
Landa Silva, Jesus Dario (2003) Metaheuristic and
Multiobjective Approaches for Space Allocation. PhD
thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10147/1/JDLSPHDTHESIS.PDF

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

METAHEURISTIC AND MULTIOBJECTIVE

APPROACHES FOR SPACE ALLOCATION

by Jesus Dario Landa Silva, BEng, MSc

Thesis submitted to the University of Nottingham

for the degree of Doctor in Philosophy

School of Computer Science and Information Technology

November 2003

Table of Contents

 2

TABLE OF CONTENTS

List of Figures -- 6

List of Tables --- 8

Abstract -- 9

Aknowledgements --- 10

1. INTRODUCTION

1.1.Background and Motivation --- 12

1.2.Aims and Scope --- 14

1.3.Overview of this Thesis -- 15

1.4.Contributions of this Thesis --- 17

2. THE SPACE ALLOCATION PROBLEM

2.1.Introduction -- 18

2.2.Related Problems --- 19

2.2.1.Multiple Knapsack Problem -- 19

2.2.2.Generalised Assignment Problem -- 20

2.3. Space Allocation in Academic Institutions -- 21

2.3.1.Space Allocation in UK Universities -- 22

2.3.2.Manual Approach to Space Allocation -- 24

2.3.3.The Multiobjective Nature of the Problem ----------------------------------- 25

2.4. Problem Formulation --- 26

2.4.1.Types of Constraints --- 27

2.4.2.Evaluation of an Allocation --- 28

2.4.3.A Metric for Population Diversity --- 30

2.5. Test Data Sets From UK Universities -- 32

3. LITERATURE REVIEW

3.1.Introduction -- 35

3.2.Previous Research on Space Optimisation --- 35

3.3.Other Space Optimisation and Related Problems ------------------------------------- 38

3.3.1.Space Planning -- 38

3.3.2.Shelf Space Allocation --- 39

3.3.3.Constrained Variants of Knapsack Problems --------------------------------- 39

3.3.4.Related Scheduling Problems --- 40

Table of Contents

 3

3.4.Complexity Theory and the No Free Lunch Theorem -------------------------------- 41

3.4.1.Algorithms Complexity -- 41

3.4.2.Problem Complexity – The P and NP Classes -------------------------------- 42

3.4.3.Approaches to Solve Optimisation Problems --------------------------------- 45

3.4.4.The No Free Lunch Theorem -- 46

3.5.Review of Metaheuristic Approaches -- 47

3.5.1.Introduction -- 47

3.5.2.Classification of Metaheuristics --- 47

3.5.3.Constructive Heuristics --- 48

3.5.4.Simple Local Search -- 49

3.5.5.Greedy Randomised Adaptive Search Procedure ----------------------------- 52

3.5.6.Guided Local Search --- 52

3.5.7.Iterated Local Search --- 54

3.5.8.Variable Neighbourhood Search -- 54

3.5.9.Threshold Acceptance Algorithms --- 55

3.5.10.Simulated Annealing -- 56

3.5.11.Tabu Search -- 61

3.5.12.Genetic Algorithms -- 63

3.5.13.Other Evolutionary Algorithms -- 66

3.5.14.Hybrid Metaheuristics -- 69

3.5.15.Evaluating the Performance of Metaheuristics ------------------------------ 72

4. GENERAL METAHEURISTIC APPROACHES

4.1.Introduction -- 73

4.2.Solution Representation and Data Structures -- 75

4.3.Neighbourhood Structures --- 77

4.4.Fitness Evaluation Routines -- 78

4.5.Constructive Heuristics and Neighbourhood Exploration --------------------------- 79

4.5.1.Constructive Heuristics --- 80

4.5.2.Neighbourhood Structure Selection -- 81

4.5.3.Neighbourhood Exploration --- 82

4.6.Iterative Improvement Algorithm --- 84

4.7.Simulated Annealing -- 85

4.8.Tabu Search -- 86

4.8.1.Matrices of Tabu and Attractive Genes -- 87

4.8.2.Intensification and Diversification Strategies --------------------------------- 88

4.9.Genetic Algorithm --- 89

4.9.1.Selection of Parents --- 89

4.9.2.Genetic Operators --- 90

Table of Contents

 4

4.10.Experiments and Results -- 91

4.10.1.The Initialisation Heuristics -- 91

4.10.2.The Neighbourhood Exploration Heuristics --------------------------------- 93

4.10.3.Comparing the Four Metaheuristics -- 95

4.10.4.Further Discussion of Results -- 95

4.11.Summary and Final Remarks --- 96

5. HYBRID METAHEURISTIC APPROACHES

5.1.Introduction -- 99

5.2.A Single-Solution Hybrid Metaheuristic --- 100

5.2.1.The Hybrid Components --- 101

5.3.On the Performance of the Single-Solution Hybrid ----------------------------------- 103

5.3.1.Experimental Settings -- 103

5.3.2.Results and Discussion --- 104

5.3.3.Further Comparison with Previous Results ------------------------------------ 105

5.4. A Population-Based Hybrid Metaheuristic --- 106

5.4.1.The Shared Memory Structures --- 108

5.4.2.The Common Cooling Schedule -- 108

5.5. On the Performance of the Population-Based Hybrid ------------------------------- 109

5.5.1.Experiments and Results --- 109

5.5.2.Variants of the Population-Based Hybrid -------------------------------------- 112

5.6.Summary and Final Remarks -- 115

6. MULTIOBJECTIVE APPROACHES

6.1.Introduction -- 118

6.2.A Brief Review of Multiobjective Optimisation -------------------------------------- 119

6.2.1.Multiple Criteria Decision-Making --- 119

6.2.2.Pareto Optimisation --- 120

6.2.3.Metaheuristics for Multiobjective Optimisation ------------------------------ 123

6.3.Conflicting Objectives in Space Allocation -- 128

6.4.Pareto Optimisation of Space Allocation --- 132

6.4.1.Adapting the Hybrid Algorithms --- 132

6.4.2.Experiments and Results --- 133

6.5.The Influence of the Fitness Evaluation Method -------------------------------------- 134

6.5.1.Assigning Fitness to Solutions in Pareto Optimisation ---------------------- 134

6.5.2.Relaxed Pareto Dominance -- 135

6.5.3.Multiobjective Algorithms Tested -- 137

6.5.4.Experimental Settings -- 138

6.5.5.The Offline Non-dominated Sets --- 139

6.5.6.The Online Non-dominated Sets -- 141

Table of Contents

 5

6.5.7.Results on Diversity -- 142

6.5.8.Compromise Between Objectives in Relaxed Dominance ------------------ 143

6.5.9.The Evolution of Objective Values --- 147

6.5.10.Further Discussion of Results -- 148

6.6.Summary and Final Remarks -- 150

7. HYBRID EVOLUTIONARY METAHEURISTICS BASED ON
COOPERATIVE LOCAL SEARCH

7.1.Introduction -- 152

7.2.Hybridising Recombinative and Local Search Methods ----------------------------- 153

7.3.Cooperative Local Search -- 155

7.4.Hybrid Evolutionary Metaheuristics -- 156

7.4.1.Relation to Previous Work -- 156

7.4.2.The Cooperation Mechanism --- 157

7.4.3.Extending the Single-Solution Approaches ----------------------------------- 158

7.5.On the Performance of the Extended Approaches ------------------------------------ 159

7.5.1.Experimental Settings -- 159

7.5.2.Results on the Fitness of Solutions --- 160

7.5.3.Results on the Diversity of Solutions -- 163

7.5.4.On the Rate of Improvement -- 164

7.6.The Best Results for All Test Instances -- 166

7.7.Summary and Final Remarks -- 168

8. CONCLUSIONS AND FUTURE WORK

8.1.Conclusions -- 170

8.1.1.Description and Formulation of the Problem --------------------------------- 170

8.1.2.Design of Basic Operators --- 170

8.1.3.Suitability of Metaheuristics -- 171

8.1.4.The Hybrid Algorithms Proposed -- 172

8.1.5.The Two-Objective Problem -- 172

8.1.6.Influence of Fitness Evaluation in Pareto Optimisation --------------------- 172

8.1.7.Cooperative Local Search --- 173

8.1.8.Scope of Conclusions -- 173

8.2.Future Work -- 173

8.2.1.From the Space Allocation Perspective -- 173

8.2.2.From the Metaheuristics Perspective -- 174

REFERENCES -- 175

APPENDIX − List of Publications --- 199

Table of Contents

 6

LIST OF FIGURES

Figure 3.1.Iterative improvement algorithm --- 50

Figure 3.2.Greedy randomised adaptive search procedure ------------------------------------ 52

Figure 3.3.Guided local search metaheuristic --- 53

Figure 3.4.Iterated local search metaheuristic --- 54

Figure 3.5.Variable neighbourhood search metaheuristic ------------------------------------- 55

Figure 3.6.Threshold acceptance metaheuristic --- 56

Figure 3.7.Simulated annealing metaheuristic -- 56

Figure 3.8.Tabu search metaheuristic -- 61

Figure 3.9.The genetic algorithm framework --- 63

Figure 3.10.Hierarchy of hybrid evolutionary algorithms ------------------------------------- 70

Figure 4.1.Data structure used for the space allocation problem ----------------------------- 77

Figure 4.2.The approximate fitness evaluation routine --79

Figure 4.3.Local search heuristic HLS -- 82

Figure 4.4.The iterative improvement local search approach --------------------------------- 85

Figure 4.5.The simulated annealing approach --- 85

Figure 4.6.The tabu search approach --- 89

Figure 4.7.The genetic algorithm approach -- 89

Figure 5.1.The single-solution hybrid metaheuristic --- 100

Figure 5.2.Space misuse, soft constraints violation and the total penalty ------------------- 105

Figure 5.3.The population-based hybrid metaheuristic -- 107

Figure 5.4.Space misuse, soft constraints violation and the total penalty ------------------- 114

Figure 6.1.Tracing one objective while optimising the other for the nott1 instance ------- 131

Figure 6.2.Tracing one objective while optimising the other for the trent1 instance ------ 131

Figure 6.3.Tracing one objective while optimising the other for the wolver1 instance --- 132

Figure 6.4.Comparing the single-solution and the two population-based variants --------- 133

Figure 6.5.Aggregating function, standard dominance and relaxed dominance ------------ 135

Figure 6.6.Offline non-dominated sets obtained by PBAA and PAES on nott1 ------------ 139

Figure 6.7.Offline non-dominated sets obtained by PBAA and PAES on nott1b ---------- 140

Figure 6.8.Offline non-dominated sets obtained by PBAA and PAES on trent1 ----------- 140

Figure 6.9.Offline performance of PBAA and PAES with relaxed dominance variants -- 145

Figure 6.10.New offline non-dominated sets obtained by PBAA and PAES on trent1 --- 146

Figure 6.11.Evolution of objective values in PBAA using aggregating function ---------- 147

Figure 6.12.Evolution of objective values in PBAA using standard dominance -----------147

Table of Contents

 7

Figure 6.13.Evolution of objective values in PBAA using relaxed dominance ------------ 148

Figure 7.1.Common strategy for designing memetic algorithms ----------------------------- 154

Figure 7.2.The cooperative local search scheme -- 155

Figure 7.3.Hybrid evolutionary scheme based on cooperative local search ----------------- 158

Figure 7.4.Results obtained by the hybrid evolutionary approaches for nott1 -------------- 161

Figure 7.5.Results obtained by the hybrid evolutionary approaches for nott1b ------------ 161

Figure 7.6.Results obtained by the hybrid evolutionary approaches for nott1c ------------ 162

Figure 7.7.Results obtained by the hybrid evolutionary approaches for trent1 ------------- 162

Figure 7.8.Rate of improvement over computation time for trent1 -------------------------- 165

Table of Contents

 8

LIST OF TABLES

Table 2.1.Calculation of the Population Variety V(p)-- 31

Table 2.2.Characteristics of the test problems used in this thesis ---------------------------- 34

Table 4.1.Performance of the initialisation heuristics on the test instance nott1 ----------- 91

Table 4.2.Performance of the initialisation heuristics on the test instance trent1 ---------- 91

Table 4.3.Performance of the initialisation heuristics on the test instance wolver1 -------- 92

Table 4.4.Variants of the three approaches using neighbourhood search ------------------- 93

Table 4.5.Results for the iterative improvement metaheuristic variants --------------------- 94

Table 4.6.Results for the simulated annealing metaheuristic variants ----------------------- 94

Table 4.7.Results for the tabu search metaheuristic variants ---------------------------------- 94

Table 4.8.The best solutions obtained by the four approaches -------------------------------- 95

Table 5.1.Quality of the solutions obtained by the four single-solution approaches ------- 104

Table 5.2.Comparison of the single-solution and the population-based hybrids ----------- 106

Table 5.3.Comparison using fixed execution time as termination criterion ----------------- 110

Table 5.4.Comparison using idle iterations as termination criterion ------------------------- 113

Table 6.1.Correlation between objectives for the nott1 test instance ------------------------ 129

Table 6.2.Online performance of PBAA and PAES with the evaluation methods --------- 142

Table 6.3.Results on diversity for PBAA and PAES with the evaluation methods -------- 143

Table 7.1.Initial populations of different sixes and diversity values for test problems ---- 160

Table 7.2.Results on final diversity when the initial diversity is high ----------------------- 163

Table 7.3.Results on final diversity when the initial diversity is low ------------------------ 163

Table 7.4.Comparing all population-based hybrid approaches in all test instances -------- 168

Abstract

 9

ABSTRACT

This thesis presents an investigation on the application of metaheuristic techniques to

tackle the space allocation problem in academic institutions. This is a combinatorial

optimisation problem which refers to the distribution of the available room space

among a set of entities (staff, research students, computer rooms, etc.) in such a way

that the space is utilised as efficiently as possible and the additional constraints are

satisfied as much as possible. The literature on the application of optimisation

techniques to approach the problem mentioned above is scarce. This thesis provides a

description and formulation of the problem. It also proposes and compares a range of

heuristics for the initialisation of solutions and for neighbourhood exploration. Four

well-known metaheuristics (iterative improvement, simulated annealing, tabu search

and genetic algorithms) are adapted and tuned for their application to the problem

investigated here. The performance of these techniques is assessed and benchmark

results are obtained. Also, hybrid approaches are designed that produce sets of high

quality and diverse solutions in much shorter time than those required by space

administrators who construct solutions manually. The hybrid approaches are also

adapted to tackle the space allocation problem from a two-objective perspective. It is

also revealed that the use of aggregating functions or relaxed dominance to evaluate

solutions in Pareto optimisation, can be more beneficial than the standard dominance

relation to enhance the performance of some multiobjective optimisers in some

problem domains. A range of single-solution metaheuristics are extended to create

hybrid evolutionary approaches based on the scheme of cooperative local search.

This scheme promotes the cooperation of a population of local searchers by means of

mechanisms to share the information gained during the search. This thesis also

reports the best results known so far for a set of test instances of the space allocation

problem in academic institutions.

This thesis pioneers the application of metaheuristics to solve the space

allocation problem. The major contributions are: provides a formulation of the

problem together with tests data sets, reports the best known results for these test

instances, investigates the multiobjective nature of the problem and proposes a new

form of hybridising metaheuristics.

Acknowledgements

 10

ACKNOWLEDGEMENTS

To initiate a venture is relatively easy, it is enough

to invigorate the fire of enthusiasm, to persevere on

the venture until success is a different thing, that

requires continuity and effort.

There is a big difference between being educated

and being wise…education corresponds to science,

wisdom corresponds to the conscience.

Thanks god because you gave me the strenght to make the decision to initiate

this venture and the strength to complete it. Along the way, there were many times in

which your love and company were essential to continue. Thanks for holding me in

difficult times.

Thanks to my parents Sebastian and Teresa, from whom I have received so much

love and guidance. Thanks to my brother Ulises and my sister Vianney, because our

bonds are stronger in the distance and your support has always been there. Thanks to

Nilo and Rosita, you are an exceptional example to follow and your love and advice

are priceless. Thanks to all my relatives and friends because a part of what I am is

because of you.

Love and friendship are essential to overcome difficult times and maintain hope

in the future. Therefore, many thanks to all of you my friends, who have shared with

me, so many moments of happiness, friendship and love. Among them, Alma Olvera,

Iciar Olvera, Flor Torres, Rosy Loya, Tere Cruz, Lillian Tapia, Pedro Maria, German

Blanco, Ralf Keuthen, Marina Aguilar, Emmanuela Cerfeda, Kirstin Elsner, Emma

Dawson, Eric Soubeiga, Rafael Pulido, Koon Wah Kok and many others that will

always be in my memory. All this time would not had been so enjoyable without

your company. Special thanks to Majito Beltrán, you have been light in my life and

the time spent with you is always delightful.

Acknowledgements

 11

Thanks to the University of Nottingham for providing me with all the required

resources to successfully carry out this research programme. Thanks to everyone in

the School of Computer Science and Information Technology and particularly, to all

the present and past members of the ASAP research group. Working in such a

friendly and harmonious environment has contributed to make this a gratifying

experience.

I am extremely grateful to Professor Edmund K. Burke, who has been an

exceptional supervisor. His guidance and support along my PhD have helped me to

achieve this important goal in my professional career. Also, thanks to Professor Peter

Cowling whom gave me many valuable advises in the early stages of my PhD. My

gratitute goes as well to Dr. Graham Kendall (internal examiner) from the University

of Nottingham and Professor Peter Fleming (external examiner) from the University

of Sheffield. Their valuable comments and suggestions during my PhD examination

have been included in the final version of this thesis.

This PhD programme would have not been possible without the financial support

of PROMEP (“Programa de Mejoramiento al Profesorado”) and the UACH

(“Universidad Autónoma de Chihuahua”) in México. Thanks to both institutions for

their sponsorship. I would like to thank the assistance received from all staff in

PROMEP and UACH during my PhD. In particular, many thanks to Ing. José Luis

Franco Rodriguez and to Dr. José Enrique Grajeda Herrera, present and previous

vice-chancellors of UACH. Also, thanks to members of the administration at the

“Facultad de Ingeniería” in UACH, Ing. Jesús Valles, Ing. Isela Aguirre, Ing. Jesús

Mendoza and M.C. Martha Canales.

I am also very grateful to the various institutions and companies that provided us

with data sets for the research carried out in this thesis. Thanks to the University of

Nottingham, the University of Wolverhampton, the Nottingham Trent University and

Real Time solutions Ltd for their assistance in this aspect.

And finally, as in my master thesis, many thanks to all those that continuously

asked me ...how is the thesis going?... because without knowing it, you encouraged

me to persevere.

Introduction

 12

Chapter 1. Introduction

1.1. Background and Motivation

Office space allocation and the associated resource efficiency issues impact (to a

greater or lesser extent) on all institutions from small companies to large multi-

national organisations. In academic institutions, the distribution of the available room

space among staff, research students and other resources such as lecture rooms, labs,

storage rooms, etc., is a process that needs to be carried out on a regular basis

because of the continuous changes that occur in this environment. For example,

people leave the institution or move to another department/faculty, new lecture

rooms or labs are required, offices for new staff or research students should be

available, certain rooms are unavailable for various reasons, etc.

Since the available room space is usually restricted, an efficient functioning of

the academic institution depends on, among other factors, having a good distribution

of this space. A good distribution must ensure that all demanding resources are given

the minimum required space, that the space is utilised as efficiently as possible and

that the additional constraints are satisfied to as great an extent as possible. An

efficient utilisation of the space requires that no resource is given too much room

(space wastage) and no resource is given less room than the minimum required

(space overuse). Additional constraints usually require that the allocation of

resources to the available rooms meets specific conditions. For example, professors

must not share offices, research students should be allocated near to their

supervisor’s office, lecture rooms must be located away from noisy areas, research

groups should be located together, etc.

Besides achieving an efficient utilisation of the room space and the satisfaction

of additional constraints, producing an adequate allocation requires taking into

account other quality factors that are very difficult to evaluate. Space administrators

need to consider the preferences of people when assigning offices so that they are

satisfied with their working environment. They should also address aspects such as

politics and future requirements when distributing the room space. That is, several

Introduction

 13

criteria (usually from various decision-makers) are employed to evaluate the quality

of the space distribution.

Space allocation is a difficult task and a recent survey on this issue revealed that

in most of the cases this process is carried out manually and it can take weeks or

even months to be completed in this way (Burke and Varley, 1998). That survey

showed that only a small proportion of higher education institutions in the UK use

some form of computer aid when dealing with the space allocation problem. Usually,

this aid consists of databases that maintain a record and drawings of all rooms and

how they are being used, but no form of automated space allocation is implemented.

Automating the space allocation process would permit space administrators to save

time and effort. Moreover, if several solutions are obtained in a short computation

time, this would allow the administrator to spend more time in the decision-making

process to select the most appropriate allocation considering all the quality factors

mentioned above. The application of heuristics to tackle this problem was suggested

in (Burke and Varley, 1998b) as a first step towards the construction of a computer

system to automate the space allocation process in academic institutions.

Space allocation is a combinatorial optimisation problem that has some

similarities with classical knapsack problems (Martello and Toth, 1990) and is also

related to scheduling problems such as academic timetabling (Wren, 1996). In the

traditional knapsack problem, a set of objects of given sizes must be accommodated

into a set of containers of given capacity so that the available capacity is utilised as

efficiently as possible, but usually no additional constraints exist. In academic

timetabling the problem is to accommodate a set of events into the set of available

timeslots so that additional constraints are satisfied. In some cases, the construction

of academic timetables also takes into account the allocation of rooms to events

(Burke et al., 1996) which is obviously closely related to the space allocation

problem.

The range of techniques that have been applied to tackle combinatorial

optimisation problems can be classified in two general groups: exact methods and

approximate (heuristic) methods (Papadimitriou and Steiglitz, 1999). Exact methods

seek to solve a problem to guaranteed optimality but their execution on large real

Introduction

 14

world problems usually requires too much computation time. For practical use

heuristic methods seek to find high quality solutions (not necessarily optimal) within

reasonable computation times (Poole et al., 1998). Metaheuristics are a class of

heuristic techniques that have been successfully applied to solve a wide range of

combinatorial optimisation problems over the years (Glover and Kochenberger,

2003; Voss et al., 1999; Aarts and Lenstra, 1997; Osman and Kelly, 1996; Osman

and Laporte, 1996; Rayward-Smith et al., 1996; Reeves, 1995).

This thesis describes an investigation into the development of metaheuristic

approaches to automate the space allocation process in academic institutions. This

work has been motivated by an interest in developing modern automated algorithms

that tackle this problem in a more effective way than currently exists. In addition,

given the relation of space allocation to other combinatorial problems such as

knapsack and timetabling problems, this investigation may also benefit the

development of optimisation techniques that can be applied to other such problems.

1.2. Aims and Scope

Since space allocation is a multiple criteria optimisation and decision process, where

some of the criteria are not easily measurable (e.g. preference of people over certain

rooms), it is very difficult to obtain an accurate model of this real-world problem.

Even if the preferences are expressed in an objective function and optimal or near-

optimal solutions are found, it is very likely that the decision-makers will modify

these solutions before the final distribution of space is decided. These are some of the

arguments in favour for the application of heuristic methods to obtain near-optimal

solutions to the space allocation problem.

