting point for the development of a fully 

automated system for the space allocation process (Burke and Varley, 1998).   

8.2.  Future Work 

8.2.1.  From the Space Allocation Perspective 

The obvious suggested future step is the incorporation of the work presented here 

into a fully automated system and test it with a comprehensive range of data sets 

from as many different universities as possible. Another suggested step is to consider 

other aspects of the problem besides the complete construction of allocations. For 
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example, the modification of allocations given a change on the conditions of the 

problem (number of entities, number of rooms, constraints, etc.). It is also interesting 

to consider the situation in which construction work (for the modification of rooms) 

is required so that alternative layouts can be automatically generated. 

8.2.2.  From the Metaheuristics Perspective 

Given the similarity of the space allocation problem with multiple knapsack 

problems, some heuristics proposed in the literature were tried in preliminary 

experiments (Abdelaziz et al., 1999; Jaszkiewicz, 2001). However, dissapointing 

results were obtained due to the existence of many constraints in the problem tackled 

here. Applying the hybrid metaheuristics developed in this thesis to problem domains 

which are similar to the space allocation problem, would permit us to assess their 

suitability and robustness. Another research direction is to compare the parameter 

sensitivity (also for assessing robustness) between the single-solution approaches and 

the extended variants. Further validation of the cooperative local search scheme can 

be achieved by extending other single-solution approaches based on local search (e.g. 

guided local search, iterated local search, variable neighbourhood search, etc.). 

Forms of relaxed dominance can be used to evaluate solutions in Pareto optimisation 

of other multiobjective combinatorial optimisation problems in order to investigate if 

the performance of recombinative methods can also be improved. Moreover, 

different fitness evaluation methods can be used to assess the fitness of different 

individuals within the same population. The evaluation of solutions in the population 

can be adapted in order to exploit the phenomenon of global convexity which implies 

that local optima can be concentrated in different small areas of the solution space 

(Borges and Hansen, 1998). An interesting way to evaluate solution fitness that can 

be investigated is extremal optimisation which is based on successively eliminating 

extremely undesirable parts of near-to-optimal solutions instead of successively 

improving the quality of poor initial solutions (Boettcher and Percus, 2000). 
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