As expressed above, the space allocation process is very complex and the present

thesis tackles one part of this process, the construction of allocations. That is, given a

set of entities, to allocate them into the set of available rooms. Two main objectives

are pursued when constructing an allocation: minimising the amount of space misuse

(wastage and overuse) and minimising the number of constraint violations. Initially,

this investigation considers finding one high-quality solution. Then, we address the

Introduction

 15

situation in which a set of high-quality allocations is required, so that the space

administrators can select the most adequate.

The main aim of this thesis is to present an investigation on the application of

metaheuristic approaches to solve the space allocation problem in academic

institutions. To the best knowledge of the author, apart of (Burke and Varley, 1998b),

no other work in this area has been published in the literature. Some reports are

available on the application of some exact optimisation techniques to tackle the

problem of distributing space in academic institutions (Ritzman et al., 1980;

Benjamin et al., 1992; Giannikos et al., 1995). An additional aim here is to present a

description and formulation of this problem that helps to better understand it for

future research on this subject.

This thesis demonstrates the suitability of applying metaheuristic techniques for

automating the space allocation process. Furthermore, several hybrid approaches

have been designed as a result of this research and they are described and tested in

this document. This thesis also describes a set of test instances of the space allocation

problem and reports the best known results.

1.3. Overview of this Thesis

The remainder of this thesis is organised as follows. In the second chapter, a

description and formulation of the space allocation process and the specific problem

investigated here (the construction of allocations) is presented together with an

insight into its relationship with other combinatorial optimisation problems.

Chapter three reviews the literature from two perspectives: the problem and the

solution techniques. That is, a review of the published research on the subject of

space allocation is presented together with an account and brief description of a

range of metaheuristic approaches proposed in the literature. Chapter three also gives

an introduction to the theory of algorithms complexity and the No Free Lunch

theorem (NFL) of Wolpert and Macready (Wolpert and Macready, 1995; Wolpert

and Macready, 1997).

Introduction

 16

An investigation into the application of a range of metaheuristics to the space

allocation problem is presented in chapter four. This initial study aims to identify the

strengths and weaknesses of various well-known techniques when used to solve this

problem. Four approaches are investigated: iterative improvement, simulated

annealing, tabu search and genetic algorithms. Constructive heuristics for initialising

solutions and neighbourhood exploration heuristics are also designed, presented and

tested in chapter four. Various recombination and mutation operators are also

designed and evaluated for this problem.

In chapter five, hybrid metaheuristics for the space allocation problem are

developed and tested. First, a single-solution hybrid approach is designed by

combining some of the features of the algorithms studied in chapter four. Then, this

algorithm is modified to produce two population-based variants in which a common

annealing schedule is used to control the evolution of the whole population.

In chapter six, an investigation of the space allocation problem as a two-

objective optimisation problem is carried out. That is, instead of using an aggregating

function to assign fitness to solutions, the concepts of Pareto optimisation are used in

order to produce a set of compromise solutions (Steuer, 1986). First, the

multiobjective nature of the space allocation problem is investigated. Then, the

suitability of the hybrid algorithms of chapter five to produce a set of compromise

solutions is assessed. Finally, it is shown that the fitness evaluation method used to

discriminate against solutions during the search, has an impact on the performance of

some multiobjective optimisers. As a consequence, we suggest the use of relaxed

dominance relations as alternative methods to assign fitness to solutions in

multiobjective optimisation.

A scheme for extending single-solution local search algorithms towards hybrid

evolutionary approaches is proposed in chapter seven. This scheme is based on the

concept of cooperative local search which promotes the idea that an evolving

population of local searchers share the information gained during the search. In this

way, explorative capabilities from population-based methods can be combined with

the intensification features of local search techniques without the need to design

specialised recombination operators or repairing heuristics to maintain the feasibility

Introduction

 17

of solutions. This approach appears to hold significant promise for other problems

particularly where recombination and repair present serious difficulties. Finally,

conclusions and some directions for future work on this area are given in chapter

eight.

1.4. Contributions of this Thesis

The contributions of this thesis are summarised as follows:

• A description and formulation of the space allocation problem in British

universities is presented. From real data provided by some universities, six data

sets have been prepared in a proposed format and these test instances have

been made publicly available.

• For the first time, an investigation on the suitablilty of applying metaheuristics

to solve the space allocation problem is presented. It is shown that these

approaches can produce solutions of better quality than those generated

manually by space officers and in a much shorter time.

• Two hybrid algorithms are presented, one point-based and one population-

based, which produce the best known solutions for the test instances used in

this thesis.

• For the first time, an investigation on the multiobjective nature of the space

allocation problem is provided. A form of relaxed dominance is proposed and

it is shown that using this form of evaluating solutions is beneficial in the

multiobjective optimisation of this problem.

• A new form of hybridisation is proposed in which single-solution local search

methods are extended to population-based variants. The result is a cooperative

scheme in which a population of local searchers help each other to find better

solutions.

The Space Allocation Problem

 18

Chapter 2. The Space Allocation Problem

2.1. Introduction

In combinatorial optimisation problems the aim is to find an optimal setting of a

finite or countable infinite number of discrete entities (Papadimitriou and Steiglitz,

1999). The desired setting can be an arrangement, ordering, grouping, selection or

distribution of the entities such that a number of requirements and perhaps

constraints are satisfied. The complexity of many combinatorial problems is

described by exponential functions and they are considered to be intractable or NP-

complete (Garey and Johnson, 1979). Since there are no known polynomial bounded

exact algorithms for solving this class of problems, heuristic algorithms are

frequently applied with the aim of producing high-quality solutions in a reasonable

amount of time (Baase, 1998). Chapter three presents a more detailed discussion of

the theory of algorithms complexity including the P and NP classes. Among the class

of important and difficult to solve combinatorial problems there are the capacity

allocation problems. This refers to those problems in which the available capacity or

amount of resources has to be distributed among a set of demanding entities.

Examples of this type of problems are: the bin-packing problem, the knapsack

problem and the generalised assignment problem (Martello and Toth, 1990; Kallarath

and Wilson, 1997 chapter 7).

The particular capacity allocation problem that motivated the research for this

thesis is the distribution of the available office space among staff, research students

and other resources in academic institutions. When solving this problem, the goal is

to find an allocation that optimises the space utilisation and satisfies (as far as

possible) the additional requirements and constraints that may exist. To the best

knowledge of the author, there are few publications in the literature reporting

research on this problem. For example, (Giannikos et al., 1995) applied goal

programming to automate the distribution of offices among staff in an academic

institution. The management of space in academic institutions has also been subject

of study from a different perspective: planning the layout of offices (Benjamin et al.,

1992; Ritzman et al., 1980). The application of some heuristic algorithms to tackle

the space allocation problem was explored in (Burke and Varley, 1998b).

The Space Allocation Problem

 19

In principle, the problem of distributing office space in academic institutions is very

similar to two other capacity allocation problems: the multiple knapsack problem and

the generalised assignment problem. These two capacity allocation problems are

briefly described below in order to provide a background for a better understanding

of the space allocation problem in academic institutions. Then, a detailed description

and formulation of the space allocation problem is presented. Finally, the test data

sets used in the experiments of this thesis are also described. The material presented

in this chapter is included in the papers [Bur2000] and [Bur2003b] (see the appendix

on page 199).

2.2. Related Problems

2.2.1. Multiple Knapsack Problem

In the multiple knapsack problem there are a number of items of given sizes and a

number of knapsacks of given capacities. Each item has an associated profit and an

associated weight. The goal is to fill each of the knapsacks with a subset of the items

without exceeding the capacity of the knapsack and maximising the total profit. If an

item is selected it can only be assigned to one knapsack. This problem is formulated

as follows (Martello and Toth, 1990):

m = number of knapsacks

n = number of items

c(i) = capacity of the knapsack i

p(j) = profit associated to item j

w(j) = weight associated to item j

x(i,j) = 1 if item j is selected for knapsack i, 0 otherwise

 maximize ∑∑
= =

=
m

i

n

j

jixjpxf
1 1

),()()((2.1)

subject to ∑
=

≤
n

j

icjixjw
1

)(),()(i = 1,2,...,m (2.2)

 ∑
=

≤
m

i

jix
1

1),(j = 1,2,…,n (2.3)

The Space Allocation Problem

 20

Because of the binary variable x(i,j), this problem is also known as the 0-1 multiple

knapsack problem (Hanafi et al., 1996).

2.2.2. Generalised Assignment Problem

Another type of capacity allocation problem is the generalised assignment problem,

which is very similar to the multiple knapsack problem described above. However, in

the generalised assignment problem, the profit and weight associated with each of the

items vary according to the knapsack for which it is selected. It is common that this

problem be described in terms of assigning tasks to agents, assigning jobs to

machines or any similar situation. Each agent has a given capacity and each task has

a profit and a weight (capacity request) associated to each of the agents. The goal is

to distribute all the tasks among the agents ensuring that the sum of weights of all the

jobs assigned to each agent does not exceed the agent’s capacity and the total profit

is maximised. A formulation of the generalised assignment problem can be

represented as follows (Martello and Toth, 1990):

m = number of agents

n = number of tasks

c(i) = capacity of the agent i

p(i,j) = profit associated to task j when assigned to agent i

w(i,j) = weight associated to task j when assigned to agent i

x(i,j) = 1 if task j is assigned to agent i, 0 otherwise

 maximize ∑∑
= =

=
m

i

n

j

jixjipxf
1 1

),(),()((2.4)

subject to ∑
=

≤
n

j

icjixjiw
1

)(),(),(i = 1,2,...,m (2.5)

 ∑
=

=
m

i

jix
1

1),(j = 1,2,…,n (2.6)

Note that, in this formulation, all the tasks have to be assigned to exactly one agent

(constraint 2.6). However, in some variations of this problem, it may be permitted

that some of the tasks are not assigned to any agent. In this case, equation 2.6 is

replaced by equation 2.3 as in the multiple knapsack problem.

The Space Allocation Problem

 21

2.3. Space Allocation in Academic Institutions

In academic institutions, the distribution of the available room space among staff,

research students, laboratories, teaching rooms, etc. is a difficult task because space

is a demanded commodity and a variety of conflicting interests are present.

Therefore, it is often crucial that the available room space be utilised as efficiently as

possible. The available room space in buildings has to be distributed among a set of

demanding entities. Each room is assigned with a functionality. For example, some

offices are assigned to staff, research rooms for postgraduate students, laboratories,

meeting rooms, lecture rooms, seminar rooms, common rooms, etc. In this thesis, the

functionality assigned to each room is called an entity and each entity requires a

certain amount of room space. The amount of room space demanded by each entity is

measured (not surprisingly) by the floor area. For example, staff offices may require

12 m2, computer rooms may need 3 m2 per workstation, etc. In this problem, it is

often the case that it is not possible to assign exactly the required space room to each

demanding entity, i.e. space in rooms is often wasted or overused. In this problem

there are also additional constraints that restrict the location of certain entities with

respect to some rooms or with respect to other entities. For example, a laboratory

might need to be allocated next to a lecture room, a professor should not be allocated

in a shared room or postgraduate students and staff in a given research group should

be allocated in nearby rooms.

Then, the space allocation problem can be seen as the distribution of the

available room space among the demanding entities in such a way that the space

utilisation is optimised and the additional constraints are satisfied. Constraints can be

any of the two following types: soft constraints are rules that can be broken but

penalised, while hard constraints cannot be violated at all.

In (Burke and Varley, 1998) a description of this problem was provided as a

result of a questionnaire on the space allocation process that was sent to space

administrators in ninety-six British Universities. Thirty-eight of the ninety-six

universities replied and the paper describes and analyses the results of the

questionnaire. In that paper, the authors stated that (in most of the surveyed

universities) this process is carried out by a manual process and only a few British

The Space Allocation Problem

 22

universities use some kind of automated tool. They also showed that this problem as

it actually appears in a wide range of British universities is very complex, highly

constrained, contains multiple objectives, varies greatly among different institutions,

requires frequent modifications due to the addition or removal of entities and/or

rooms and has a direct impact on the functionality of the university.

2.3.1. Space Allocation in UK Universities

This section gives a brief description of the space allocation process in British

universities. The paper by (Burke and Varley, 1998) gives more details about this

process. In their work, Burke and Varley expressed that, allocating rooms to entities

in UK universities is a multi-stage process that can be performed in three phases:

§ The estates department or central committee allocates space to faculties and

assigns common areas.

§ Faculties assign areas to schools and departments.

§ Departments allocate specific rooms to staff, research groups, research students

and other entities.

However, in practice there is a lower phase when assigning rooms to entities. This is

when the head of a research group distributes the office space among the members of

the group. During any of these phases, the problem can be solved in different ways:

§ Fitting all entities into a limited amount of room space. For example, when all the

research student members of the same research group have to be allocated into a

number of available rooms.

§ Minimising the amount of room space required to allocate a set of entities. For

example, when a department has to allocate all the needed teaching rooms in the

most efficient way possible.

§ Reorganising the existing allocation due to the variation of requirements and/or

constraints. For example, a lecturer that is promoted to professor will require a

bigger office and the students that he supervises may also need to be relocated.

The Space Allocation Problem

 23

§ Reorganising the existing allocation because of the addition/removal of entities.

For example, new staff and additional teaching rooms have to be allocated.

§ Reorganising the existing allocation because of a change in available room space.

For example, if new rooms are constructed, rooms are resized or rooms are

assigned to a different authority (department/school/faculty).

The need for reorganising the distribution of room space is a situation that

academic institutions face more frequently that many large organisations due to the

dynamic nature of the space distribution in universities (e.g. PhD students and post-

doctoral research assistants usually only require space for a three year period). In this

case, the economic cost and disturbance caused due to the changes made are very

important additional objectives that should be minimised. This often impedes our

ability to find very high quality utilisation of the space due to the fact that it is far too

costly to completely move everyone around every year or so. The quality of the

initial allocation usually has an impact on how much reorganisation is required at a

later date when the conditions of the allocation change. Continual reorganisations on

a small scale usually result in a bad overall utilisation of space. However, large

reorganisations are time consuming and costly. The amount of disruption that should

be allowed must be controlled to balance the quality of the new allocation and the

difficulty in implementing it.

Although some variations may exist, the various entities that need to be allocated

to rooms are usually common in academic institutions. There are approximately 30

different types of entities and among them there are: staff offices, research offices,

storage/equipment/administrative rooms, library space, recreational/amenity rooms,

lecture rooms, meeting rooms, laboratories and others.

All institutions prefer (and usually insist) that rooms allocated to the same

department/faculty/school are located close to one another but of course this is not

always possible. The level of closeness depends on the size of the group but

complete buildings are often allocated to single or related groups. Where space is not

too limited or groups are small, different groups may be allocated to different floors

within shared buildings, but sometimes even floors have to be shared between

groups. Some institutions have very different views as to what constitutes a good

The Space Allocation Problem

 24

allocation. An example presented in (Burke and Varley, 1998) is that most new

universities (former polytechnics) in the UK are perfectly happy for lecturing staff to

share offices. In most old universities, this is unlikely to be accepted.

Some academic institutions express a requirement to ensure that certain entities

are allocated near to other entities. For example, departmental secretaries near to

heads of departments, group leaders near to their research groups, etc. Departments

may also require that all the lecture and meeting rooms are located close to each

other or that all staff offices are on the same floor. The grouping conditions may be

different according to the problem. For example, entities can be required to be

together (same room), adjacent (next door rooms) or nearby (neighbouring rooms).

Sometimes, when allocating a specific entity to a room, additional requirements

must be met. For example, lecture/examination rooms may need to have disabled

access or audio visual aid facilities; library space may need to be located in a quiet

area away from busy rooms and noisy equipment, etc. Such information must be

available to judge whether additional costs or work must be committed before

implementing the allocation (Diminnie and Kwak, 1986).

2.3.2. Manual Approach to Space Allocation

The manual process for allocating space in academic institutions varies from one

case to another but it can be briefly described as follows (Burke and Varley, 1998):

In most UK academic institutions there is a centralised office that regulates the

space distribution and assigns areas of space to faculties, schools, departments, etc.

Space officers and administrators (heads of departments, group leaders, etc.) at

different levels are in charge of the construction of an allocation. Then, the space

necessary for each entity, the available space in rooms, the constraints that must be

satisfied (hard constraints), those that are desirable to satisfy (soft constraints) and

additional requirements are determined. With the aid of floor plans and room

databases, information about the available areas of space is obtained (size, location,

proximity, etc.). Entities are allocated to rooms in order of importance according to

the specific situation. The satisfaction of space requirements and constraints is

verified each time an entity is allocated. During this iterative process changes might

The Space Allocation Problem

 25

be necessary in order to produce a solution that satisfies as many requirements and

constraints as possible. The evaluation of a solution involves multiple criteria and in

some cases this criteria may come from different decision-makers. Due to the nature

of this manual process, it is common that weeks or months are necessary to obtain a

final solution.

2.3.3. The Multiobjective Nature of the Problem

The objectives pursued during the process of space allocation and the criteria used to

evaluate the quality of an allocation depend on the problem instance. For example,

while some academic institutions have a preference for optimising space utilisation,

others have a preference for achieving a better functionality in the distribution of

rooms. The satisfaction of preferences is another objective that is very difficult to

measure and that is also important to consider when deciding how to assign room

space. Of course, it is commonly the case that several conflicting objectives are

present and then a compromise must be found. Moreover, the conditions for

considering a solution as feasible also depend on the problem instance. In some cases

it may be required to accommodate all the entities to the available space even if all

the requirements/constraints cannot be fully satisfied. In other cases it may be that

these requirements/constraints must be accomplished at the expense of some entities

being left unallocated.

The constraints that limit the ways in which the room space can be distributed

are also very problem-specific. For example, entities that must be allocated nearby

each other or to the same room, preferences for allocating certain entities to specific

rooms, entities that need to be allocated in a non-sharing basis, etc. Some of the

constraints may be in conflict with each other or in conflict with the objectives. For

example, it may be that a professor has to be allocated near to a laboratory and also

near to their research students but there are no rooms that satisfy both constraints and

space utilisation may also be affected. Considering the situation in which the

available room space cannot be modified (i.e. construction work is not considered),

the quality of an allocation can be measured in terms of the following aspects (not

necessarily in this order of importance):

§ Number of allocated entities.

The Space Allocation Problem

 26

§ Space utilisation, measured in terms of the amount of space wasted (areas of space

not used) and the amount of space overused (entities with less space allocated to

them than needed).

§ Degree of satisfaction of additional requirements.

§ Degree of satisfaction of the constraints.

Even when the evaluation function is carefully designed and takes into account

all the different criteria, their relative importance and the way in which the space

officers use these criteria to measure the quality of the allocation, a crucial

observation can be made:

The best evaluated solutions produced by an automated system in the space

allocation problem are not always the ones that would be finally selected by the

space officers to be implemented in the real world.

The expert administrator often knows certain “constraints” which are not (or

cannot, for political reasons) be built into the objectives. An example (which does

occur) might be that two members of staff have a personality clash and cannot be

located together. It might be politically sensitive to have this as a stated constraint.

The administrator just keeps it in his mind when making the allocation. This

observation leads us to the view that while automated space allocation methods

certainly have huge potential for exploitation in higher education they are being

developed to aid the administrators rather than to replace them.

It can be seen that due to the existence of a variety of conflicting objectives and

constraints, requirements, feasibility conditions and evaluation criteria, the problem

of distributing the room space in academic institutions is a complex multiobjective

combinatorial optimisation problem. In the next section a formulation of the space

allocation problem as approached in this thesis is presented.

2.4. Problem Formulation

As mentioned in section 2.3.1, the space allocation process is commonly carried out

in three stages. In this thesis only the last stage is considered, that is, the allocation of

The Space Allocation Problem

 27

specific entities to rooms. This process is carried out with the aim of maximising the

space utilisation and the satisfaction of specific requirements and constraints. The

data required in this case includes:

§ Space requirements, i.e. the amount of space (floor area) that should be assigned

to each entity.

§ Room size, i.e. the amount of space (floor area) that is available in each room for

allocating entities.

§ Proximity relations between rooms, i.e. information that specifies, for each room,

the list of rooms that are adjacent, near and distant.

§ Additional requirements and constraints, i.e. specific requirements and constraints

(hard and soft) that impose limitations on how the entities can be allocated.

2.4.1. Types of Constraints

It is assumed here that all the entities for a given problem instance must be allocated

using the available room space only. That is, feasible solutions must have, besides all

hard constraints satisfied, all entities allocated. Since no additional space is available,

some of the room space will be misused (wasted or overused). The types of

constraints that exist in the test data sets used in this investigation are listed below.

These data sets were prepared using real data from British universities and are

described in detail in the next section. However, as explained above, different

requirements and constraints may be applicable to different problem instances.

§ Not sharing. This is a unary constraint indicating that the entity should not share

the room with other entities. For example, when senior or lecturing staff should

have private offices. This may be hard in some cases and soft in others.

§ Be located in. This is a binary constraint indicating that there is a preference for

allocating a specific entity to a specific room. For example, the situation in which

it would be convenient that a computer room be allocated in a room with

appropriate layout. This is considered a soft constraint in this thesis because when

it must be satisfied, the entity is pre-allocated to the indicated room.

The Space Allocation Problem

 28

§ Be adjacent to. This is a binary constraint indicating that one specific entity

should be allocated adjacent to another. For example, when secretarial staff should

be allocated in a room next to senior staff. When it is used, this is often a hard

constraint but it can also be considered a soft one.

§ Be away from. This is a binary constraint indicating that one specific entity should

be allocated away from another entity or from a certain room. For example, when

is preferred to allocate a lecture room away of noisy areas or communal rooms.

This may be hard or soft.

§ Be together with. This is a binary constraint indicating that two specific entities

should be allocated in the same room. For example, this applies to the case when

two researchers working on the same project should be in the same room. This is

often soft.

§ Be grouped with. This is a q-ary constraint indicating that a group of people

should be allocated in the proximity of each other. For example, when all the

members in the same research group should be allocated in a set of rooms that are

close together. This is often as soft constraint.

Most of the constraint types listed above can be set as hard or soft depending on

the particular problem instance. The exception is the constraint be located in which is

always set as a soft constraint in the tests data sets used in this thesis. The reason for

this is that in the cases where this constraint is set as hard, it is enough to fix the

allocation of the given entity to the specified room.

2.4.2. Evaluation of an Allocation

Given the diversity in the criteria that space administrators use when evaluating the

quality of the room space distribution in each particular case, it is very difficult to

design an evaluation function that incorporates all the criteria with the adequate

weighting. Besides, as explained in the previous sections, it is frequently the case

that the final decision on which allocation will be implemented is affected by

subjective criteria (and sometimes politics). Two overall (and often conflicting)

objectives are aimed at in the space allocation problems considered in this thesis:

The Space Allocation Problem

 29

Minimise the space misuse. This objective is measured in terms of the space wasted

and the space overused and it is equivalent to maximising the space utilisation. Here,

wasting space is considered less serious than overusing space, therefore the weight

for each unit of wasted space is one while the weight for each unit of space overused

is two.

Minimise the violation of soft constraints. This objective is measured as

minimising the penalty for violating the soft constraints. The penalties applied for the

violation of each type of soft constraint are shown below. These penalty values were

adjusted by experimentation following guidelines from space officers regarding the

usual relative importance between these constraints in real world problems.

Soft Constraint
Penalties
not sharing 50

be located in 20

be adjacent to 10

be away of 10

be together with 10

be grouped with 5

The space allocation problem as described above can be formulated as follows:

m = number of available rooms

n = number of entities to allocate

h = number of hard constraints of the form truekZ =)(

s = number of soft constraints trueZ(r)=

c(i) = capacity or size of room i

w(j) = space requirement of entity j

x(i,j) = 1 if entity j is assigned to room i, 0 otherwise

 minimise ())(2)(1)(xFxFxF += (2.7)

subject to ∑
=

=
m

i

jix
1

1),(j = 1,2,…,n (2.8)

 truekZ =)(k = 1,2,…,h (2.9)

The Space Allocation Problem

 30

where ()∑
=

+=
m

i

iOPiWPxF
1

)()()(1 (2.10)

∑
=

=
s

r

rSCPxF
1

)()(2 (2.11)

Equations (2.10) and (2.11) measure space misuse and violation of soft constraints

respectively. WP(i) expresses the penalty if the room capacity is wasted while OP(i)

expresses the penalty if the room capacity is overused.

For the ith room, there is space wastage if

∑
=

>
n

j

jixjwic
1

),()()((2.12)

and then the penalty is given by

∑
=

−=
n

j

jixjwiciWP
1

),()()()((2.13)

For the ith room, there is space overused if

∑
=

<
n

j

jixjwic
1

),()()((2.14)

and then the penalty is given by

−= ∑

=

n

j

icjixjwiOP
1

)(),()(2)((2.15)

SCP(r) is the penalty applied if the rth soft constraint is violated. A solution or

allocation is represented by a vector π = [π(1),π(2),…,π(j)] where each element

π(j)∈ {1,2,…,m} for j = 1,2,…,n indicates the room to which the j th entity has been

allocated.

It can be noted from the formulation given above, that when only the space

utilisation is considered, this problem is very similar to the multiple knapsack

problem and the generalised assignment problem. What makes the academic space

allocation more complicated to formulate and to solve is the existence of additional

constraints that are also very problem-specific.

The Space Allocation Problem

 31

2.4.3. A Metric for Population Diversity

It was noted above that in the process of allocating room space in academic

institutions it might be required to provide several solutions so that one allocation

can be selected. Therefore, it is important to measure the degree of similarity

between solutions in this problem. The metric used in this thesis to measure the

degree of difference between two vectors representing allocations is described next.

Space administrators suggested this metric as a meaningful way to express the

variety of a set of allocations. From the perspective of space administrators, it is

important to distinguish the number of positions in which two vectors representing

allocations are different, i.e. the number of entities that are allocated to different

rooms. For example, the following three vectors represent allocations that are

completely different from each other: π1={c,a,b,a}, π2={b,b,a,c} and π3={a,c,c,b}.

Then, for a population of solutions, the percentage of non-similarity or variety used

here as a diversity measure is given by eq. 2.16.

100
1

1)(

)(
1 ⋅

−
−

=
∑

=

n

p

jD

pV

n

j
 (2.16)

where D(j) is the number of different values in the jth position for all vectors and p is

the population size. This metric measures the diversity of a set of allocations with

respect to the solution space. Diversity in the solution space is the diversity that

matters in this context so that the decision-makers can be provided with a set of

competitive solutions and compare them in terms of their structure before selecting

the final allocation (maybe after making some manual changes).

 Five strings representing allocations

 A A A A A A A

 A A B B A B B

 A B B C B C C

 A B B C B D D

 A B B C C D E

D(j) 1 2 2 3 3 4 5

(D(j) – 1) / (p – 1) 0 0.25 0.25 0.50 0.50 0.75 1

V(p) = (3.25 / 7) x 100 = 46.42 %

Table 2.1. Calculation of the population variety V(p).

The Space Allocation Problem

 32

The non-similarity metric described above is an indication of the diversity in the

allocation of entities to different rooms within a population of solutions. The way in

which the population variety is calculated using the string representations of

solutions is illustrated in figure 2.2. Consider the population of five strings (p = 5)

representing allocations for a problem where seven entities have to be allocated (n =

7) and there are five available rooms (m = 5). The way in which the number of

different rooms D(j) used within the population to allocate each of the entities and

the population variety V(p) are calculated is illustrated below. Other population

diversity metrics are described in (Morrison and De Jong, 2001).

2.5. Test Data Sets From UK Universities

Real data corresponding to the administration of academic space allocation in some

of their schools/departments was available from the following universities:

University of Nottingham, Nottingham Trent University and University of

Wolverhampton. Using these data sets and following suggestions from space

administrators, several test data sets were prepared for this investigation. These test

data sets were designed to reflect different degrees of difficulty so that the

performance of the algorithms proposed here could be assessed under different

conditions. A brief description of the original data sets provided by the universities

mentioned above and the test data sets prepared is given below.

University of Nottingham

This data corresponds to the distribution of offices in the School of Computer

Science and Information Technology during the 1999-2000 academic year. There are

131 rooms with sizes ranging from 4.2 m2 to 437.4 m2 and distributed over one

building with three floors. The total of 158 entities to be allocated are distributed as

follows: 15 research rooms, 11 laboratories, 12 meeting rooms, 16 storage rooms, 6

professors, 1 reader, 5 senior lecturers, 25 lecturers, 16 research staff, 10 secretaries,

1 teaching assistant, 8 technicians and 32 research students. The space requirements

of these entities range from 4 m2 to 437 m2. There are 263 constraints of which 111

are hard constraints and 152 are soft constraints. This is the most complete data set

because all the information about the proximity between rooms is available and this

permits us to make an accurate evaluation of the satisfaction of proximity constraints

The Space Allocation Problem

 33

(be adjacent to, be away from and be grouped with). This data set is called nott1 in

this thesis.

Nottingham Trent University

This data corresponds to a subset of the real distribution of space in the Chaucer

Building during the 2000-2001 academic year. There are 73 rooms with sizes ranging

from 9.94 m2 to 132.43 m2 and distributed over four floors. There is no information

available on the physical proximity between rooms within each floor. Rooms are

considered to be close to each other if they are located in the same floor and only this

is considered to evaluate the satisfaction of proximity constraints. The total of 151

entities to be allocated are distributed as follows: 9 co-ordinators, 6 professors, 7

managers, 81 lecturers, 7 senior administrators, 32 administrative assistants and 9

technicians. The space requirements of these entities range from 3 m2 to 18 m2.

There are 211 constraints, 80 hard constraints and 131 soft constraints. This data set

is called trent1 in this thesis.

University of Wolverhampton

This data corresponds to the distribution of offices in the SC Building in the Telford

campus during the 1999-2000 academic year. There are 115 rooms with sizes

ranging from 0.79 m2 to 185.26 m2. There is no information available about the

physical proximity between rooms. There are 115 entities to be allocated including

laboratories, staff rooms, computer rooms, teaching rooms, store rooms and common

rooms but there is not a clear classification of this group of entities. There are 115

additional constraints, all of them sharing hard constraints. This data set is

considered to be the least constrained and, in a sense, the easiest problem to solve.

The reason for this is that the number of rooms and entities is the same and all the

hard constraints forbid entities to share a room. Obviously this implies that a feasible

solution is a one-to-one mapping between n and m and the goal is then to achieve an

optimal utilisation of the available space. This data set is called wolver1 in this

thesis.

The Space Allocation Problem

 34

Summary of Test Data Sets

In addition to the three data sets described above, three more were prepared for the

experiments carried out in this investigation. These three additional test data sets are

subproblems of the nott1 instance and were prepared to investigate various aspects

on the performance of the metaheuristic approaches studied in this thesis. The nott1

test instance was selected because it contains all information about proximity of

rooms and it also includes a great variety of soft and hard constraints that permitted

us to design tests problems with different degrees of difficulty. Some of the specific

features of the three additional data sets are as follows. The test instance nott1a is

highly constrained but the size of the problem (n,m) was reduced with respect to the

original data set nott1. In the test instance nott1b, the number of hard constraints has

been reduced considerably with respect to the number of soft constraints. Finally, the

test instance nott1c is a smaller problem in which also the number of entities to

allocate equals the number of available rooms (n = m). Table 2.2 below summarises

the features of all the six test data sets. For more details refer to the following web

site: http://www.cs.nott.ac.uk/~jds/research/spacedata.html.

 nott1 nott1a nott1b nott1c trent1 wolver1

n 158 142 104 94 151 115

m 131 115 77 94 73 115

constraints h s h s h s h s h s h s

not sharing 100 58 100 58 46 58 84 10 80 71 115 --

be allocated in -- 35 -- 35 -- 9 -- 35 -- 19 -- --

be adjacent to 5 15 5 15 4 10 5 15 -- 5 -- --

be away from 6 14 5 12 1 2 5 12 -- -- -- --

be together with -- 20 -- 20 -- 20 -- -- -- 36 -- --

be grouped with -- 10 -- 10 -- 9 -- 10 -- -- -- --

total 111 152 110 150 51 108 94 82 80 131 115 --

Table 2.2. Characteristics of the test problems used in this thesis.

Literature Review

 35

Chapter 3. Literature Review

3.1. Introduction

This chapter discusses previous work on applying computer optimisation techniques

for the problem of allocating and/or planning space in academic institutions and it

also looks at some applications for the optimisation of space in other scenarios such

as industrial facilities and supermarkets. This chapter provides more evidence of the

importance, complexity and diversity of this problem. Also, in this chapter the

relation between the academic space allocation problem and other combinatorial

problems is considered because previous research on similar problems has

underpinned some of the ideas for the investigation presented in this thesis. In

addition, an overview of complexity theory, the No Free Lunch theorem and

metaheuristics is also presented in this chapter. Some of the sections in this chapter

have been included in papers already published or submitted as follows. Sections 3.2

and 3.3 can be found in [Bur2001] while section 3.5.14 can be found in [Bur2003b]

(see the appendix on page 199).

3.2. Previous Research on Space Optimisation

There are only a few reported applications in the literature on the optimisation of

space usage in academic institutions. Ritzman et al. presented one of the earliest

studies on the automated planning of academic facilities (Ritzman et al., 1980). Their

application concentrated on the reassignment of 144 offices to 289 members in 6

academic departments of staff within the Ohio State University. Although the overall

goal was to make the reassignment of offices as fair as possible, six conflicting

objectives were identified:

§ Assign enough offices to each department so that there is enough room space for

all its members.

§ Minimise the deviation of the assigned space to each department from the given

space requirements.

§ Equally distribute the offices equipped with air conditioning among the various

departments.

Literature Review

 36

§ Minimise the physical distances between the rooms assigned to each department

and its administrative office.

§ Ensure that each department obtains a fair share of the high quality offices

available.

§ Minimise the number of reassignments, i.e. the number of offices assigned to a

department which were not previously occupied by its staff members.

Ritzman et al. decided not to establish a-priory the preferences for each of the

above objectives. In order to deal with the multiple objectives, they used a mixed-

integer goal programming model to formulate the problem and linear programming

as the solution method. An interactive program was implemented which permitted

the decision-makers to obtain and compare different alternative layouts before

producing a final compromise solution. The authors highlighted the importance of

producing the various layouts in an interactive process because it permitted the

administrators to be in command of the solution process and to have a set of

alternative solutions from which to chose the most appropriate one.

Benjamin et al. also applied a linear programming approach but in their case the

problem was not the distribution of rooms but the planning of a computer integrated

manufacturing laboratory (Benjamin et al., 1992). The new laboratory was

constructed due to the expansion of the department of engineering manufacturing at

the University of Missouri-Rolla. The overall goal of this new lab was to stimulate

the interest for teaching and research and after some debate and discussion it was

decided that 15 sections would be located in the new laboratory. In addition to the

desired space to be allocated to each of the sections, the following five goals (some

of them conflicting) were previously specified:

§ Increase the student use of the laboratory facilities.

§ Develop new courses relying on the laboratory facilities.

§ Stimulate the graduate-level and funded research.

§ Increase the awareness of industry of the concepts developed in the laboratory.

Literature Review

 37

§ Enhance the university’s public image.

Before applying a linear goal programming algorithm to solve this planning

problem, the goals listed above were prioritised and the authors highlighted that this

required a substantial amount of time and knowledge from the decision-makers. In

particular, they noted that the preference levels assigned to each goal by the different

decision-makers revealed some inconsistencies in the subjective comparison between

the goals. Therefore, extra work was required in order to review and adjust these

preferences before setting the final values.

Another application of integer goal programming to the optimisation of

academic space was reported in (Giannikos et al., 1995). The problem in this case

consisted of reorganising the distribution of the academic space at the University of

Westminster in the UK. Five objectives were identified and prioritised according to

the preferences established by the decision-makers. The objectives are listed below

in non-increasing order of their importance:

§ Assign enough offices to each school according to the standards in order to

allocate lecturers, researchers and heads of school.

§ Allocate the adequate type of offices to schools according the standards.

§ Assign each office to only one school, i.e. only members of the same school can

share a room.

§ Minimise the number of people that have to be relocated to reduce the disturbance

during the transition period.

§ Minimise the distances from the rooms assigned to each school to its

administrative centre.

In addition to these objectives, two additional hard constraints were imposed:

§ All heads of school must be allocated to an office with the exact requirements

specified in the standards.

Literature Review

 38

§ Each office can be used by members of staff in the same level or category. The

three levels are: i) heads of school and similar, ii) heads of division and iii)

lecturers, researchers and similar.

One of the observations that the authors made was that after comparing the

actual distribution of offices with the one produced with the automated method it was

clear that the space was being used in an inefficient way (at least according to the

objectives and preferences defined). Although the authors did not indicate that the

proposed solution was implemented, they highlighted that their ultimate goal was to

provide the managers with a decision support tool to evaluate the current distribution

of space and explore alternative allocations.

In all the studies mentioned above it is recognised that it is virtually impossible

to allocate space in a way that conflicts of interest are completely eliminated due to

the complex multiobjective nature of the problems. This reinforces the necessity for

presenting to the decision-makers, a set of good solutions that can be used to

negotiate and design the final space distribution.

3.3. Other Space Optimisation and Related Problems

3.3.1. Space Planning

The optimal utilisation of physical space is a goal not only in academic institutions

but also in many other scenarios that range from industrial and commercial

environments (Francis et al., 1992) to computer systems (Romero and Sanchez-

Flores, 1990). Of course, the actual conditions, requirements and constraints may be

very different from those present in the academic context. For example, in the

facilities layout problem it is required to assign objects to locations considering

distances and interactions between the objects. The objects can be physical facilities

or activities such as administrative functions or personnel. Examples of the

application of metaheuristics to facility layout problems can be found in (Bland,

1999; Bland, 1999b).

Literature Review

 39

Sometimes, facility layout problems involve not only assigning the objects to

locations but also designing the physical layout of the space, i.e. to partition the

available space before assigning each partition (Kim and Kim, 1998). Most of the

facility layout problems refer to the industrial and commercial scenarios where the

main goals are to minimise the operation costs and to maximise the operational

efficiency. An example is the planning and allocation of storage space to inventory in

factories in order to minimise the costs of handling material, see (Larson and Kusiak,

1995; Kusiak, 2000). A review of heuristic approaches including constructive

heuristics, iterative improvement strategies, simulated annealing, genetic algorithms

and some other hybrid heuristics for solving facility layout problems is available in

(Liggett, 2000).

3.3.2. Shelf Space Allocation

Among the applications of space management in commercial scenarios, the

automated allocation of shelf space to products in supermarkets is an area that has

received particular attention. The problem in this context is to select the products

(and their quantities) to be placed on the shelves and then to determine where each

product will be located taking into consideration retailing and operational

requirements. A detailed description and elaborated model of the shelf space

allocation problem are presented in (Yang and Chen, 1999) and examples of

automated approaches to tackle this problem can be found in (Zufryden, 1986) and

(Yang, 2001).

3.3.3. Constrained Variants of Knapsack Problems

There are some variants of capacity allocation problems that include other constraints

apart from those related to the capacity of the container. These variants are

mentioned here because the approaches investigated in this thesis can eventually be

considered for capacity allocation problems with additional constraints. For example,

a variant of the bin-packing problem in which there is a limit on the number of items

that can be assigned to each bin is presented in (Kellerer and Pferschy, 1999) and

some heuristics with guaranteed performance to solve that problem are analysed too.

In the knapsack sharing problem, each item belongs to one or more owners therefore

the objective function needs to be modified accordingly since each owner aims to

Literature Review

 40

maximise the profit of his items (Yamada and Futakawa, 1997). In (Dawande et al.,

2000) an analysis of the complexity and performance of approximation algorithms

for the multiple knapsack problem with assignment restrictions is presented. In that

variant each item can only be assigned to a subset of the available knapsacks.

Another constrained variant of knapsack problems is the daily photograph scheduling

problem (Vasquez and Hao, 2001). That problem consists of scheduling a subset of

photographs from a set of candidate photographs to be taken by cameras in an earth

observation satellite. The problem is modelled as a variant knapsack problem where

in addition to the capacity constraints (memory available in the system) there are

logic constraints that prevent certain combinations of photographs to be taken.

3.3.4. Related Scheduling Problems

Scheduling problems include a wide range of combinatorial optimisation problems

and to some extent the academic space allocation problem can be considered within

this group of problems. Scheduling can be described as the arrangement of objects

(people, tasks, vehicles, lectures, exams, meetings, etc.) into a pattern in space-time

in such a way that constraints are satisfied and certain goals are achieved (Wren,

1996). In most scheduling problems the goals include the creation of feasible

schedules, efficient utilisation of available resources and the maximisation of

schedule quality according to some predefined criteria. A schedule can be a sequence

of processing jobs in production machines, an events timetable, an employee roster, a

transport services routing or timetable, the assignment of events to places, etc.

Among scheduling problems there are the following well-studied classes:

§ Production scheduling: job shop, flow shop, open shop, etc.

§ Transport scheduling or vehicle routing such as railway scheduling and bus

timetabling.

§ Personnel scheduling or timetabling such as nurse rostering, crew scheduling, etc.

§ Maintenance scheduling such as electricity line maintenance and generator

maintenance.

Literature Review

 41

§ Events scheduling or timetabling such as examinations, courses, sport events, etc.

Some timetabling problems also involve assigning space resources to events. For

example, room assignment is sometimes considered to be part and parcel of

academic timetabling problems such as examination and course timetabling (Schaerf,

1999). Since the academic space allocation problem refers to efficiently assigning

entities to rooms subject to additional constraints it can certainly be seen as related to

some of the scheduling problems described above.

Considerable research has been carried out over the years in the area of

automated scheduling and timetabling particularly in the application of metaheuristic

techniques to solve these types of problems (e.g. Nagar et al., 1995; Burke et al.,

1996; Dowsland, 1998; Colorni et al., 1998; Bagchi, 1999; Di Caspero and Schaerf,

2001; Varela et al., 2001; T’kindt and Billaut, 2002). Therefore it is important to

consider the similarities that some of these problems have with the academic space

allocation problem since some of the ideas and experiences can prove to be useful in

this research area. It is not within the scope of this thesis to provide a survey or

classification of scheduling problems or scheduling techniques investigated by other

researchers. Instead, brief descriptions and references are provided whenever ideas

and previous results that have been published in the literature are used in this thesis.

3.4. Complexity Theory and the No Free Lunch Theorem

3.4.1. Algorithms Complexity

The theory of algorithm complexity is concerned with the identification of problems

that are computationally easy to solve and problems that are computationally hard to

solve (Garey and Johnson, 1979; Rayward-Smith, 1986). This theory is also

concerned with identifying those algorithms that are efficient and those that are

inefficient from a computational point of view. From a broad perspective, the

efficiency of an algorithm is assessed in terms of the computing resources that are

needed to execute the algorithm and this includes execution time and space. The

execution time is the number of steps that the algorithm takes to process the input

and give an answer. The space is an indication of the amount of memory that is

Literature Review

 42

needed to run the algorithm. However, in the theory of algorithms complexity the

efficiency of algorithms is usually expressed in terms of its time complexity.

The time complexity is described by a function of the size of the input, which

relates to the size of the problem instance. More specifically, the time complexity for

an algorithm is described by its worst-case behaviour, which is the maximum number

of basic operations that the algorithm is expected to perform for an input of size n.

The time complexity of an algorithm is expressed using the notation Ο(g(n)) which is

defined as follows. A function f(n) is said to be Ο(g(n)) if there is a constant k such

that |f(n)| ≤ k⋅|g(n)| for n ≥ 0. In other words,Ο(g(n)) refers to functions that do not

grow faster than g(n) and the Ο(g(n)) notation indicates that the algorithm’s worst-

case time complexity is bounded by g(n).

Algorithms that have a time complexity described by a polynomial function (e.g.

Ο(4n), Ο(n3), etc.) are considered efficient because they can be run in reasonable

amount of time for inputs of considerable size. However, if the time complexity of

the algorithm is described by an exponential function (e.g. Ο(3n), Ο(nlog n), etc.) then

the algorithm is considered inefficient because it can be run in a reasonable amount

of time only for inputs of small length, but for larger inputs running the algorithm

becomes impractical. The difference between polynomial time algorithms and

exponential time algorithms is the rate at which their computational time complexity

grows given an increase in the size of the input (n). Remember, that the time

complexity of an algorithm refers to the worst-case performance. There are some

polynomial time algorithms that are not very useful in practice because n is typically

large in practical instances. Also, there are exponential time algorithms regarded as

useful because they can run quickly in practice due to small values of n encountered

in practical instances.

3.4.2. Problem Complexity – The P and NP Classes

The computational complexity of a problem is determined by the best algorithm that

can be found to solve the problem (Garey and Johnson, 1979). At a high level of

abstraction, if a polynomial time algorithm can be found for a given problem, then

the problem is considered tractable or not so hard. But if no such algorithm can be

Literature Review

 43

found for the problem, i.e. only exponential time algorithms can be constructed, the

problem is considered intractable or very hard even if the problem is solvable. The

theory of computational complexity has been developed considering mainly decision

problems. Most optimisation problems can be expressed as a decision problem. A

decision problem is a problem for which the answer is ‘yes’ or ‘no’ according to

whether the input satisfies the given conditions in the problem. Some examples of

decision problems are given below.

EVEN. Given a natural number n, is n an even number? The answer is ‘yes’ if n is

even or ‘no’ if n is odd.

PRIME. Given a natural number n, is n a prime number? The answer is ‘yes’ if n is

prime or ‘no’ if n is composite.

SATISFIABILITY. Given a Boolean expression f (x1, x2,…xn), can the variables x1,

x2,…xn be fixed to values that make the value of f true? The answer is ‘yes’ if there is

a setting of the variables that makes f true and ‘no’ otherwise.

HAMILTONIAN CYCLE. Given a graph G(V,E) with N nodes, is there a cycle of

edges in G that includes each of the N nodes? The answer is ‘yes’ if such cycle exists

and ‘no’ otherwise.

The space allocation problem described in chapter 2 can also be stated as a

decision problem:

SPACE ALLOCATION. Given n entities and m available rooms, is it possible to

construct an allocation of the n entities to the m rooms in such a way that all existing

constraints (hard and soft) are satisfied and the space misuse is at most W? The

answer is ‘yes’ is such an allocation exists and ‘no’ otherwise.

In the rest of this section, we refer to decision problems simply as problems.

There are two classes in which problems are classified, the P and NP classes (Garey

and Johnson, 1979, Rayward-Smith, 1986). The class P includes all those problems

for which an efficient (polynomial time) deterministic algorithm has been found. The

class NP includes all those problems for which a non-deterministic polynomial time

algorithm is known to solve the problem (NP stands for non-deterministic

Literature Review

 44

polynomial). A non-deterministic algorithm can be described as consisting of two

stages. The first stage guesses a structure for the problem and the second stage

verifies if the given structure is or is not a solution to the problem. Then, the

algorithm is said to be a non-deterministic polynomial time algorithm if for each

instance of the problem there is a guess that can be verified by the deterministic

phase for answer ‘yes’ in a polynomial time.

Then, if P are problems solved in polynomial time by deterministic algorithms

and NP are problems solved in polynomial time by non-deterministic algorithms, the

question is whether P = NP or P ≠ NP. In fact, this is the most important open

question in computational complexity theory. It is clear that P ⊆ NP, which means

that non-deterministic algorithms are more powerful that deterministic algorithms. If

there is a deterministic algorithm for a problem, a non-deterministic one can be

constructed by simply not using the guessing stage.

For many problems proved to be in the class NP no efficient algorithm has been

found. This strengthens the belief that P ≠ NP but this conjecture is still not proven.

There are many problems known to be in NP for which no efficient algorithm has

been found and these problems are considered NP-hard in the strong sense. Examples

of these problems are the multiple knapsack problem and the generalised assignment

problems described in chapter 2 and it is generally believed that no efficient

algorithm exists for these (and all other NP-hard) combinatorial problems, i.e. they

are intractable.

If it is true that P ≠ NP, then the problems in the set NP − P are intractable.

Therefore, when tackling a particular problem, it is important to know if the problem

belongs to the class of tractable or intractable problems. One way of doing this is to

determine whether the problem of interest in or not related to another problem that is

already known to be tractable or intractable. Reducing one problem to another is the

technique used to demonstrate if the two problems are related or not. Reduction is to

provide a transformation that permits to map one instance of the first problem into

one instance of the second problem. This transformation permits to convert one

algorithm that solves one problem into an algorithm that solves the other problem.

Literature Review

 45

There is an important class of problems in NP, this is the class NP-complete. The

first work towards the theory of NP-completeness was reported by Cook in 1971

(Cook, 1971). Among other results, Cook proved that any problem in NP can be

reduced to the satisfiability problem. This means that if there is an efficient algorithm

to solve the satisfiability problem, then any problem in NP can also be solved by an

efficient algorithm. These problems are said to be NP-complete and are considered

the hardest in NP in a sense. This is because if no single NP-complete problem has

an efficient algorithm to solve it, then none of them has an efficient algorithm and

they are all intractable. Many problems have been proven to be NP-complete (or

reduced to the satisfiability problem) but it is still not proved that these problems are

intractable. However, it is generally assumed that finding an efficient algorithm for

any problem in NP-complete is unlikely.

Then, if a problem is NP-complete and P ≠ NP then the problem belongs to the

set NP − P. In other words, the problem (and all in NP-complete) could belong to P

only if P = NP. Then, if it is assumed that NP-complete problems are intractable, i.e.

P ≠ NP, then when a problem is known to be NP-complete the focus should not be on

finding efficient algorithms. Instead one should aim to design algorithms that

produce high-quality solutions with no guaranteed optimality, i.e. design useful

algorithms to tackle the problem in practice.

3.4.3. Approaches to Solve Optimisation Problems

As discussed above, the complexity of a problem and the complexity of an algorithm

to solve the problem gives an indication of how hard it is to solve the problem from a

computational view point. An exact algorithm is capable of solving a given instance

of a combinatorial optimisation problem to optimality. However, the time complexity

of some exact algorithms is bounded by an exponential function, which makes these

algorithms inefficient. The interest and practical significance of the concept of NP-

complete problems lies in the widespread belief that an efficient algorithm for

solving such problems does not exist and that algorithms that produce high quality

(or near-optimal) solutions in a reasonable amount of time are then needed. Such

algorithms are known as heuristic methods (as well as a number of similar names).

Literature Review

 46

A heuristic is defined in (Reeves, 1995) as a “technique which seeks good (i.e.

near-optimal) solutions at a reasonable computational cost without being able to

guarantee either feasibility or optimality, or even in many cases to state how close to

optimality a particular feasible solution is”. Examples of heuristics are constructive

algorithms (also known as greedy methods). These are very simple heuristics that

construct the solution in a series of steps based on the strategy of making the best

decision (based on a certain criterion) at each step. Another example of heuristic

methodology is local search (also known as neighbourhood search) where

neighbouring solutions are explored in an attempt to improve the solution (although

worse solutions can be accepted as an interim step – see below for more details). A

gentle introduction to heuristic approaches is provided in (Michalewicz and Fogel,

2000).

More advanced heuristic approaches called metaheuristics have been widely

developed and applied to a variety of optimisation problems over the last two

decades or so (e.g. Glover and Kochenberger, 2003; Voss et al., 1999; Aarts and

Lenstra, 1997; Osman and Kelly, 1996; Osman and Laporte, 1996; Rayward-Smith

et al., 1996; Reeves, 1995). A metaheuristic is described in (Voss et al., 1999 page

ix) as “an iterative master process that guides and modifies the operations of

subordinate heuristics to efficiently produce high-quality solutions. It may

manipulate a complete (or incomplete) single solution or a collection of solutions at

each iteration. The subordinate heuristics may be high (or low) level procedures, or

a simple local search, or just a construction method”.

When solving combinatorial optimisation problems, there are exact algorithms

that, given enough time, can guarantee to find an optimal solution. There are also

very specialised heuristics that exploit knowledge of the problem domain and

produce solutions of good quality. There are also metaheuristics that are not designed

specifically for a particular problem but are considered general approaches that can

be tuned for any problem. Some metaheuristics may need tuning while others act as a

black box because they can be implemented with none or very little information

about the problem being solved. An example of such black-box approach is random

search, which can be used to compare the performance of other algorithms.

Literature Review

 47

3.4.4. The No Free Lunch Theorem

The interest on developing metaheuristic approaches for difficult combinatorial

optimisation problems such as the one tackled in this thesis is because of the time

complexity of these problems and because of the implications of the No Free Lunch

Theorem (NFL) of Wolpert and Macready (Wolpert and Macready, 1995; Wolpert

and Macready, 1997). The NFL theorem states that the averaged performance across

all possible problems is the same for all algorithms. In other words, considering all

possible problems, all algorithms perform equally and therefore, no distinction can

be made between two algorithms because there are as many problems for which one

algorithm performs better than the second one as for which the reverse is true.

However, in some circumstances the comparison of two algorithms A1 and A2 can be

made. If there are some problems for which the solutions obtained by A1 are much

better than those obtained by A2, then if the NFL theorem holds, it may be the case

that there are many problems for which A2 performs better than A1 but only for a

small amount. Hence, if the problems in our interest are those for which A1 is better

than A2, then it is possible to make a distinction between the two algorithms.

The above implies that it is essential to incorporate knowledge of the problem

domain into the algorithm. Otherwise, the algorithm is as likely to perform better

than random search as it is likely to perform worse. One conclusion that can be

obtained from the NFL theorem is that to solve any problem, the algorithm needs to

be adapted by taking into consideration the specific characteristics of the problem.

This motivates the interest in the investigation of applying and adapting

metaheuristics approaches to the space allocation problem in this thesis.

3.5. Review of Metaheuristic Approaches

3.5.1. Introduction

This section presents a brief overview of some of the most well known and

successful metaheuristic approaches presented in the literature. The aim is to provide

a consistent theoretical background on the field of metaheuristics for combinatorial

optimisation to underpin the rest of this thesis. A review on the main concepts,

Literature Review

 48

terminology, classifications, algorithms description and relevant applications is

presented.

3.5.2. Classification of Metaheuristics

There are several possible classifications of heuristics and metaheuristics but one that

is commonly used and that certainly allows us to embrace most metaheuristics

including their hybrids is: single-solution approaches and population-based

approaches also called single-point and multiple-point respectively (Blum and Roli,

2001). Examples of single-solution methods are: basic local search (deterministic

iterative improvement), simulated annealing, tabu search, greedy randomised

adaptive search procedure, variable neighbourhood search, guided local search,

iterated local search and others. Population-based methods include: genetic

algorithms, scatter search, ant colony systems, memetic algorithms, evolutionary

strategies (although some of them are single-solution), particle swarm systems,

cultural algorithms, etc. If a single-solution approach is hybridised with a population-

based approach (e.g. a memetic algorithm can be defined to be a genetic algorithm

incorporating local search) then the result is, of course, a population-based approach.

Sometimes, researchers classify heuristic and metaheuristic approaches into

nature-inspired and non-nature inspired and many refer to the first group as

evolutionary algorithms. While these algorithms are commonly conceptualised as

those approaches that simulate various aspects of natural evolution (Bäck et al.,

1997), some researchers argue that a fundamental characteristic of evolutionary

algorithms is that they handle a population of individuals (Calegari et al., 1999; Hertz

and Klober, 2000). As noted in (Blum and Roli, 2001), sometimes it is difficult to

clearly identify the genesis of an algorithm. In addition, many hybrid metaheuristics

do not fit well into the above classification.

An alternative classification of heuristic approaches is based on whether the

algorithms use memory during the search (Taillard et.al, 2001). In that classification,

memory is considered to be any mechanism that is explicitly used to store a set of

solutions or parts of solutions. Taillard et al. sketch adaptive memory programming

approaches as those algorithms that perform the following steps. First, the algorithm

initialises the memory. Then, in an iterative process, the algorithm generates new

Literature Review

 49

provisional solutions using the data stored in the memory, improves these generated

solutions using local search and updates the memory using the pieces of knowledge

brought by the new generated solutions.

3.5.3. Constructive Heuristics

Constructive (greedy) heuristics exist for many combinatorial optimisation problems

and some of these methods can produce an acceptable or acceptably good solution in

a reasonable computation time, depending upon the problem solving situation in

hand. Although in most cases the solutions produced are not considered to be near-

to-optimal, they can be improved in a subsequent more intensive search if the initial

solutions are constructed using a greedy heuristic (Burke et al., 1998; Corne and

Ross, 1996). A constructive heuristic builds a solution progressively in a number of

iterations. It is commonly the case that the number of iterations equals the number of

variables in the combinatorial optimisation problem. Then, in each iteration, the

heuristic assigns a value to one of the variables until a complete solution is

constructed. The heuristic selects the value that maintains the solution’s feasibility

and produces the best result based on a predefined criterion. The suitability of

initialising each variable is calculated using the predefined criterion at the beginning

of the process and the order is maintained static during the construction. This means

that for the same problem instance and the same predefined criterion, a greedy

heuristic generates the same solution every time it is executed.

3.5.4. Simple Local Search

Once a solution is initialised either randomly or with a constructive heuristic, it can

be iteratively improved using local search heuristics that explore the neighbourhood

of the present solution (e.g. Aarts and Lenstra, 1997). The neighbourhood of a

solution is the set of solutions that are close to it in some sense. The local optima is

the best solution(s) in the defined neighbourhood. Then, local search is also known

as neighbourhood search. The global optima is a term used to describe the best

solution(s) with respect to the whole solution space. Plateaus are regions of the

solutions space where no neighbourhood is better but a number of them are as good

as the present solution.

Literature Review

 50

A neighbourhood function or neighbourhood structure maps each solution x ∈ S

into a set of solutions Ν(x) ∈ S where S is the solution space, Ν(x) is the

neighbourhood of x and each solution in Ν(x) is a neighbour of x. For example, many

combinatorial optimisation problem solutions can be represented as sequences or

partitions. These solution representations permit the use of k-exchange

neighbourhood structures, i.e. by exchanging k elements in a given sequence or

partition a neighbour solution is produced. A move in local search is the change

defined by the neighbourhood structure that is made to the current solution in order

to produce a neighbouring solution. Given a solution x, each neighbourhood structure

specifies a set of solutions that are “close” to x. The neighbourhood size |Ν(x)| is the

number of neighbouring solutions that can be reached from the solution x.

Then, local search heuristics attempt to improve the current solution by

exploring neighbourhoods. The first important choice is the neighbourhood

structure(s). A given neighbourhood with a manageable size has a certain strength. A

strong neighbourhood produces local optima that are largely independent of the

quality of the initial solution while a weak neighbourhood produces local optima that

is highly correlated to the initial solution (Papadimitriou and Steiglitz, 1982). The

next choice is how to explore solutions in the neighbourhood(s) and some of the

possible ways are described below.

Deterministic Iterative Improvement

The basic local search strategy or deterministic iterative improvement assumes a

given neighbourhood and an initial solution. One neighbour is generated in each

iteration and it replaces the current solution only if it is better. The search finishes

when no better neighbouring solution is found.

First and Best Iterative Improvement

Exploring only one neighbouring solution often leads to poor local optima. An option

is to generate a subset of the neighbouring solutions or all of them depending on the

size of the neighbourhood. If the first neighbouring solution that is better than the

current one is accepted, one obtains a first iterative improvement algorithm. When

Literature Review

 51

the best of all the neighbours is selected, the approach is called best iterative

improvement algorithm.

Iterative improvement algorithms are also referred to as hill-climbing methods in

maximisation problems or as descent methods in minimisation problems. Iterative

improvement algorithms can be described using the pseudocode shown in figure 3.1.

Step 1. Generate initial current solution x.
Step 2. Explore neighbourhood of current solution x and generate candidate solution x’.
Step 3. If fitness(x’) > fitness(x) then x = x’.
Step 4. If stopping condition met finish, otherwise go to Step 2.

Figure 3.1. Iterative improvement algorithm. Deterministic improvement explores only one neighbour
in step 2 while first improvement and best improvement explore a set of them.

Other Extensions to Local Search

Local search heuristics that accept only improving solutions are simple and easy to

implement but they often produce local optima of low quality. Various strategies to

avoid getting stuck in poor local optima have been incorporated into local search

producing a number of metaheuristic approaches. These strategies aim to establish an

adequate compromise between intensification and diversification. Intensification

refers to focusing the search into certain regions of the solution space while

diversification refers to expanding the search by exploring unvisited regions of the

solution space. The intensification and diversification mechanisms can be

fundamental components of the searching method or additional strategies

incorporated by the designer with or without knowledge of the problem domain. A

dynamic and adaptive compromise between the intensification and diversification

phases is commonly regarded as desirable to achieve good results, but very few

metaheuristics actually incorporate such a mechanism. Strong diversification

strategies are good for sampling the solution space and identifying promising areas

while strong intensification strategies are good for focusing and exploring these

promising areas in search of elite solutions.

In (Vaessens et al., 1998) a local search template that attempts to capture most of

the variants of local search algorithms was proposed. In that template the authors

identified the following strategies that contribute to the design of more elaborate

local search procedures:

Literature Review

 52

§ Generate all or a subset of the solutions in the given neighbourhood structure.

§ Restart the search from different generated initial solutions.

§ Use more elaborate criteria to even accept non-improving solutions.

§ Replace the current solution by a population of current solutions.

§ Design more than one neighbourhood structure to be used during the search.

The local search template mentioned above classifies algorithm variations based

on two aspects: the number of current solutions (point-based and population-based)

and the number of search strategies or neighbourhood structures used (single-level

and multi-level). More elaborate methods such as genetic algorithms (see section

3.5.12) are described in the template as an instance of single-level population-based

algorithms.

3.5.5. Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is an iterative process that combines a randomised constructive heuristic and

local search and is based on the strategy of restarting the search from different initial

solutions (Glover and Kochenberger, 2003). In each iteration, a solution is generated

with the randomised constructive heuristic and then the solution is improved by

means of local search. The best solution over all iterations is kept and reported as the

result at the end of the search. At each constructive step the suitability of each

remaining non-initialised variable is calculated according to the status of the partial

solution. Then, the variables are sorted according to their suitability and a sublist is

formed. From this restricted candidate list the next variable to be initialised is chosen

at random instead of selecting the most suitable one as in a greedy heuristic.

Step 1. Start with an empty solution x.
Step 2. Calculate suitability of each non-initialised variable.
Step 3. Sort the non-initialised variables and generate the restricted candidate list.
Step 4. Select and initialise one element at random from the restricted candidate list.
Step 5. If the solution x is still incomplete go to Step 2.
Step 6. Apply Local Search to solution current solution x to generate x’.
Step 7. Memorise the best solution found so far.
Step 8. If stopping condition met then finish, otherwise go to Step 1.

Literature Review

 53

Figure 3.2. Greedy randomised adaptive search procedure.

Figure 3.2 shows the pseudocode of the GRASP metaheuristic. The local search

phase in the greedy randomised adaptive search procedure (step 6) can be any simple

or more elaborated improvement method. Important conditions that should be met

for GRASP to be successful are that the constructive and the local search phases

must complement each other well and the latter should generate solutions that lie in

promising areas of the solution space.

3.5.6. Guided Local Search (GLS)

Guided local search (see pseudocode in figure 3.3) is a metaheuristic that employs

the strategy of modifying the search landscape by changing the objective function

(Glover and Kochenberger, 2002). The purpose of using modified objective

functions in guided local search is to escape from the local optimal by gradually

reducing its attractiveness. The algorithm starts with an initial solution that is

improved by local search until a local optima is found. Then, in each iteration the

original objective function f(x) is adapted to obtain the modified objective function

f’(x) and the local search is restarted.

Step 1. Generate initial current solution x.
Step 2. Apply Local Search to solution x to generate local optima x* and using f’(x).
Step 3. Modify the objective function f’(x) according to the search history.
Step 4. If stopping condition met then finish, otherwise go to Step 2.

Figure 3.3. Guided local search metaheuristic.

The guided local search method is very simple and the critical component is the

tactical change induced in the objective function, which is now explained in more

detail. First, it is necessary to identify a set of q properties or features that may (or

may not) be present in a solution and which serve to discriminate between solutions.

Then, weights are associated to the q solution features to establish their relative

importance. The modified function f’(x) is given by:

)()()(
1

, xIpxfxf
q

i
ii∑

=
+= λ (3.1)

where pi is the weight or penalty parameter associated to feature i, I i(x) is a Boolean

indicator of whether the feature i is present or not in the solution x and λ is the

Literature Review

 54

regularisation parameter that established a balance between the importance of

solution features with respect to the original objective function f(x). To adapt the

objective function, some of the q penalty parameters are increased in each iteration.

The penalties changed are those corresponding to the solution features that have a

maximum utility. This utility is given by,

i

i
i p

c
xIiutility

+
⋅=
1

)()((3.2)

where ci is the cost assigned to each feature i measuring its relative importance with

respect to the other solution features.

Adapting the penalty parameters is a critical design decision when implementing

guided local search because this will affect how the objective function and hence the

search landscape is adapted during the search. The strategy for changing the penalty

parameters is normally very dependent on the problem domain but it should

encourage the use of the search history and avoid making the search landscape too

rugged.

3.5.7. Iterated Local Search (ILS)

Iterated local search is a metaheuristic that combines local search with a perturbation

operator (Glover and Kochenberger, 2003) The algorithm starts with an initial

solution and performs local search until a local optimum is found. Then, the current

solution is perturbed and a different local optimum is obtained by performing local

search. Finally, acceptance criteria based on the search history are used to decide

whether the perturbed solution or the new local optimum becomes the current

solution in the next iteration. Figure 3.4 shows the pseudocode of this metaheuristic.

Step 1. Generate initial current solution x.
Step 2. Apply Local Search to solution x to generate local optima x*.
Step 3. Perturb solution x* to produce x’.
Step 4. Apply Local Search to x’ to generate new local optima x’*.
Step 5. If the acceptance criteria is satisfied then x* = x’*.
Step 4. If stopping condition met then finish, otherwise go to Step 3.

Figure 3.4. Iterated local search metaheuristic.

The way in which the perturbation operator, acceptance criteria and search

history are designed and implemented permits a high degree of flexibility for tuning

Literature Review

 55

iterated local search according to the problem domain. The perturbation operation

must be designed in such a way that escaping from the local optima to explore other

areas of the solution space is possible without turning into a completely random

restart. The acceptance criterion can simply be to accept the new local optimum if it

is better than the best solution so far or it can be a more elaborate criterion based on

threshold acceptance (see section 3.5.9 below).

3.5.8. Variable Neighbourhood Search (VNS)

The variable neighbourhood search metaheuristic is based on the strategy of using

more than one neighbourhood structure during the search (Mladenovic and Hansen,

1997). The main idea is to change the neighbourhood structure in a systematic way

as the search progresses. First, k neighbourhood structures need to be defined. The

algorithm is made of three phases: shaking, local search and move (see pseudocode

in figure 3.5).

During shaking a random solution is generated from the current solution using

the kth neighbourhood structure. In the local search phase this randomly generated

solution is improved and if it is better than the current solution it replaces it. In the

move phase the next neighbourhood to be used is chosen based on whether or not the

previous local search phase was successful or not. Intensification is achieved by the

local search while the systematic change of the neighbourhood structure acts as a

diversification mechanism. It is important to design good neighbourhood structures

of increasing cardinality that present different views of the search landscape and

allow the shaking phase to generate new starting solutions that lie near new local

optima. There exist other variants of variable neighbourhood search such as variable

neighbourhood decomposition search (VNDS), skewed variable neighbourhood

search (SVNS) and given the flexibility of the technique, other variants of this

algorithm can be employed (Hansen and Mlandenovic, 2001).

Step 1. Generate initial current solution x.
Step 2. Select neighborhood structure N1, i.e. k = 1.
Step 3. Generate candidate solution x’ from x using the neighborhood structure Nk.
Step 4. Apply Local Search to solution x’ to generate x*.
Step 5. If fitness(x*) > fitness(x’) then x = x* and k = 1.
Step 6. If fitness(x*) < fitness(x’) then k = k + 1.
Step 7. If k < kmax then go to Step 3.
Step 8. If stopping condition met finish, otherwise go to Step 2.

Literature Review

 56

Figure 3.5. Variable neighbourhood search metaheuristic.

3.5.9. Threshold Acceptance Algorithms

Threshold acceptance algorithms are modified versions of improving heuristics

where non-improving solutions are also accepted if a given condition is met. Figure

3.6 shows the pseudocode for this technique. The condition is that the fitness

difference between the current and the non-improving candidate solution be smaller

that a given threshold. The threshold can be fixed during the whole search:

threshold (t + 1) = threshold (t)

or it can be varied as the searches progresses:

threshold (t) ≥ threshold (t + 1) and lim (t→ ∞) threshold (t) = 0 for the iteration t.

Step 1. Generate initial current solution x.
Step 2. t = 0.
Step 3. threshold(t) = f(t).
Step 4. Generate candidate solution x’ from current solution x.
Step 5. If fitness(x’) – fitness(x) < threshold(t) then x = x’.
Step 6. t = t +1.
Step 5. If stopping condition met finish, otherwise go to Step 3.

Figure 3.6. Threshold acceptance metaheuristic. In step 3, f(t) gives the threshold for the iteration t.

3.5.10. Simulated Annealing (SA)

Simulated annealing is an optimisation method that was inspired from the Metropolis

algorithm for statistical mechanics (Metropolis et al., 1953). Simulated annealing is a

metaheuristic that attempts to avoid getting stuck in poor local optima by exploring

other areas of the solution space (Kirkpatrick et al., 1983, Aarts and Korst, 1998) and

it is a probabilistic version of threshold acceptance. The main idea is that improving

candidate solutions are always accepted while non-improving candidate solutions are

accepted with a certain probability. This probability of accepting non-improving

solutions is calculated according to the current temperature of the algorithm.

Step 1. Generate initial current solution x.
Step 2. Temperature = Initial Temperature.
Step 3. Generate candidate solution x’ from current solution x.
Step 4. If fitness(x’) > fitness(x) then x = x’.
Step 5. If fitness(x’) ≤ fitness(x) then calculate Acceptance Probability.

Literature Review

 57

Step 5.1 If Acceptance Probability > random [0,1] then x = x’. Step 6. Update Temperature according to Cooling Schedule.
Step 7. If stopping condition met finish, otherwise go to Step 3.

Figure 3.7. Simulated annealing metaheuristic. In step 5 the acceptance probability is calculated
according to the current temperature while in step 6 the current temperature is updated according to
the cooling schedule.

The algorithm starts with a high initial temperature, which corresponds to a high

probability of accepting non-improving solutions. The temperature is gradually

decreased as the search progresses so that the probability of accepting non-improving

solutions is also reduced. At temperature zero the algorithm operates like an

improving heuristic, i.e. only improving solutions are accepted. The search process

can remain at temperature zero until the stopping condition or it can be reheated, i.e.

the temperature is increased and reduced periodically. Two specific decisions have to

be made for this algorithm: a) the choice of cooling schedule, i.e. the initial

temperature and rules for varying it during the search and b) the choice of acceptance

probability function, i.e. how to determine, according to the current temperature, the

probability of accepting non-improving solutions. Figure 3.7. shows the pseudocode

for the simulated annealing metaheuristic.

The Cooling Schedule

In general, the cooling schedule is determined by:

a) Initial temperature.

b) Decrement step, i.e. number of iterations between temperature decrements.

c) Cooling factor, i.e. the proportion of the temperature reduction.

d) Reheating step, i.e. number of iterations after which the temperature is

increased to the initial temperature or to another value.

Some cooling schedules reduce the temperature in a monotonic fashion and it

has been suggested that optimal cooling schedules may not be monotonic (Reeves,

1995). The selection of an adequate cooling schedule and all its associated

parameters has been extensively studied and has been found to be dependant upon

the problem domain. An analysis and comparison of various cooling schedules

(when the computing time is limited) is provided in (Strenski and Kirkpatrick, 1991).

The performance of a simulated annealing algorithm with different cooling schedules

Literature Review

 58

on the course timetabling problem is investigated in (Elmohamed et al., 1998) while

(Thompson and Dowsland, 1996; Thompson and Dowsland, 1996b) carried out a

similar comparison on the examination timetabling problem. Some examples of

cooling schedules that have been proposed and investigated in the literature are

described as follows.

Arithmetic Cooling Schedule.

Ti = (Ti-1) – ∆T (3.3)

Ti is the new temperature value, Ti-1 is the previous temperature value and ∆T is the

amount of temperature reduction, which is usually kept constant.

Geometric Cooling Schedule.

Ti = α⋅Ti-1 where 0 < α < 1, with α ≈ 1. (3.4)

or

Ti = (α⋅Ti-1) / (1 + α⋅Ti-1) where 0 < α < 1, with α ≈ 0. (3.5)

Ti is the new temperature value, Ti-1 is the previous temperature value and α

determines the cooling factor.

Quadratic Cooling Schedule.

Ti = a⋅i2 + b⋅i + c where
total

f

I

TT
a

1= ,
total

f

I

TT
b

1
2

−
= , 1Tc = (3.6)

T1 and Tf are the initial and final temperature values respectively while Itotal is the

total number of iterations of the algorithm.

Heuristic Cooling Schedules.

Heuristic cooling schedules reduce the temperature by taking into account the history

of the search. One example of a heuristic temperature control is reheating as a

function of the cost as described in (Elmohamed et al., 1998). In that cooling

schedule, the temperature is raised according to the specific heat. The specific heat is

a measure of the variance of the fitness values of the solutions visited at a given

temperature level. At each temperature level Ti the average fitness of the visited

Literature Review

 59

solutions is denoted by F(Ti) and σ 2(Ti) denotes the variance of the fitness at that

temperature level. Then, the specific heat at the temperature level Ti is given by

2

2

)(
T

T
TC i

iH
σ

= (3.7)

The temperature at which the specific heat is maximum can then be found and it

is denoted by T(CH
max). The cooling schedule reheats the temperature after a

predefined number of iterations without improvement (reheating step) according to

the following equation:

)(max
1 Hbesti CTFkT +⋅=+ (3.8)

where k is a tuneable parameter and Fbest is the best fitness so far. The temperature

can be decreased using an arithmetic or geometric cooling schedule.

Another example of a heuristic cooling schedule is the adaptive cooling

described also in (Elmohamed et al., 1998). Here, the temperature reduction is

controlled based on the specific heat as given by equation 3.9 and then reheating may

or may not be used.

)(
1 exp i

i

T

aT

ii TT σ
−

+ ⋅= (3.9)

where a is a tuneable parameter and σ (Ti) is the standard deviation of the fitness at

temperature level Ti.

(Aarts and Korst, 1998) proposed a cooling schedule that reduces the

temperature very quickly during the first iterations and then, as the temperature

decreases, the reduction rate is also slowed down. The temperature is reduced

according to the following formula:

*

1)1ln(
1

δ
δ+

+
=+

i

i
i T

T
T (3.10)

where δ* is the maximum difference between the global optimum (if known) and any

feasible solution and δ is theoretically the maximum proportional change allowed for

any temperature level. Suggested values are δ* = 3σi where σi is the standard

Literature Review

 60

deviation of the current solution fitness value while using the temperature level Ti

and δ = 0.1.

Other heuristic cooling schedules are those described in (Osman, 1995) and

given below by equations 3.11 and 3.12.

reseti TT =+1 and

= found
reset

reset T
T

T ,
2

max (3.11)

Treset is a higher temperature than the current value Ti and Tfound is the temperature

value at which the best solution so far was found. The temperature is incremented

using the above relation only after the whole neighbourhood (assuming this can be

done) has been explored and no better solution has been found. Increasing the

temperature permits us to escape from the current neighbourhood but without too

much deviation from the best solution visited so far.

)1(1
ii

i
i T

T
T

β+
=+ and

f

f
i

TTi

TT

⋅⋅+

−
=

1

1

)(γα
β (3.12)

T1 and Tf are the initial and final temperature values respectively and suggested

values for α and γ are: α = |N(x)|⋅N(x)feasible and γ = |N(x)|, where N(x)feasible is the

total number of feasible moves in the neighbourhood N(x) of the current solution.

Acceptance Probability Function

As with the cooling schedule, several functions to calculate the acceptance

probability have been proposed, but the most widely used is the Boltzmann-like

distribution (Aarts and Korst, 1998):

Acceptance probability = exp (- ∆F/Ti) where ∆F = fitness(x’) – fitness(x) and Ti is

the current temperature.

Remarks

Broadly speaking, simulated annealing can find good solutions for a wide variety of

problems, it is easy to implement and is capable of handling almost any optimisation

problem and any constraint. On the other hand, some of the difficulties reported with

Literature Review

 61

this method are long run times, the need for fine-tuning and the necessity for good

neighbourhood structures design. An interesting research avenue is the challenge to

design parallel versions of the simulated annealing algorithm. This is a task that,

although promising, is not trivial because of the intrinsic sequential nature of the

algorithm (Abramson, 1991).

3.5.11. Tabu Search (TS)

Tabu search is a metaheuristic that attempts to guide the search in a systematic and

intelligent way by using flexible and adaptive memory structures and some

intensification and exploration strategies (Glover 1986; Glover et al., 1993; Glover

and Laguna, 1997; Hansen 1986). The main components of tabu search are: short-

term memory, long-term memory and intensification and diversification strategies.

Short-term memory is used to forbid revisiting solutions and then avoid cycling and

being trapped in poor local optima. Long-term memory is used as a kind of learning

process to generate intensification and diversification strategies. Long-term memory

is used to collect information during the overall search process that permits the

identification of common properties in good visited solutions and also to attempt to

visit solutions with varying properties from those already visited. The

implementation of both short-term and long-term memory is based on four

principles: recency, frequency, quality and influence. While the recency principle is

an indication of how recent it was that certain solutions were visited, the frequency

principle is an indication of how often those solutions were visited. The quality

principle refers to keeping information about visited solutions with good fitness

values to identify good solution components and stimulate more intensive search in

promising areas of the solution space. Finally, influence is used to identify those

changes induced in the solutions structure that have proven to be more beneficial.

Figure 3.8 shows the pseudocde for the tabu search metaheuristic.

Step 1. Generate initial current solution x.
Step 2. Initialize the Tabu List.
Step 3. While set of candidate solutions X’ is not complete.

Step 3.1. Generate candidate solution x’ from current solution x using the strategies for
intensification and diversification.
Step 3.2. Add x’ to X’ only if x’ (or associated attributes) is not tabu or if at least one
Aspiration Criterion is satisfied.

Step 4. Select the best candidate solution x* in X’.
Step 5. If fitness(x*) > fitness(x) then x = x*.

Literature Review

 62

Step 6. Update Tabu List, Aspiration Criteria and Intensification and Diversification Strategies.
Step 7. If stopping condition met finish, otherwise go to Step 3.

Figure 3.8. Tabu search metaheuristic.

Short-term Memory

This component is usually implemented by maintaining a list that contains the most

recently visited solutions. In most combinatorial optimisation problems, managing a

list of visited solutions is not very efficient. Therefore, instead of the solution only

some of its attributes (moves, components, etc.) are stored. This list is called the tabu

list and the information stored there is used to forbid revisiting solutions for a certain

number of iterations. The tabu list size defines how many recently visited solutions

or their attributes are classified as tabu and the tabu tenure indicates for how long

(usually measured in terms of the number of iterations) each element of the list

remains tabu. Then, during the local search only those moves that are not tabu will be

explored unless the tabu move satisfies the predefined aspiration criteria. These

aspiration criteria are used because the attributes in the tabu list may also be shared

by unvisited good quality solutions. A common aspiration criterion is better fitness,

i.e. the tabu status of a move in the tabu list is overridden if the move produces a

better solution.

Long-term Memory

The long-term memory component is implemented by keeping a history of the

overall search process based on the four principles mentioned above. Then, by

storing information about the recency, frequency, quality and influence of solutions,

moves or other attributes, it is possible to tune the strategies that will attempt to

guide the search in a more intelligent way.

Intensification and Diversification Strategies

An example of an intensification strategy is that after identifying components of

good quality solutions and moves that have had the most influence towards these

solutions, the search is intensified around certain areas of the solution space and

using these beneficial moves. An example of a diversification strategy is that after

Literature Review

 63

identifying moves that have been accepted more frequently, the search is directed

towards other areas by forcing moves that have not been used so frequently.

Remarks

The variety of principles that are incorporated in tabu search and the flexibility in

which they can be implemented are factors that have contributed to the successful

application of this metaheuristic to a wide range of combinatorial optimisation

problems (Reeves, 1995; Glover and Laguna, 1997). In fact, tabu search can be better

conceptualised as a framework rather that a method. This is because each of its

components can be designed specifically for the target application following the

principles and suggested refinements that have emerged as a result of the experience

from practitioners and researchers in various fields.

3.5.12. Genetic Algorithms (GA)

Genetic algorithms were in essence proposed by Holland in his book Adaptation in

Natural and Artificial Systems (Holland, 1975). However, the ideas of using

evolution and recombination for optimisation were proposed even earlier by

Bremmermann (Bremmermann, 1962). A genetic algorithm is a population-based

method that is based on the principles of natural evolution (e.g. Goldberg, 1989; Man

et al., 1999; Michalewicz, 1999). The main idea in genetic algorithms is to generate a

population of individuals and then, during a number of iterations (generations) to

evolve this population by means of self-adaptation and recombination. Figure 3.9

shows the general framework of a genetic algorithm.

Step 1. Generate initial population.
Step 2. Evaluate population.
Step 3. Select individuals that will act as parents.
Step 4. Apply Recombination to create offspring.
Step 5. Apply Mutation to offspring.
Step 6. Select parents and offspring to form the new population for the next generation.
Step 7. If stopping condition met finish, otherwise go to Step 2.

Figure 3.9. The genetic algorithm framework.

Mutation and crossover are the two basic genetic operators used for

implementing self-adaptation and recombination respectively. Crossover refers to the

generation of one or more individuals (offspring) from the recombination of two or

Literature Review

 64

more solutions in the current population (parents) and its purpose is the propagation

of good solution components (genetic material) from parents to offspring. Mutation

refers to small random variations of the solution and its purpose is to add diversity to

the population. At each generation, some parents are selected and then recombined to

generate the offspring. Some of the children may be mutated before adding them to

the next generation. If elitism is implemented, some high quality individuals are

selected to survive from one generation to the next one. The selection mechanism

used to choose the parents aims to enforce the principle of survival of the fittest and

therefore, acts as an intensification strategy. Recombination and mutation aim to

encourage exploration and act as a diversification strategy. It is expected that a

genetic algorithm will be capable of evolving the population and then converging

towards solutions of high quality. Among the specific components that have to be

carefully selected when designing effective genetic algorithms are the following: a)

individual encoding, b) selection mechanisms, c) genetic operators, d) replacement

scheme and d) constraint handling techniques.

Individual Encoding

An individual in genetic algorithms is usually a solution, a partial solution or a set of

them. The representation of individuals in genetic algorithms is called the

chromosome. Selecting an appropriate chromosome is an important issue because

such representation should be suitable for the effective functioning of the genetic

operators and perhaps the constraint-handling mechanism. Common representations

for combinatorial problems are binary strings (including gray coded strings) and

permutations of integer numbers but more complex structures are often designed to

represent individuals for real world problems (Coley, 1999; Goldberg, 1989).

Selection Mechanism

Several mechanisms exist for selecting individuals that will act as parents (Coley,

1999). For example, a common method is fitness-proportional selection where the

probability of individuals for being chosen is proportional to their fitness. Another

common method is tournament selection where two or more individuals compete

among themselves for the right to become parents. In rank-based selection the

Literature Review

 65

individuals are assigned a reproductive probability that depends on the rank they are

given based on some criteria.

Genetic Operators

Mutation and crossover can also be implemented in many ways (Chambers, 2001).

For example, a common way of implementing mutation is to select one or more

positions in the chromosome and then modify them with a given (usually low)

probability. The single-point and multi-point crossover operators are among the most

well known and frequently used. In these operators one or more points (respectively)

are selected at random to split the chromosome of the parents into sections and then

recombine these sections to create the offspring (Goldberg, 1989).

Replacement Scheme

Once the crossover and mutation operators have been applied it is necessary to

decide which individuals from the last generation will be replaced by the new

offspring to form the new population. A non-elitist strategy replaces all individuals in

the current population while an elitist strategy maintains the best individuals so that

their genetic material can be transferred to the next generations (Man et al., 1999).

Constraint Handling

In constrained problems, the application of recombination (crossover) and random

variations (mutation) to individuals makes the creation of infeasible solutions very

likely with genetic algorithms. Constraint handling techniques for genetic algorithms

can be grouped into three categories (Michalewicz, 1999):

1. Allow the violation of constraints but penalise them.

2. Apply special repairing heuristics to correct infeasible solutions.

3. Use special individual representations to guarantee or increase the

probability of generating only feasible solutions or use problem specific

operators that preserve the feasibility of solutions.

Literature Review

 66

Remarks

Genetic algorithms are regarded as methods that are suited for exploring large

solution spaces. It can be said that genetic algorithms are a general technique that can

produce acceptable results in relatively short time and there exist many ways to

design the main components mentioned above (Goldberg, 1989; Coley, 1999).

However, in order to obtain high quality results it is generally acknowledged that it is

required to design good genetic operators and to perform fine parameters tuning

(Bäck, 1996). These algorithms have been applied to a variety of applications

including optimisation, design and creative systems (Goldberg, 1989; Davis, 1991;

Chambers, 2001; Bentley and Corne, 2002).

3.5.13. Other Evolutionary Algorithms (EA)

Although there is no universally accepted definition of evolutionary algorithms,

some classifications have been proposed, see for example (Calegari et al., 1999;

Hertz and Klober, 2000). Here, we refer to evolutionary algorithms as methods that

handle a population of solutions, iteratively evolve the population by applying phases

of self-adaptation and co-operation and employ a coded representation of the

solutions. The genetic algorithm described above is one of several types of

evolutionary algorithms that exist. Some of the key evolutionary approaches are

described below.

Evolutionary Strategies

While genetic algorithms emphasize recombination (high crossover probability) as

the main search mechanism and usually use self-adaptation (low mutation

probability) only as a supportive mechanism, evolutionary strategies emphasize both

mechanisms as fundamental for searching. Another difference is that while genetic

algorithms usually operate on the encoded representation of a solution (genotype),

evolutionary strategies operate on the solution itself (phenotype) (Bäck, 1996; Bäck

et al., 1997). The basic notation (µ + λ)ES where µ is the number of parents and λ is

the number of offspring, represents an evolutionary strategy that in each generation

selects the best µ individuals from the µ + λ individuals (parents and offspring) in

Literature Review

 67

total. The modified notation (µ,λ)ES indicates that λ offspring are generated from the

µ parents but the best µ individuals are selected only from the λ offspring.

Scatter Search and Path Relinking

The scatter search and path relinking metaheuristic (Laguna, 2002) consists of two

phases. In the first phase, one or more feasible solutions are generated which serve as

seed solutions. Then, a reference set containing the best solutions found so far in

terms of fitness and diversity is created as follows: trail solutions are generated using

the seed or the trial solutions. Then, these trial solutions are improved by means of

local search before using them to update the reference set. It may be that the trail

solutions and their improved versions are infeasible. Then, it will be necessary to

apply repairing heuristics to these infeasible solutions. Once the reference set is

created, the algorithm enters the second phase where a subset of solutions is created

by recombination of solutions in the reference set. The combination of solutions is

based on generalized path constructions in the Euclidean (scatter search) or

neighbourhood space (path relinking). These newly generated solutions are then

improved and used to update the reference set. This process continues until the

stopping criteria are satisfied.

Memetic Algorithms

The term memetic algorithms (MA) has been used to identify a broad class of hybrid

metaheuristics: evolutionary algorithms that incorporate local search heuristics,

specialised recombination/mutation operators and/or other “helpers” specifically

designed to exploit the knowledge of the problem domain (e.g. Moscato 1989;

Moscato, 1999). While genetic algorithms are inspired by the metaphor of genes,

memetic algorithms are inspired by the metaphor of memes. A gene is the unit of

genetic information that is propagated biologically between generations during the

evolution process. A meme is the unit of conceptual information (knowledge, ideas,

behaviour, customs, etc.) that is transmitted by imitation from one generation to the

next one. Then by incorporating the available knowledge about the problem into an

evolutionary algorithm, the working metaphor is that of evolving a population both

biologically and culturally. Since the term memetic was introduced some time after

researchers have started to study this kind of hybrids, it is common that names such

Literature Review

 68

as genetic local search, hybrid genetic algorithms an others are used when referring

to memetic algorithms (e.g. Reeves, 1996; Ishibuchi et al., 1997; Falkenauer, 1996;

Burke et al., 2000; Jaszkiewicz, 2002).

Ant Colony Optimisation

The ant colony optimisation (ACO) metaheuristic (Dorigo et al., 1996) is inspired by

the behaviour of ants when finding the shortest path between a food source and their

nest. Ants deposit a substance called pheromone while exploring paths and also use

the level of concentration of pheromone to decide which path to follow. Since the

pheromone evaporates as time passes, the concentration is stronger in the shortest

paths making them more attractive for other ants that also contribute to enhance the

attractiveness of the path. An ant colony optimisation algorithm consists of a set of

artificial ants that incrementally construct solutions by adding components to their

solutions. There exist several variants of algorithms based on the ant colony

optimisation framework. For more references see (Dorigo et al., 1996; Blum and

Roli, 2001).

Particle Swarm Optimisation

A swarm of individuals exploring a large solution space can benefit from sharing the

experiences gained during the search with the other individuals in the population.

This social behaviour has inspired the development of the particle swarm

optimisation algorithm (PSO) (e.g. Kennedy and Eberhart, 1999). In most versions of

this metaheuristic, individuals are not selected to survive or die in each generation.

Instead, all the individuals learn from the others and adapt themselves by trying to

imitate the behaviour of the fittest individuals. However, selection can also be

implemented to simulate the social rejection of those individuals that are not well

adapted to the group performance.

Cultural Algorithms

Cultural algorithms have been developed inspired by the way in which cultural

evolution is achieved in social systems (Reynolds, 1999). In the evolution of social

systems and in particular human societies, culture is a vehicle for transmitting

information at three levels: between generations, between populations and between

Literature Review

 69

individuals in the same population. In a social system some individuals may have

more experience and knowledge, which are of high value for the society. Then, these

individuals are voted to have a deeper influence in the population beliefs and hence

the cultural evolution of the society. More instances of these desirable individuals

may be promoted while those individuals who are not so desirable may be

eliminated. The culture or beliefs of the society is then adjusted and used to guide the

evolution of the population in each generation.

3.5.14. Hybrid Metaheuristics

With the exception of memetic algorithms, the metaheuristics described above can be

considered pure in the sense that they are not a combination of two or more

approaches. When applying metaheuristics to solve an optimisation problem, one

way to pursue success is to adapt the technique using knowledge from the problem

domain. This adaptation can be achieved by modifying its components and/or tuning

its parameters. Another approach that is commonly adopted is to combine two or

more algorithms to develop a hybrid approach better suited for the given problem.

Hybrid metaheuristics have proven to be successful in many optimisation problems

and particularly in practical or real-world problems. It is not within the scope of this

thesis to provide an extensive survey on hybrid metaheuristics. Instead, the reader is

referred to some of the surveys and compilations of metaheuristics applications

available in the literature (Glover and Kochenberger, 2003; Voss et al., 1999; Aarts

and Lenstra, 1997; Osman and Kelly, 1996; Osman and Laporte, 1996; Rayward-

Smith et al., 1996; Reeves, 1995).

The hybridisation of metaheuristics has been proposed at various levels and in

different ways. For example, the components of one metaheuristic can be embedded

into another (using tabu lists within a genetic algorithm) or one metaheuristic can be

used as a component to enhance the performance of another (simulated annealing as

the local search phase in variable neighbourhood search). The many ways in which

metaheuristics can be combined makes it very difficult to describe or list all of them.

Instead, it is perhaps more effective to differentiate between the designing principles

used. In order to achieve this, it would be useful to have a nomenclature or

framework that covers and permits the description of the majority of the hybrids

Literature Review

 70

proposed in the literature. Some attempts towards this have been made although it

seems that still no common scheme for classifying hybrid metaheuristics has been

adopted among researchers.

For example, (Hertz and Klober, 2000) proposed a framework for describing a

wide range of evolutionary algorithms including their hybrids with local search.

Seven main features are identified and used to describe an evolutionary algorithm

with their framework: individuals, evolution process, neighbourhood, information

sources, infeasibility, intensification and diversification. The authors illustrate their

framework by using it to describe various evolutionary algorithms including genetic

algorithms, scatter search and ant systems. In their final remarks the authors note that

“a good description of the main features of evolutionary algorithms can help to

understand the philosophy of the method and better analyse the reasons that explain

the good performance of a particular evolutionary algorithm”. A similar taxonomy

called Table of Evolutionary Algorithms (TEA) was proposed by (Calegari et al.,

1999) to compare the principles of various evolutionary algorithms also including

some hybrids.

Hybrid EA

Sequential Parallel

Synchronous Asynchronous

Homogeneous Heterogeneous

Global Partial Functional

Figure 3.10. Hierarchy of hybrid evolutionary algorithms of (Preux and Talbi, 1999).

Another taxonomy of hybrid metaheuristics (focused also on evolutionary

algorithms) is the one proposed by (Preux and Talbi, 1999). In their scheme the

authors define the hierarchy shown in figure 3.10. Sequential hybrids refer to a set of

algorithms that are applied one after another. For example, solutions initialised with

a greedy heuristic are then evolved with a genetic algorithm and the final population

improved by a local search method such as tabu search. The classification of parallel

hybrids is more elaborate. The algorithms can be precisely synchronised

Literature Review

 71

(synchronous hybrids) or cooperating with no specific coordination mechanism

(asynchronous hybrids). In the asynchronous approach, homogeneous hybrids occur

if all the cooperating algorithms are the same while in heterogeneous hybrids the

cooperating algorithms are different. From a different perspective, the parallel

asynchronous hybrids are divided into the following categories: global, partial and

functional. A global implementation occurs when all the algorithms search the same

solution space. In a partial approach the solution space is decomposed and each

algorithm searches a part of it. In the functional hybrid, each of the algorithms solve

a different problem.

In their paper, Preux and Talbi not only illustrate how some previously proposed

hybrid algorithms can be classified using their taxonomy, but they also argue that the

building blocks induced by their scheme can be combined in other ways to inspire

other hybridisations (like the ones proposed in this thesis). They note that “parallel

asynchronous hybrid algorithms are strongly appealing for three main reasons:

cooperation of individuals proves an efficient strategy on the long run, the

stochasticity induced by the asynchronous cooperation has not been thoroughly

explored as yet and the model ideally meets the requirements of implementation on

parallel computers”. A classification scheme similar to the one by Preux and Talbi

but including many more references to hybrid metaheuristics was suggested by

(Talbi, 2002).

The local search template of (Vaessens et al., 1998) is another classification

scheme that attempts to capture most of the variants of local search algorithms. This

template is based on three features: the number of levels (different searching

strategies and neighbourhoods), the population size (point-based and population-

based) and the cluster size (number of current solutions used to generate candidate

solutions). Using their template, the authors describe algorithms such as tabu search,

simulated annealing, threshold accepting, genetic algorithms, genetic local search

and others. Note that they include genetic algorithms within their template although

some researchers may argue that these algorithms are not local search methods. At

the time of publication Vaessens et al. noted that “some hybrids induced by their

template had not been proposed or were not well known yet”. In particular they

suggest that multi-level local search algorithms deserve special attention since

Literature Review

 72

existing techniques that fall into this classification have proven to be successful.

These include genetic local search and other algorithms using more than one strategy

or neighbourhood structure.

3.5.15. Evaluating the Performance of Metaheuristics

Metaheuristics are approximate algorithms and many of them will produce solutions

of various qualities in different runs on the same problem instance. The stochastic

nature of metaheuristic approaches is one of the main reasons for this (not unusual)

behaviour. Obviously, if the optimal solutions for the problem are known, the

performance of the metaheuristic technique can be assessed by comparing the

solutions obtained by the metaheuristic technique to the optimal solutions. If the

optimal solutions for the problem being solved are not known, assessing the quality

of the solutions obtained using metaheuristics can be done in two ways: by referring

to known upper and lower bounds or by referring to benchmark results (Reeves,

1995). Three aspects are of particular interest when assessing the performance of

metaheuristic methods: effectiveness, efficiency and robustness. Effectiveness usually

refers to the quality of the solutions produced by the method. Efficiency usually

refers to how much computation time and memory the method uses. Robustness

usually refers to how consistent the method is in producing the same or very similar

results over many runs on the same problem instance.

General Metaheuristic Approaches

 73

Chapter 4. General Metaheuristic Approaches

4.1. Introduction

This chapter presents an initial investigation into applying metaheuristics to automate

the solution of the academic space allocation problem described in chapter 2. The

aim of this initial study is to assess the suitability of applying some well-known

heuristic search methods in order to have an insight into the difficulty of solving the

space allocation problem. Before starting an investigation into heuristic search,

several decisions have to be made. The following aspects should be considered:

§ The selection of solution representation and associated data structures.

§ The definition of neighbourhood structures.

§ The implementation of efficient fitness evaluation routines.

§ The design of solution initialisation strategies.

§ The selection of search algorithms.

§ The tuning of algorithm parameters.

The rest of this chapter describes how these issues were addressed with respect

to the problem studied here. The following four search techniques were selected to

carry out this initial investigation:

§ Iterative improvement local search.

§ Simulated annealing algorithm.

§ Tabu search algorithm.

§ Genetic algorithm.

These methods were chosen because they have been applied to a great variety of

problems, are considered robust in the general sense, many papers exist that provide

guidelines for implementing them and various comparative studies between these

and other techniques exist in the literature. See for example (Corne and Ross, 1995;

General Metaheuristic Approaches

 74

Hasan et al., 2000; Youssef et al., 2001). These four techniques can be considered as

general search methods that need to be adapted and tuned for specific applications in

order to obtain good results (Pirlot, 1996). From the work presented in this chapter,

the material corresponding to the tabu search metaheuristic is included in the

[Bur2003b] paper, while the material corresponding to the other three approaches is

included in the [Bur2000] paper (see the appendix on page 199).

A considerable number of publications report on the improvement and tuning of

the various components of the techniques above to make them more effective,

efficient and robust. For example, in genetic algorithms different replacement

policies have been proposed to manage the incorporation of the new generated

individuals into the next generation and the preservation of the fittest individuals

(elitism) from the current generation (Bäck et al., 1997). Several selection

mechanisms, genetic operators and techniques for tuning the probabilities of these

genetic operators have also been investigated (e.g. Tuson and Ross, 1998; Julstrom,

1995). As mentioned in section 3.5.10, with respect to simulated annealing, various

cooling schedules including both deterministic and adaptive approaches have been

studied in order to control the variation of the acceptance probability (Aarts and

Korst, 1998; Ingber, 1996). In tabu search, there are different implementations of

short-term and long-term memory structures or tabu lists including the use of

learning techniques. The incorporation of preferred candidate lists, i.e. lists of

promising moves or attributes of moves has also been explored. The aspiration

criteria to be used when overriding the tabu status of a candidate move is another

aspect that has received attention from the community and the use of different

aspiration criteria during the search in an adaptive way has also been proposed

(Glover and Laguna, 1997).

Various researchers have carried out experiments to compare the performance of

the above metaheuristics on different problem domains. For example, the

performance of simulated annealing, tabu search and a genetic algorithm are

compared when solving an unconstrained Pseudo-Boolean function in (Hasan et al.,

2000). In that paper the authors conclude that, after extensive experiments using

well-tuned parameters for the three methods, the genetic algorithm performed the

best although no reasons for this were identified. Another comparison between these

General Metaheuristic Approaches

 75

three metaheuristics was carried out in (Youseef et al., 2001) for the floorplanning of

VLSI circuits. Four aspects were taken into account: quality of the best solution

found, progress of the search, progress of the best fitness and number of solutions

discovered at successive intervals of the fitness function. In that paper, the authors

aimed to study the behaviour of the three algorithms instead of demonstrating the

superiority of one of them. However, they reported that the best performance was

exhibited by tabu search, closely followed by the genetic algorithm while simulated

annealing stayed far behind. It was also noted that the genetic algorithm required the

most effort with respect to the complexity of implementation and tuning of

parameters.

4.2. Solution Representation and Data Structures

There are, in general, two types of solution representations for combinatorial

problems: direct and indirect representations (also called explicit and implicit

respectively). A direct representation encodes a solution while an indirect

representation encodes the steps to construct a solution. For the academic space

allocation problem investigated here, it was decided to represent an allocation or

solution using the direct encoding described in section 2.4.2 where a solution x is a

string in which each position represents an entity and the value in that position

indicates the room to which the entity has been allocated. Other representations (e.g.

each position in the string representing a room) were also considered, but having a

string where each position represents an entity makes it easier to maintain the

feasibility of solutions in terms of the condition that each entity must be allocated to

exactly one room (eq. 2.8). In addition to this direct vector representation, it was also

decided to design an appropriate data structure in which to keep all the information

corresponding to the problem instance being solved (penalties, list of entities, list of

rooms, etc.) and the details of each particular allocation or solution (penalties, used

rooms, fitness, etc). All the information is organised using a data structure based on

linked lists as described below.

The data for a problem instance is organised in three lists of objects

corresponding to the following groups: entities, rooms and constraints.

General Metaheuristic Approaches

 76

§ Entities. This list holds the details of each entity to be allocated: name, associated

weight level or priority, owner department, associated group, etc.

§ Rooms. This list holds the details of each room: id, capacity, building, floor, list of

adjacent rooms, type of room, special features, etc.

§ Constraints. This list holds details of each constraint (hard and soft): label,

description, associated penalty, associated entities/rooms, etc.

The lists described above hold information about the problem instance being

solved but another data structure is required to keep details of an allocation or

solution. The data structure used to represent a solution or allocation is based on the

three objects described below.

§ EntityGene. This includes: fitness statistics for this entity, pointer to the respective

entity in the global entities list, pointer to the RoomGene to which this entity is

allocated, pointer to the next EntityGene that is allocated to the same room and

pointer to the first ConstraintGene in the list of constraints affecting this entity.

§ RoomGene. This includes: fitness statistics for this room, pointer to the

corresponding room in the global rooms list, pointer to the first EntityGene in the

list of entities allocated to this room and pointer to the first ConstraintGene in the

list of constraints affecting this room.

§ ConstraintGene. This includes: pointer to the corresponding constraint in the

global constraints list and pointer to the next ConstraintGene that is also assigned

to the same entity or the same room.

Using the structures described above, the linked list model shown in figure 4.1

holds all the details of the problem instance and the allocation or solution. Note that

the lists Entities, Rooms and Constraints are common to all solutions and are created

only once. In this example, the problem consists of allocating the 5 entities (E1 to

E5) to the 5 available rooms (R1 to R5) subject to 4 constraints (C1 to C4). Entity E1

is allocated to room R5, entity E2 and E4 are allocated to room R3 and entity E5 is

allocated to room R1. Room R2 is empty and entity E3 is not allocated. Constraint

General Metaheuristic Approaches

 77

C1 applies to room R5, constraint C2 applies to entity E1 and constraints C3 and C4

apply to entity E5.

This data structure, based on linked lists, has the flexibility to easily change

details about the problem instance and the solution. Also, the linked list model

permits the easy implementation of local search moves that maintain the feasibility

of the solution in terms of hard constraints (eq. 2.9) and the implementation of

efficient solution evaluation routines as it is described later in this chapter. Other

researchers have also found that the use of linked lists is advantageous for

representing combinatorial optimisation problems and their solutions (Randall and

Abramson, 2001). So, an allocation or solution for the academic space allocation

problem is represented in this thesis using the string of length n and stored using the

data structure shown in figure 4.1. The combination of the string and the linked list

structure helps to maintain the feasibility conditions in this problem.

Figure 4.1. Data structure used for the space allocation problem. The global lists Entities, Rooms and
Constraints hold data corresponding to the problem instance being solved. The linked lists of genes
hold details of a particular allocation or solution.

R1 R2 R3 R4 R5 E1 E2 E3 E4 E5

C1 C2 C3 C4

Entities

EntityGene List RoomGene List

ConstraintGene List

Rooms

Constraints

General Metaheuristic Approaches

 78

4.3. Neighbourhood Structures

Three neighbourhood structures or moves are defined to perform local search. These

structures are given below together with their respective size in terms of the number

of entities to allocate (n) and the number of available rooms (m).

§ Relocate an entity to a different room. |NR| = n (m - 1).

§ Swap the rooms between two entities. |NS| = n (n - 1) / 2.

§ Interchange the allocated entities between two rooms. |NI| = m (m - 1) / 2.

In the above, n is the number of entities to allocate, m is the number of available

rooms, and NR, NS and NI refer to the relocate, swap and interchange neighbourhoods

respectively. These neighbourhood structures are naturally associated to the problem

studied in this thesis. They were selected so that targeted changes can be

implemented in the existing allocation and the feasibility of solutions is fully or

nearly maintained. Also, more elaborate moves or chains of moves can be generated

from these three basic neighbourhood structures. A feasible move modifies the

solution maintaining the feasibility conditions while a suitable move is a feasible

move that also improves the solution quality. From the description of the problem

given in chapter two, it can be noted that the improvement of solution quality can be

achieved by reducing the amount of space misuse and/or by reducing the violation of

soft constraints. Then, given the types of constraints in this problem, it is also

possible to design specific moves or neighbourhood structures aimed to improve the

solution quality. However, it was decided not to have such a high degree of

specialisation so that the metaheuristic approaches proposed in this thesis could

eventually be applicable to different problem instances (given the variety of soft

constraints) and perhaps similar problem domains.

4.4. Fitness Evaluation Routines

After modifying a solution by means of the moves described above or using the

genetic operators described later in this chapter, the fitness of the new allocation has

to be calculated. Unfortunately, an exact evaluation of the new fitness cannot be

carried out locally. The reason for this is that not only the entities and rooms

involved in the move have to be taken into account but also the entities and rooms

General Metaheuristic Approaches

 79

affected indirectly by the modification. The level of satisfaction of other soft

constraints not directly related to the implemented move may also be affected and

then, an exact fitness evaluation would require consideration of all the soft

constraints. Such an exact fitness evaluation routine is very time consuming and

therefore, an approximate fitness evaluation routine, also known as delta evaluation

(Corne et al., 1994), is also implemented. Such approximate evaluation takes into

account the changes in space utilisation and the changes in the soft constraints

satisfaction directly related to the entities and rooms involved in the selected move.

But this approximate evaluation does not consider the potential changes produced in

the soft constraints satisfaction related to other entities and rooms not involved in the

move.

Consider the situation illustrated in figure 4.2 where the selected move is to swap

the assigned rooms between entities E3 and E4. The approximate evaluation takes

into account the changes in space utilisation in rooms R5 and R6 and the change in

the satisfaction of constraint C2 but not the satisfaction of constraint C1, which is

also affected. The purpose of implementing two fitness evaluation routines

(approximate and exact) is to use each of them in the appropriate case so that the

search can be performed more efficiently. The exact evaluation is used when an

improved solution has been found, in order to update the solution fitness accurately.

The approximate evaluation is used while exploring the neighbourhood of a solution,

in order to carry out a quick assessment of the suitability of implementing a move.

Figure 4.2. The approximate fitness evaluation routine. This procedure only considers the entities and
rooms involved in the implemented move.

E1

R6

E2

R5

E3

R6

E4

R5

constraint C2

be together with E2

E5

R2

E1

R6

E2

R5

E3

R5

E4

R6

E5

R2

constraint C1

be together with E3

constraint C2

be together with E2

constraint C1

be together with E3

swap E3 and E4
rooms

entities

General Metaheuristic Approaches

 80

4.5. Constructive Heuristics and Neighbourhood Exploration

In this section, the heuristics employed to initialise an allocation and to perform

neighbourhood search are described. Various degrees of greediness and exploration

can be used when performing initialisation and neighbourhood search respectively.

That is, there exist a number of strategies for constructing an initial solution that

ranges from random selection to complete greedy heuristics including peckish

methods, i.e. a greedy heuristic that occasionally makes mistakes (Corne et al.,

1994). Similarly, while performing neighbourhood search, the selection of the next

neighbouring solution can be done at random or after evaluating all the solutions in

the neighbourhood.

Several researchers have noted that a trade-off needs to be established between

the size of the neighbourhood and the efficiency and effectiveness of the exploration

(Liu, 1999; Marett and Wright, 1996). Another aspect that must be considered is the

connectedness of the solution space and the difficulty to explore it. The degree of

intensification used to construct initial solutions and to explore the neighbourhood

can have an effect on the performance of the metaheuristic used to perform the

search (Dowsland, 1996; Corne et al., 1994).

4.5.1. Constructive Heuristics

The initialisation of an allocation is accomplished by iteratively allocating entities to

rooms. Two selections have to be made: the next entity to allocate and then, the room

to which the entity should be allocated. The constructive heuristic can vary from

complete random selection of both the entity and the room to a greedy strategy that

selects the best assignment. The following simple heuristics were implemented here:

AllocateBestAll. Selects the pair (unallocated entity,room) that produces the largest

improvement in the solution fitness and allocates the entity to the room.

AllocateRnd-Rnd. Selects an unallocated entity and room at random and allocates

the entity to the room.

AllocateRnd-BestRnd. Selects an unallocated entity at random, then explores a

number of randomly selected rooms evaluating the suitability of each of them. Then,

the chosen entity is allocated to the best of the subset of explored rooms.

General Metaheuristic Approaches

 81

AllocateWgt-BestRnd. The unallocated entities are sorted in decreasing order of

their weight (required space). In each iteration, the unallocated entity with the largest

weight is selected (breaking ties at random) and the room to allocate this entity is

chosen using the same procedure as in the heuristic AllocateRnd-BestRnd.

AllocatePrty-BestRnd. The unallocated entities are sorted in decreasing order of

their importance (for example managers, professors, technicians, etc.). In each

iteration, the unallocated entity with the highest priority is selected (breaking ties at

random) and the room to allocate this entity is chosen with the same procedure as in

the heuristic AllocateRnd-BestRnd.

AllocateCsrt-BestRnd. This heuristic was designed specifically to allocate entities

subject to hard constraints. If the selected unallocated entity is subject to hard

constraints that limit the possible rooms to which this entity can be allocated (e.g. Be

located in or Be together with), the feasible assignment that produces the best

improvement in the allocation fitness is implemented. By using this heuristic to

allocate entities subject to hard constraints, it is easier to guarantee the feasibility of

the generated initial solutions.

Note that all the above heuristics select the entity to be allocated and then search

for an adequate room using random or tournament selection. Heuristics selecting first

the room to fill and then searching for adequate entities for the chosen room were

also tried. However, the strategy of driving the initialisation by entity selection

instead of by room selection produced better results overall. The main reason

observed for this was that most of the constraints (soft and hard) are associated to

entities rather than to rooms. This means that there is more flexibility when searching

a room for a given entity and achieving satisfaction of constraints even with a small

detriment in the room space utilisation efficiency.

4.5.2. Neighbourhood Structure Selection

The first step is to decide which type of neighbourhood structure (relocate, swap or

interchange) to use and then to explore the chosen neighbourhood with a

predetermined strategy. A heuristic was designed to select the type of neighbourhood

structure or move before initiating the neighbourhood exploration to select the actual

move. This heuristic is shown in figure 4.3.

General Metaheuristic Approaches

 82

Note that the strategy shown in fig. 4.3 considers the cases when all the entities

are already allocated and also when there are unallocated entities. Although it was

specified in chapter 2 that one of the feasibility conditions considered in this thesis is

that all the entities in the problem instance must be allocated (eq. 2.8), the heuristic

presented in figure 4.3 permits flexibility to consider other problem conditions (for

example, when unallocated entities are allowed) and adaptability to various search

strategies (considering or not infeasible solutions during the search). Moreover, this

heuristic can be used for initialising solutions as well as for neighbourhood

exploration. In this case, the heuristic tries to allocate as many entities as possible to

produce a feasible solution by using the allocate move, but it also tries to avoid

getting stuck by examining the relocate, swap and interchange neighbourhoods when

no more allocate moves are possible.

Step 1. If all n entities are allocated then do
 Step 1.1. Select the move type at random: relocate, swap or interchange.
Step 2. If not all n entities are allocated then do
 Step 2.1. If the number of attempts ≥ maximum attempts permitted then do
 Step 2.1.1. If the previous selected move type was allocate then select a move

between relocate, swap and interchange at random.
 Step 2.1.2. If the previous selected move type was not allocate then select the

allocate move.
 Step 2.1.3. Set the number of attempts equal to zero.
 Step 2.2. If the number of attempts < maximum attempts permitted then do
 Step 2.2.1. If the previous selected move type was not allocate then select a move

between relocate, swap and interchange at random.
Step 3. Explore the neighbourhood and return a move of the selected type.

Figure 4.3. Local search heuristic HLS selects the type of move or neighbourhood structure and then
explores the selected neighbourhood to find a move. The number of attempts refers to the number of
previously consecutive failed (i.e. no accepted) moves. The value maximum attempts refers to the
maximum number of failed attempts permitted.

To select the type of move, this heuristic takes into account the current state of

the allocation and the history of success in applying each type of move. The type of

move that is undertaken in each iteration, depends on the number of allocated entities

and the number of prior failed attempts to find a feasible move of the selected type.

That is, if all entities are allocated in the current solution, only the moves relocate,

swap and interchange are explored. In the case that not all entities are allocated, a

certain number of maximum attempts normally set to n/10 (decided by preliminary

experimentation) is given to either of the three move types. For example, suppose

that in the current solution there are still 5 unallocated entities from a total of 100 in

General Metaheuristic Approaches

 83

the allocation problem. Then, if after 20 failed attempts, none of these entities have

been successfully allocated, the algorithm examines the feasibility of modifying the

solution using the relocate, swap and interchange moves up to a maximum of 20

failed attempts. The number of failed modification attempts is set to zero when a

move has been accepted by the driving metaheuristic (e.g. iterative improvement,

simulated annealing or tabu search).

4.5.3. Neighbourhood Exploration

Once the neighbourhood structure (type of move) is chosen, exploring the selected

neighbourhood consists of visiting one, some or all the solutions in the vicinity of the

current solution and selecting one of them. As in solution initialisation, the

neighbourhood exploration strategy can vary from random (visiting one neighbour at

random) to exhaustive (visiting all neighbours). The heuristics that were

implemented in this thesis to carry out the neighbourhood exploration are described

below.

RelocateRnd-Rnd. Selects an allocated entity and a room at random and moves the

entity from its previous room to the selected room.

RelocateRnd-BestRnd. Selects an allocated entity at random, then explores a

number of randomly selected rooms evaluating the suitability of each of them to

relocate the selected entity. Then, the chosen entity is allocated to the best of the

subset of explored rooms.

RelocatePnty-BestRnd. The allocated entities are sorted in non-increasing order of

their individual penalties (violation of soft constraints). In each iteration, the

allocated entity with the highest penalty is selected and the room to relocate this

entity is chosen with the same procedure as in the heuristic RelocateRnd-BestRnd.

SwapRnd-Rnd. Two entities allocated to different rooms (so that the swap move can

take place) are selected at random. Then, the assigned rooms are swaped between

these two entities.

SwapRnd-BestRnd. Selects one allocated entity at random, then explores a number

of randomly selected entities allocated to a different room evaluating the suitability

General Metaheuristic Approaches

 84

of the swap. Then, the pair that produces the largest improvement in the solutions

fitness is selected.

SwapPnty-BestRnd. The allocated entities are sorted in non-increasing order of

their individual penalties (violation of soft constraints). In each iteration, the

allocated entity with the highest penalty is selected and the entity to implement the

swap is chosen with the same procedure as in the heuristic SwapRnd-BestRnd.

InterchangeRnd-Rnd. Two rooms are selected at random and the interchange move

is conducted betweent these two rooms.

InterchangeRnd-BestRnd. Selects one non-empty room at random, then explores a

number of randomly selected non-empty rooms evaluating the suitability of the

interchange. Then, the pair of rooms that produces the largest improvement in the

solution fitness is selected and the interchange move is conducted.

InterchangePnty-BestRnd. The non-empty rooms are sorted in non-increasing

order of their individual penalties (space misuse and violation of soft constraints). In

each iteration, the room with the highest penalty is selected and the room to

implement the interchange is chosen with the same procedure as in the heuristic

InterchangeRnd-BestRnd. Then, the interchange move is conducted using these two

rooms.

The number of rooms explored when the BestRnd variant is used in the above

moves was set to n/3 by preliminary experimentation. The various neighbourhood

structures and heuristics described above permit the implementation of the heuristic

HLS (figure 4.3) in many different ways considering (or not) infeasible solutions and

using different degrees of intensification. As mentioned above, the neighbourhood

exploration is carried out faster because the approximate fitness evaluation routine is

used. Another mechanism used in this thesis to speed up the neighbourhood search

was to estimate the percentage of space that may be wasted or overused when

implementing the selected move and to consider the move only if this percentage of

misused space is within certain limits (±50% of the required space w(j) for the jth

entity). If this space deviation is not calculated, the move is evaluated even if the

rooms involved in the move are too big or too small for implementing the move. The

selection of a suitable move with the above neighbourhood search heuristics does not

General Metaheuristic Approaches

 85

imply that the current solution will be improved. The moves are locally evaluated

with the approximate fitness evaluation routine and the selected move is passed to

the driving metaheuristic which will decide whether the move is accepted or not after

the exact fitness of the new solution is calculated. That is, the HLS local search

heuristic samples the neighbourhood and returns a promising move to the driving

metaheuristic. The following sections describe the metaheuristics implemented in

this thesis.

4.6. Iterative Improvement Algorithm

The iterative improvement local search that was implemented in this thesis is shown

in figure 4.4. By selecting different heuristics to explore the neighbourhood in the

HLS heuristic, this iterative improvement local search can be implemented with

various degrees of neighbourhood exploration.

Various configurations were compared in order to select the best one. The

experiments and results are described later in this chapter. Although this iterative

improvement local search approach is quite simple, it is used in this thesis as a non-

trivial algorithm against which to compare the performance of other more elaborate

approaches.

Step 1. Generate initial current solution x.
Step 2. Generate candidate solution x’ using the HLS heuristic.
Step 3. If fitness(x’) > fitness(x) then x = x’.
Step 4. If stopping condition met finish, otherwise go to Step 2.

Figure 4.4. Iterative improvement local search uses the HLS heuristic for neighbourhood sampling.

4.7. Simulated Annealing

Simulated annealing is a metaheuristic approach that has been applied to many

optimisation problems. In particular, there are several papers in the literature

reporting on the performance of this approach on scheduling related problems and

the correlation between the observed performance of this algorithm and the

neighbourhood exploration strategies, cooling schedules and acceptance probability

functions used. For example, (Liu, 1999) studied the impact of different

combinations of the neighbourhood structure size and cooling schedules on the

General Metaheuristic Approaches

 86

performance of simulated annealing for the flowshop scheduling problem. Liu

observed that large neighbourhood sizes were more appropriate for fast annealing

processes, small sizes did better for slow annealing processes while variable sizes

gave the best results with respect to the effectiveness of the whole process.

Step 1. Generate initial current solution x.
Step 2. Set temperature = initial temperature.
Step 3. Generate candidate solution x’ using HLS heuristic.
Step 4. ∆F = fitness(x’) - fitness(x).
Step 5. If ∆F > 0 then x = x’.
Step 6. If ∆F ≤ 0 then do

Step 6.1. Calculate acceptance probability = exp (- ∆F/temperature).
Step 6.2 If acceptance probability > random [0,1] then x = x’.

Step 7. Update temperature according to the cooling schedule.
Step 8. If stopping condition met finish, otherwise go to Step 3.

Figure 4.5. The simulated annealing approach uses the HLS heuristic to explore the neighbourhood and
the Boltzman-like distribution as the acceptance probability function.

The simulated annealing algorithm that was implemented in this thesis is

described in figure 4.5. Several of the cooling schedules proposed in the literature

were tested in the preliminary experiments carried out in this thesis. However, no

significant difference was observed in the performance of the metaheuristic and

therefore only the arithmetic and geometric cooling schedules are considered here

due to their simplicity and good performance.

4.8. Tabu Search

As was the case with the simulated annealing algorithm, tabu search has also been

applied to a great number of optimisation problems including many scheduling

related problems. Many ways to implement the four main components of tabu search,

short-term memory, long-term memory and intensification and diversification

strategies have been proposed and compared in the literature (e.g. Glover and

Laguna, 1997). The common strategy to implement short-term memory and long-

term memory in tabu search is to store move attributes rather than to store visited

solutions (which is not very efficient). One disadvantage of storing move attributes is

that by forbidding certain moves, solutions that have not yet been visited may be

avoided and some solutions may still be re-visited since they might be generated by a

different sequence of moves. The heuristic HLS uses three types of moves and

General Metaheuristic Approaches

 87

therefore the attributes that define the move that has been implemented may be

different. For example, the attributes describing a relocate move can be the entity

together with the previous and new assigned rooms. In the case of the swap move,

the attributes can be the two entities being swapped together with their corresponding

assigned rooms. The attributes for describing an interchange move can be the two

rooms being involved in the move together with the corresponding allocated entities

in each of the rooms. Of course, simplified attributes could be used to describe the

moves and then all moves sharing the same attributes would be considered to be the

same. Even the same set of attributes could be used to describe the three types of

moves, such as the entity together with its previous room and its new assigned room.

Various strategies of storing move attributes were tried, but managing lists of moves

attributes is another aspect that contributed to slowing down the neighbourhood

exploration. Therefore, instead of dealing with lists of moves, a mechanism that

maintains pools of genes (parts of solutions) was used to implement the short-term

memory, the long-term memory and the intensification and diversification strategies

in the tabu search algorithm. Other researchers have also used matrices to store parts

of solutions in order to implement short-term memory and long-term memory (Diaz

and Fernandez, 2001; White and Xie, 2001).

4.8.1. Matrices of Tabu and Attractive Genes

Two matrices of size n x m are used and in both of them the cell (j,i) corresponds to

the allocation of the jth entity to the ith room for j = 1,..,n and i = 1,..,m. The matrix

MT stores those pairs (entity,room) that will be considered as tabu for a number of

iterations while the matrix MA stores those pairs (entity,room) that will be considered

attractive during the search. The tabu matrix MT is updated each time a move

suggested by the heuristic HLS produces a detriment in the fitness of the current

solution while the attractive matrix MA is updated each time the move produces an

improvement.

Updating a cell in MT means setting its value to current_iteration + tenure so that

a move involving the pair (entity,room) corresponding to that cell is set as tabu for

tenure number of iterations. Some researchers have proposed the random variation of

the tenure value within certain limits (Di Caspero and Schaerf, 2001; Schaerf,

General Metaheuristic Approaches

 88

1999b). Preliminary experiments carried out in this thesis for tuning the tabu search

parameters, showed that a tenure value of around n and kept constant throughout all

the iterations produced good results. Updating a cell MA refers to incrementing the

value of the cell in one unit, i.e. MA(j,i) = MA(j,i) + 1. In each type of move, the cells

that are updated are the ones corresponding to the pairs (entity,room) after

implementing the move. For example, if the 6th entity is relocated from the 2nd to the

4th room, then the value in the cell MA(6,4) is incremented in one if the move

produced a better solution but if the move generated an inferior solution the value in

the cell MT(6,4) is set to the value current_iteration + tenure. Note that in a swap

move two cells are updated while in an interchange move more cells can be updated.

The tabu matrix acts as the short-term memory component while the attractive

matrix acts as the long-term memory component. Since both matrices store pairs

(entity,room), this mechanism can be regarded as a way of memorising parts of

allocations or genes that come from bad solutions (MT) or good solutions (MA).

4.8.2. Intensification and Diversification Strategies

Commonly, the intensification strategies incorporated in tabu search implementations

use the short-term memory for exploring the neighbourhood of promising solutions.

In the case of diversification, various strategies have been proposed. For example,

one common way is to identify unvisited areas of the solution space with the aid of

the memory components and then encourage the exploration of these areas. Some

researchers have suggested to periodically change the weights in the fitness function

during the search, a mechanism known as strategic oscillation (Costa, 1994; Alvarez-

Valdes et al., 2000; Diaz and Fernandez, 2001; Schaerf, 1999b). Another way to

diversify the search is to replace the current solution with the best solution so far

after a number of non-improving iterations (Higgins, 2001). Tabu relaxation has also

been proposed for diversification and it consists of re-initialising the tabu lists after a

number of non-improving iterations (White and Xie, 2001).

In the tabu search algorithm implemented here, the matrices MT and MA are used

to implement the strategies for intensifying and diversifying the search as described

next. In the heuristic HLS, the neighbourhood exploration attempts to find a feasible

move of the selected type (step 3 in figure 4.3). If a feasible move is found and its

General Metaheuristic Approaches

 89

attributes are considered tabu according to MT, another move is sought unless the

aspiration criterion is satisfied. The aspiration criterion used here is that the

candidate solution generated by the move should be better (measured with the

approximate fitness evaluation routine) than the current solution. If the

neighbourhood exploration cannot find a feasible move, then a relocate move is

heuristically created using the information stored in MA. To do this, an entity j is

selected at random and the highest value in the jth row is identified in MA

(corresponding to the most attractive room i to allocate entity j). If the entity j is not

already allocated to room i then the move proposed is to relocate the entity to that

room (provided it is feasible). If this assignment already exists in the current

solution, another entity is selected at random and the same process in carried out

until a feasible relocate move is found. The tabu search implemented in this thesis is

described in figure 4.6.

Step 1. Generate initial current solution x.
Step 2. Initialise the tabu and attractive matrices MT and MA.
Step 3. Explore a set of candidate solutions as follows. Generate a set of candidate solutions X’ from
current solution x using the modified HLS heuristic. As described above, the modified version
incorporates the intensification and diversification strategies using the memory components MT and
MA. Select the best candidate solution x’ from the set X’ only if x’ (associated move attributes) is not
tabu or if the aspiration criterion is satisfied.
Step 5. If fitness(x’) > fitness(x) then x = x’ .
Step 6. Update tabu and attractive matrices MT and MA.
Step 7. If stopping condition met finish, otherwise go to Step 3.

Figure 4.6. The tabu search approach uses matrices to store parts of good and bad solutions in order to
implement the short-term and long-term memory components.

4.9. Genetic Algorithm

A simple genetic algorithm was designed as described in figure 4.7 but several ways

to implement its components were compared in order to obtain a relatively well-

tuned version of this metaheuristic for the problem investigated here. The

subsections below describe the various components of this genetic algorithm in more

detail.

Step 1. Generate an initial current population.
Step 2. Evaluate the current population.
Step 3. Until the new population if completed do the following:

Step 3.1. Select two individuals that will act as parents.

General Metaheuristic Approaches

 90

Step 3.2. If crossover probability ≥ random [0,1] then recombine the two selected parents to
create two offspring.
Step 3.3. If crossover probability < random [0,1] then copy the two selected parents as the
offspring.
Step 3.4. Apply the mutation operator with a given probability to the offspring.
Step 3.5. Copy the two offspring to the new population.

Step 6. Apply the elitist strategy consisting on replacing the worst individual in the new population
with the best individual in the current population.
Step 7. Copy new population to the current population.
Step 8. If stopping condition met finish, otherwise go to Step 2.

Figure 4.7. The genetic algorithm approach implemented in this thesis.

4.9.1. Selection of Parents

Two variants were tried: fitness proportional selection (also called roulette-wheel

selection) and tournament selection (Coley, 1999). Both selection methods produced

comparable results and it was decided to use tournament selection with a tournament

size between 2 and 5.

4.9.2. Genetic Operators

Four crossover operators were implemented and compared: single-point, uniform,

heuristic uniform and heuristic non-uniform. Both single-point and uniform operators

are well-known and their descriptions can be found in the literature (Coley, 1999). In

the heuristic uniform operator, each pair of corresponding genes (entity,room) in

both parents are compared in terms of their local fitness, i.e. the fitness of the

corresponding entity. The gene with the highest fitness is copied to one of the

offspring while the other gene is copied to the second offspring. In the heuristic non-

uniform crossover operator, the first step is to copy both parents to the two offspring

and then identify a number of genes (a parameter set usually to n/5) with the lowest

fitness (the fitness of the entity) in each offspring. Then, for each of the offspring,

these less fit genes are copied from the other offspring. That is, suppose that the 5th

entity is allocated to the 6th room in the first offspring and allocated to the 9th room in

the second offspring. Assuming that this gene has been identified as one of the less

fit (the penalty due to the violation of soft constraints is high for this pair) in the first

individual, then the 5th entity will be relocated from the 6th to the 9th room in the first

offspring.

General Metaheuristic Approaches

 91

Both the single-point and uniform crossover operators performed reasonably

well but very elaborate routines for repairing the allocations (satisfy the feasibility

conditions imposed by the hard constraints) were required. On the other hand, the

heuristic uniform and heuristic non-uniform operators produced solutions with not

too many hard constraint violations (so are easily repaired) due to the fact that the

fitness of each gene also reflects the degree of hard constraints violations. The

heuristic non-uniform crossover operator was the one that produced the best results

overall and it was selected for the final implementation of the genetic algorithm.

The mutation operator implemented here is a simple mechanism in which for

each gene in the chromosome and with certain probability, a new room is selected at

random and assigned to the corresponding entity. If the chosen room is not feasible

for allocating the entity then the next gene is processed.

4.10. Experiments and Results

This section describes the experiments carried out in order to assess the performance

of the metaheuristics described above and reports on the results obtained in these

experiments. The goals were to tune the approaches to produce the best results

possible with these methods and to identify those components of each metaheuristic

that can be used to design a hybrid approach.

4.10.1. The Initialisation Heuristics

The first set of experiments compared the quality of solutions (in terms of fitness and

diversity) generated by each of the initialisation heuristics described in section 4.5.1.

The experiments consisted of generating 50 solutions with each of the heuristics for

three of the test instances described in section 2.5. The results are reported in tables

4.1 to 4.3.

Total Penalty F(x)
Initialisation Heuristics

maximum average minimum
V(p)

AllocateBestAll 1817.10 1817.10 1817.10 0.0
AllocateRnd-Rnd 9686.72 8892.05 8246.58 82.71
AllocateRnd-BestRnd 6294.67 4639.40 2966.13 60.26
AllocateWgt-BestRnd 8479.87 8269.83 8097.73 5.50
AllocatePrty-BestRnd 5583.31 4284.81 2789.26 36.38
AllocateCsrt-BestRnd 3713.60 2521.13 1717.52 44.43

General Metaheuristic Approaches

 92

Table 4.1. Performance of the initialisation heuristics on the test instance nott1.

Total Penalty F(x)
Initialisation Heuristics

maximum average minimum
V(p)

AllocateBestAll 6070.47 6070.47 6070.47 0.0
AllocateRnd-Rnd 6637.38 6235.83 5854.21 71.76
AllocateRnd-BestRnd 6418.23 6100.41 5852.30 67.98
AllocateWgt-BestRnd 7335.64 6917.46 6581.47 20.44
AllocatePrty-BestRnd 5614.65 5221.08 4986.64 20.89
AllocateCsrt-BestRnd 5735.85 5453.26 5210.24 57.03

Table 4.2. Performance of the initialisation heuristics on the test instance trent1.

Of course, the greedy heuristic AllocateBestAll always generates the same

solution which can be used as a reference to assess the quality of the solutions

generated by the other heuristics. As may be expected, the heuristic AllocateRnd-

Rnd produces sets of solutions with the highest diversity but also with low quality.

The heuristic AllocateWgt-BestRnd generates solutions with low quality and also

low diversity. This gives an indication that in this problem, guiding the initialisation

of solutions by space utilisation appears to be inadequate perhaps due to the

existence of additional constraints. Therefore, although the problem studied here can

be seen as a variant of the knapsack problem, it would probably not be wise to use

initialisation heuristics that have been proposed for knapsack problems to generate

solutions for the academic space allocation problem since those heuristics are mainly

based on the optimisation of space.

Total Penalty F(x)
Initialisation Heuristics

maximum average minimum
V(p)

AllocateBestAll 1974.03 1974.03 1974.03 0.0
AllocateRnd-Rnd 7079.90 6449.81 5596.82 80.55
AllocateRnd-BestRnd 2264.54 1470.26 857.18 32.17
AllocateWgt-BestRnd 8112.36 8041.62 8112.36 4.38
AllocatePrty-BestRnd 2989.34 2054.71 1473.20 22.78
AllocateCsrt-BestRnd 2189.87 1395.62 931.04 31.62

Table 4.3. Performance of the initialisation heuristics on the test instance wolver1.

The heuristic AllocatePrty-BestRnd generates solutions with higher quality but

the population diversity V(p) is still low. The heuristics AllocateRnd-BestRnd and

AllocateCsrt-BestRnd appear to be the ones that provide the best compromise

between quality and diversity in the set of generated solutions. Comparing these two

heuristics, it can be observed that AllocateRnd-BestRnd produces solutions with

General Metaheuristic Approaches

 93

higher diversity and competitive fitness while AllocateCsrt-BestRnd obtains sets of

solutions with lower diversity but better quality. Comparing the sets of solutions

generated by each of the proposed initialisation heuristics permits the choice of the

appropriate strategy to generate initial solutions when assessing the performance of

the metaheuristics investigated in this thesis. In the rest of the experiments in this

chapter, the heuristic AllocateRnd-BestRnd is used to initialise solutions. The

reason for this selection is that with this strategy, solutions with a wider range of

fitness values can help to better assess the performance of metaheuristics instead of

using mostly very high quality initial solutions like those generated by the

AllocateCsrt-BestRnd heuristic.

4.10.2. The Neighbourhood Exploration Heuristics

The next set of experiments was carried out to compare the various neighbourhood

exploration strategies described in section 4.5.3. Different versions of the three

metaheuristics that use neighbourhood search (iterative improvement, simulated

annealing and tabu search) were implemented using the various neighbourhood

exploration strategies as shown in table 4.4. The same neighbourhood exploration

heuristic was used for the three moves in each variant, i.e. Rnd-Rnd in table 4.4

means that this strategy was used in the three moves relocate, swap and interchange.

No combinations between different heuristics of the three moves were used in these

experiments.

Neighbourhood Exploration Heuristics
Metaheuristics

Rnd-Rnd Rnd-BestRnd Pnty-BestRnd
Iterative Improvement IIRnd-Rnd IIRnd-BestRnd IIPnty-BestRnd
Simulated Annealing SARnd-Rnd SARnd-BestRnd SAPnty-BestRnd

Tabu Search TSRnd-Rnd TSRnd-BestRnd TSPnty-BestRnd

Table 4.4. Variants of the three approaches using neighbourhood search.

The algorithm parameters used in these experiments were as described next

(some of the parameters were tuned according to the size of the problem instance).

For the simulated annealing algorithm the arithmetic cooling schedule was used with

initial temperature = 1000, decrement step = 200 and decrement interval = n/2. For

the tabu search algorithm, tenure = 2n. The termination condition in all runs was a

maximum of 5000 iterations. Each metaheuristic variant was tested 20 times with

General Metaheuristic Approaches

 94

each data set and the best results obtained by each variant are presented in tables 4.5

to 4.7. The aim here was to assess the effect of the different neighbourhood

exploration heuristics on the performance of the three metaheuristics. Therefore,

each table compares the performance between the variants of the same metaheuristic

on the three problems. Each table shows the best solution, the execution time in

seconds needed to complete the run and the iteration at which the best solution was

obtained.

From the results presented in tables 4.5 to 4.7 it can be observed that the variants

with the Rnd-Rnd and the Rnd-BestRnd heuristics are comparable in terms of the

solution quality and execution time in most of the cases. On the other hand, the

variants with the Pnty-BestRnd heuristic produce competitive results in terms of

solution quality in some cases but the execution time is the longest in most of the

cases too. Although there is not clear evidence that the Rnd-BestRnd strategy is the

best, it appears from the results presented here that this heuristic for neighbourhood

exploration benefits the performance of the three metaheuristics tested here since

good quality solutions are obtained in short execution time and also the best solutions

are found in the earliest iterations in most of the cases.

Problem Instance Metric IIRnd-Rnd IIRnd-BestRnd IIPnty-BestRnd
total penalty F(x) 2227.19 774.22 1733.17
execution time (s) 39 31 57 nott1
iteration best 4905 2924 4957
total penalty F(x) 2712.43 4440.12 5914.62
execution time (s) 30 33 66 trent1
iteration best 4939 2730 121
total penalty F(x) 717.23 634.19 1164.02
execution time (s) 25 20 37 wolver1
iteration best 4309 1465 234

Table 4.5. Results for the iterative improvement metaheuristic variants.

Problem Instance Metric SARnd-Rnd SARnd-BestRnd SAPnty-BestRnd

total penalty F(x) 4591.96 839.50 1371.96
execution time (s) 34 33 83 nott1
iteration best 87 4522 4543
total penalty F(x) 3558.76 4646.73 5144.22
execution time (s) 28 29 76 trent1
iteration best 4898 3490 2052
total penalty F(x) 1391.87 1627.55 1110.38
execution time (s) 16 20 28 wolver1
iteration best 54 1433 4123

General Metaheuristic Approaches

 95

Table 4.6. Results for the simulated annealing metaheuristic variants.

Problem Instance Metric TSRnd-Rnd TSRnd-BestRnd TSPnty-BestRnd

total penalty F(x) 2111.15 735.37 1626.76
execution time (s) 54 37 46 nott1
iteration best 4719 3424 4637
total penalty F(x) 3214.61 3903.82 3728.87
execution time (s) 38 57 73 trent1
iteration best 4938 4658 4833
total penalty F(x) 1867.14 1431.77 1726.65
execution time (s) 26 20 34 wolver1
iteration best 5000 635 4129

Table 4.7. Results for the tabu search metaheuristic variants.

4.10.3. Comparing the Four Metaheuristics

After selecting the initialisation and neighbourhood exploration heuristics as

described in the previous sections, experiments were carried out to compare the

performance of the four metaheuristics: iterative improvement, simulated annealing,

tabu search and the genetic algorithm. For the first three algorithms, the parameters

were set as described in the previous section and the Rnd-BestRnd variants were

used in these experiments. The parameters for the genetic algorithm were set as

follows: population size = 20, tournament size = 3, crossover probability = 80% and

mutation probability = 5%. Each algorithm was executed 20 times with each problem

instance and the best results in terms of solution quality are presented here. The

termination condition for the single-solution algorithms (iterative improvement,

simulated annealing and tabu search) was a maximum of 10000 iterations while for

the genetic algorithm the maximum number of generations was set to 1000.

The results obtained are presented in table 4.8. For each of the test problems, a

reference solution exists and its corresponding quality is also given in table 4.8. This

reference solution is a manually constructed allocation that was obtained from the

space officers in the universities that provided us with the test data sets. The quality

of this reference solution is shown here for comparison with the quality of the

solutions generated by the four algorithms tested here.

Problem Instance Metric Iterative
Improvement

Simulated
Annealing

Tabu
Search

Genetic
Algorithm

total penalty F(x) 754.45 849.62 772.28 2145.21 nott1
reference = 599.56 execution time (s) 60 58 57 221

General Metaheuristic Approaches

 96

 iteration best 4220 3700 4957 812
total penalty F(x) 4341.77 4385.99 3924.03 7924.10
execution time (s) 59 60 66 237 trent1

reference = 3873.51
iteration best 6840 9940 9480 901
total penalty F(x) 634.19 1217.81 634.19 1312.01
execution time (s) 39 44 45 178 wolver1

reference = 1141.01
iteration best 1020 1024 1300 620

Table 4.8. The best solutions obtained by the four approaches in the three test instances. The quality of
a reference (manually constructed) solution is also shown for comparison.

4.10.4. Further Discussion of Results

From the results shown in table 4.8 it can be observed that the best results in terms of

the solution quality and execution time are produced by the iterative improvement

and the tabu search algorithms in the three test problems. The simulated annealing

algorithm produces good results but which are slightly inferior to those obtained with

iterative improvement and tabu search. Overall, the genetic algorithm seems to be the

worst performer in terms of the solution quality and execution time. However, it is

interesting to note that the genetic algorithm seems to be competitive in terms of

solution quality for the problem wolver1 but is well outperformed in problems nott1

and trent1. That is, it seems that the genetic algorithm is capable of finding

competitive solutions for the less constrained problem (wolver1). This gives an

indication of the importance of the additional constraints that exist in the academic

space allocation problem. Even when the genetic operators were reasonably tuned to

deal with these constraints, still the recombination of solutions appears to be a

difficult issue in this problem.

The time required for manually constructing an allocation varies from weeks to

months according to space officers. It is observed that the metaheuristic approaches

implemented here offer a promising alternative for automating the academic space

allocation process in a shorter time. From the approaches investigated here, iterative

improvement and tabu search appear to be the ones that are able to produce the best

results but still do not match the quality of the manually constructed allocation when

the problem is highly constrained (nott1 and trent1). Again, for the less constrained

problem (wolver1) these two methods are able to produce solutions that are better

than the reference solution measured with the fitness function used in this thesis.

Constructing a completely new allocation is not a frequently needed task, but the

General Metaheuristic Approaches

 97

experts spend days, even months, on it, while the heuristic methods implemented

here produce competitive initial solutions in seconds or minutes.

4.11. Summary and Final Remarks

This chapter presented an initial investigation into the application of metaheuristics

for searching good solutions to the academic space allocation problem. A direct

solution representation and associated data structures based on linked lists were used

to store the information about the instance being solved and the allocation or

solution. The use of these two components was beneficial in three ways. They

permitted the implementation of faster solution evaluation routines. It was also easier

to design the local search and genetic operators. In addition, these data structures can

be easily updated if the features of the problem instance change, i.e. number of

entities and rooms, constraints, etc.

Various initialisation heuristics were designed and compared in terms of the

quality and diversity of the set of generated solutions. Having different strategies to

generate initial allocations permits the production of sets of solutions with various

quality and diversity values that help to better analyse the performance of the

metaheuristics investigated in this thesis. Two of the initialisation heuristics generate

sets of solutions with a good compromise between solution quality and population

diversity. The heuristic finally chosen to generate initial solutions for the rest of the

experiments was AllocateRnd-BestRnd, which selects one entity at random and

then evaluates the suitabiliy of a set of rooms to allocate the entity and chooses the

best of these rooms.

Heuristics for neighbourhood exploration with various degrees of intensification

were compared with respect to their effect on the performance of the local search

based metaheuristics (iterative improvement, simulated annealing and tabu search).

The neighbourhhod exploration strategy that obtained the best results is the one in

which the search of the move of the selected type (relocate, swap or interchange) is a

trade-off between random and exhaustive search (Rnd-BestRnd).

This chapter proposed implementations of four well-known approaches: iterative

improvement, simulated annealing, tabu search and a genetic algorithm and

General Metaheuristic Approaches

 98

compared their performance on some test instances of the space allocation problem.

The iterative improvement algorithm is a simple non-trivial method used as a

reference to compare the performance of other more elaborate approaches. In the

simulated annealing method, several cooling schedules were compared. The best

results were obtained with the arithmetic and geometric schedules with reheating.

For the tabu search method, two matrices were proposed to implement the short-term

and long-term memory components. These matrices maintain pools of genes (parts of

solutions) that are used in the intensification and diversification strategies. For the

genetic algorithm, several recombination operators were implemented. The best

results were obtained with the heuristic non-uniform operator which was designed

specifically for the space allocation problem in order to avoid the excessive violation

of hard constraints. The simple mutation operator implemented in this thesis changes

the assigned room (maintaining feasibility) of an entity selected at random.

Overall, after comparing the four metaheuristics, iterative imporvement and tabu

search are the best performers, simulated annealing produces good results and the

genetic algorithm is the worst performer mainly because of the highly constrained

nature of the problem. Since no similar previous work has been reported in the

literature, this investigation is a useful reference not only for the work presented in

the following chapters but also for other researchers and practitioners interested in

the application of metaheuristics to solve the space allocation problem in academic

institutions.

Hybrid Metaheuristic Approaches

 99

Chapter 5. Hybrid Metaheuristic Approaches

5.1. Introduction

This chapter describes hybrid metaheuristics that were designed by combining

components of the algorithms investigated in the previous chapter and adding some

additional features described here. By preliminary experiments, it was possible to

identify suitable sets of parameters that produced good performance on the

approaches tested in chapter four and also to identify those components that seemed

to contribute the most to their best performance. Two hybrid metaheuristics are

proposed here. The first is a single-solution method that incorporates various features

such as local search heuristics, adaptive cooling schedules, short-term memory, long-

term memory and mutation operators. The second hybrid approach proposed here is a

population-based variant of the first one. Both approaches make an automatic

selection of the parameter settings according to the size of the problem instance and

surpass the best performance of the metaheuristics implemented in the previous

chapter.

In chapter two we noted that in the space allocation problem, like in many other

optimisation problems, it is often desirable to obtain a set of high quality candidate

solutions so that the decision-makers can select the best among them. However, it

may also be the case that only one high quality solution is required. One particular

feature of the hybrid population-based metaheuristic described later in this chapter is

that by controlling a common cooling schedule for the whole population, it is

possible to adapt the cooling schedule to favour either the generation of one high

quality solution in short time or a set of high quality solutions at the expense of more

computation time. The experiments and corresponding results presented in this

chapter show that these hybrid approaches produce competitive solutions for the

academic space allocation problem. The research work described in this chapter is

included in the papers [Bur2001b], [Bur2001c] and [Bur2001d] (see the appendix on

page 199).

Hybrid Metaheuristic Approaches

 100

5.2. A Single-Solution Hybrid Metaheuristic

Preliminary experiments revealed that some of the components of the metaheuristics

tested in chapter four were beneficial when incorporated into a hybrid approach. For

example, the aggressive exploration of the iterative improvement algorithm

permitted us to construct solutions of reasonable quality in a relatively short

computation time compared with the other techniques. Also, the oscillating effect in

the acceptance function in simulated annealing and the memory structures in tabu

search had a considerable contribution to the good performance of those algorithms.

The mutation operator in the genetic algorithm was the operation that permitted us to

better explore the solution space by adding diversity to the population without

introducing too many problems of infeasibility. The pseudocode for the proposed

single-solution hybrid metaheuristic is shown in figure 5.1.

Step 1. Generate an initial current solution x.
Step 2. Execute heuristic for parameters setting.
***** Heuristic Iterative Improvement Phase *****
Step 3. For iterations = 1 to IterationsII do

Step 3.1. Generate a candidate solution x’ using the modified HLS heuristic that incorporates
the intensification and diversification strategies using the memory components MT and MA.
Step 3.2. If fitness(x’) > fitness(x) then x = x’.

Step 4. Copy current solution to the best solution so far, i.e. x* = x.
***** Simulated Annealing with Reheating Phase *****
Step 5. Set AcceptanceProbability = InitialAcceptance.
Step 6. Generate a candidate solution x’ using the modified HLS heuristic that incorporates the
intensification and diversification strategies using the memory components MT and MA.
Step 7. If a feasible move was found then calculate ∆F = fitness(x’) - fitness(x).
Step 8. If ∆F > 0 then x = x’ and if fitness(x’) - fitness(x*) > 0 then update the best so far, x* = x’.
Step 9. If ∆F ≤ 0 then if AcceptanceProbability > random [0,1] then x = x’.
Step 10. Update the AcceptanceProbability according to the geometric cooling schedule.
Step 11. If no feasible move was found then increment FailedMoveAttempts.
Step 12. If FailedMoveAttempts > MaxFailedAttempts implement the Heavy Mutation Operator to
disturb the current solution x.
Step 13. If stopping condition satisfied finish, otherwise go to Step 6.

Figure 5.1. The single-solution hybrid metaheuristic incorporates elements from various methods.

The hybrid approach consists of the components listed below:

§ Heuristic Neighbourhood Search. Selects the neighbourhood to be explored and

in consequence the moves to try while attempting to improve the current solution.

§ Heuristic Iterative Improvement. Initialises the solution and achieves a certain

level of quality in the initial allocation.

Hybrid Metaheuristic Approaches

 101

§ Simulated Annealing with Reheating. Improves the solution produced by the

heuristic iterative improvement algorithm and avoids being trapped in poor local

optima by exploring different areas of the solution space by using an oscillation

strategy driven by the acceptance probability.

§ Heavy Mutation Operator. Modifies the current solution by unallocating some

entities from the current solution and encourages a better exploration of the

solution space.

§ Heuristic Parameters Setting. Selects the algorithm parameters according to the

problem characteristics. This heuristic might not produce the optimal parameter

values for each problem, but will find a good set of parameters in general.

5.2.1. The Hybrid Components

Heuristic Neighbourhood Search

The strategy used to explore the neighbourhood of the current solution in the hybrid

approach was the HLS heuristic of figure 4.3 extended with the incorporation of the

tabu and attractive matrices described in chapter four, i.e. the neighbourhood

exploration in the hybrid algorithms is done in the same way as in the tabu search

algorithm of section 4.8.

Heuristic Iterative Improvement

After generating an initial solution, the iterative improvement algorithm described in

chapter four is executed for IterationsII. The purpose of this component is to quickly

improve the initial solution by using the heuristic neighbourhood search component.

Given the improved solution (not necessarily local optima) produced by this

component, a further exploration of the solution space is accomplished in the

subsequent phases of the single-solution hybrid metaheuristic.

Simulated Annealing with Reheating

The simulated annealing phase takes the improved feasible current solution obtained

from the previous phase and uses the heuristic neighbourhood search component to

search the solution space and attempt to find a better solution. This simulated

Hybrid Metaheuristic Approaches

 102

annealing phase uses a cooling schedule that is simpler than the one used in the

implementation of chapter 4. It is a simple geometric cooling schedule (see section

3.5.10) that sets the AcceptanceProbability parameter to the value of

InitialAcceptance and decrements it after a number of iterations. When the

AcceptanceProbability is below a certain minimum, the cooling schedule maintains

this value while the search process attempts to find improvements in the best solution

so far. If, after a number of iterations ReheatInterval, no improvement is achieved in

the best solution so far, the parameter AcceptanceProbability is again set to

InitialAcceptance, i.e. the process is reheated.

Heavy Mutation Operator

A mutation operator was designed to disrupt the current solution and explore other

areas of the solution space after a number of failed attempts to find a feasible move.

The disruption consists of removing from their assigned room, those allocated

entities that contribute the most to the total penalty. This operation releases the space

assigned to those entities so that new possibilities of allocating them can be explored.

This heavy mutation operator works as follows. A maximum of RemoveLimit entities

to be unallocated is determined according to the size of the problem instance. The

allocated entities are sorted in decreasing order of their associated penalty, i.e. the

violation degree of the soft constraints associated to each of them. Then, starting

from the most penalised one, entities are unallocated up to the maximum

RemoveLimit. Once the current allocation is disrupted in this way, the simulated

annealing component will reallocate the unallocated entities because the

neighbourhood exploration heuristic will select the allocate move until all entities are

allocated again as described in section 4.5.2. The purpose of this heavy mutation

operator is to modify the current allocation after the algorithm gets stuck but this

modification is directed so that only bad parts of the solution (penalised entitities) are

disturbed.

Heuristic Parameters Setting

This component selects the algorithm parameters according to problem instance

being solved. The parameters for the simulated annealing component are set as

follows. The maximum acceptance probability InitialAcceptance is set to a value

Hybrid Metaheuristic Approaches

 103

between 95% and 100%. The decrement factor α in the geometric cooling schedule

is set to a value between 0.97 and 0.99. The number of iterations after which

AcceptanceProbability is reduced is set to a value between 1 and 3. Once

AcceptanceProbability temperature has been reduced to 0.001 or below (the process

is cooled), it is reset to the value of InitialAcceptance if after ReheatInterval = 10⋅n

iterations no further improvement has been achieved in the best solution so far. The

number of iterations for the iterative improvement phase is set to IterationsII = 5⋅n.

The value for the maximum number of failed move attempts is set to

MaxFailedAttempts = n/10.

5.3. On the Performance of the Single-Solution Hybrid

In this section the performance of the proposed hybrid approach is assessed and

compared against the three single solution metaheuristics implemented in chapter 3:

iterative improvement, simulated annealing and tabu search. The experiments carried

out for this purpose are described next followed by a presentation and discussion of

the results obtained. The genetic algorithm was not considered here because of the

poor performance shown in section 4.10.3.

5.3.1. Experimental Settings

Three problem instances: nott1, trent1 and wolver1 were used for the experiments.

For each of these test problems, 20 initial solutions were generated using the

AllocateRnd-BestRnd heuristic described in section 4.5.1. Then, each algorithm

was executed with each of these 20 initial solutions. Preliminary experiments were

carried out to determine, for each algorithm, the execution time after which no

further improvements on the best solution so far were observed. Then, the

termination condition was set to an amount of execution time large enough to allow

the four algorithms to achieve their best performance in each test problem. This

execution time for problems nott1, trent1 and wolver1 was set to 300, 120 and 15

seconds respectively.

Hybrid Metaheuristic Approaches

 104

5.3.2. Results and Discussion

Table 5.1 below shows for each test instance, the quality of the reference solution

and the results obtained in the experiments described above. Similarly to the results

from the experiments carried out in the previous chapter, the iterative improvement

and the tabu search algorithms produce very competitive results while the simulated

annealing implementation exhibits comparable performance only in the nott1

instance. However, note that the hybrid metaheuristic outperforms the other three

algorithms and it is also capable of finding better solutions than the reference

allocations for the three test instances. It also appears that the performance of the

hybrid metaheuristic is more robust than the other three algorithms with respect to

the quality of the solutions produced in different runs as reflected by the values for

the worst and average fitness.

The contribution of the space misuse and violation of soft constraints to the total

penalty in the solutions obtained is presented in figure 5.2. This permits to have a

closer look at the improvements achieved using the single-solution hybrid

metaheuristic over the solutions produced with the other three algorithms and over

the reference solution. Each bar in the graphs represents the average space misuse

and the average soft constraint violation for each set of 20 solutions obtained by each

algorithm in the experiments described above.

Problem Instance Total Penalty F(x)
Iterative

Improvement
Simulated
Annealing

Tabu
Search

Single-Solution
Hybrid

Metaheuristic
worst 887.65 806.81 844.63 674.49
average 716.79 703.14 698.77 592.24
best 568.36 548.52 546.67 527.15

nott1
reference = 599.56

execution time (s) 300 300 300 300
worst 4531.50 4671.72 4302.54 3838.03
average 4303.11 4435.04 3960.90 3676.36
best 3968.48 4162.94 3572.19 3526.27

trent1
reference =

3873.51
execution time (s) 120 120 120 120
worst 920.20 1935.64 872.15 714.05
average 716.70 1583.05 717.47 642.17
best 634.19 1142.16 634.19 634.19

wolver1
reference =

1141.01
execution time (s) 15 15 15 15

Table 5.1. Quality of the solutions obtained by the four single-solution approaches in the three tests
problems. The quality of the reference (manually constructed) solution is shown for comparison.

It can be observed from figure 5.2 that, regarding space utilisation, it is apparent

that all the solutions obtained with the four algorithms are comparable with the

Hybrid Metaheuristic Approaches

 105

reference solution. The difference between the performance of the single-solution

hybrid metaheuristic and the other three approaches appears to be mainly in the

satisfaction of soft constraints. That is, the single-solution hybrid metaheuristic

obtains solutions of better quality because it is capable of finding solutions with less

violation of soft constraints than the solutions produced by the other three

algorithms. By comparing the solutions obtained with the single-solution hybrid

metaheuristic to the reference allocations, it can be observed that in all problems the

hybrid approach is capable of finding solutions with better space utilisation which

contributed to produce solutions with lower total fitness overall. However, for the

problem nott1, none of the algorithms is capable of finding better solutions than the

reference one with respect to the satisfaction of soft constraints. This gives an

indication of the particular difficulty of this problem instance for which none of the

algorithms implemented so far has been capable of finding solutions that are better

than the manually constructed allocation in terms of the satisfaction of soft

constraints.

Figure 5.2. Contribution of space misuse and soft constraints violation to the total penalty. For each
problem, the reference solution (REF) and average solutions obtained with the iterative improvement
(ITE), simulated annealing (SA), tabu search (TS) and hybrid metaheuristic (HMH) are shown.

5.3.3. Further Comparison with Previous Results

The results presented and discussed above show that the single-solution hybrid

metaheuristic produces the best solutions for the three test instances. The aim of the

experiments described above was to assess the ability of each algorithm on finding

good solutions after considerable execution time. This is the reason why the best

0

100

200

300

400

500

600

700

800

REF-ITE-SA-TS-HMH

To
ta

l P
en

al
ty

problem nott1 problem wolver1 problem trent1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

REF-ITE-SA-TS-HMH

T
ot

al
 P

en
al

ty

0

200

400

600

800

1000

1200

1400

1600

1800

REF-ITE-SA-TS-HMH

T
ot

al
 P

en
al

ty

space misuse soft constraints violation

Hybrid Metaheuristic Approaches

 106

solutions obtained in these experiments using the three ‘pure’ metaheuristics

(iterative improvement, simulated annealing and tabu search) are better than those

produced by the same algorithms in chapter 4 (table 4.8, see section 4.10.3).

Therefore, to further assess the performance of the hybrid approach proposed in this

chapter, this hybrid algorithm was executed using the same initial solutions and

termination condition (10000 iterations) of the experiments in section 4.10.3. The

results are presented in table 5.2. In this table, the values for the three ‘pure’ methods

are those given in table 4.8.

Problem Instance Metric Iterative
Improvement

Simulated
Annealing

Tabu
Search

Single-Solution
Hybrid

Metaheuristic
total penalty F(x) 754.45 849.62 772.28 715.42
execution time (s) 60 58 57 54

nott1
reference = 599.56

iteration best 4220 3700 4957 812
total penalty F(x) 4341.77 4385.99 3924.03 3803.14
execution time (s) 59 60 66 71

trent1
reference = 3873.51

iteration best 6840 9940 9480 4193
total penalty F(x) 634.19 1217.81 634.19 634.19
execution time (s) 39 44 45 31

wolver1
reference = 1141.01

iteration best 1020 1024 1300 843

Table 5.2. Quality of the solutions obtained by the four single-solution approaches in the three tests
problems when the number of iterations is set to 10000.

It is confirmed with the results presented in table 5.2 that even with a limited

number of iterations, the single-solution hybrid metaheuristic obtains better solutions

that the other three approaches. For the three test instances, the hybrid approach

generates better solutions and the best solution is achieved in a shorter number of

iterations. With respect to the total execution time required for the 10000 iterations, it

can be observed that the time spent by the hybrid approach is very similar to the time

spent by the other three algorithms. . From the results presented and discussed here,

it is clear that the single-solution hybrid metaheuristic is the algorithm that produce

the best solutions so far.

5.4. A Population-Based Hybrid Metaheuristic

In this section we show how the single-solution hybrid metaheuristic described in the

previous section was extended towards a population-based approach. A population of

individuals is initialised and then it is subjected to further improvement using the

heuristic iterative improvement component described in the previous section. This

Hybrid Metaheuristic Approaches

 107

iterative improvement phase is executed for a number of IterationsII as in the single-

solution approach. Then, the simulated annealing with reheating phase also described

above is applied to each of the individuals in the improved population. The feature of

the approach presented here is that instead of having a cooling schedule for each

individual (this would be like a parallel implementation of the single-solution hybrid

metaheuristic), a common cooling schedule is set for the whole population. The way

in which the parameters for the common cooling schedule are set is described below.

Since in the simulated annealing phase, inferior solutions may be accepted with some

probability, two populations are maintained. The current population consists of the

current solution for each individual in the population and the best population consists

of the best solution found by each individual during the search process so that a set

of best solutions can be presented at the end of the algorithm. The pseudocode for

this population-based approach is presented in figure 5.3.

Step 1. Generate the initial current population.
Step 2. Execute heuristic for parameters setting.
***** Heuristic Iterative Improvement Phase *****
Step 3. For each individual xi in the current population Do

Step 3.1. Generate candidate solution xi’ from xi using the modified HLS heuristic that
incorporates the intensification and diversification strategies using the memory components
MT and MA.
Step 3.2. If fitness(xi’) > fitness(xi) then xi = xi’ .

Step 4. If stopping condition (usually a maximum of IterationsII iterations) for the heuristic iterative
improvement phase is met then go to Step 5, otherwise go to Step 3.
Step 5. Copy the current population to the best population, i.e. xi* = xi for i = 1,...p.
***** Simulated Annealing with Reheating Phase *****
Step 6. Set global AcceptanceProbability = InitialAcceptance.
Step 7. For each individual xi in the current population Do

Step 7.1. Generate candidate solution xi’ from xi using the modified HLS heuristic that
incorporates the intensification and diversification strategies using the memory components
MT and MA.
Step 7.2. If a feasible move was found then calculate ∆F = fitness(xi’) - fitness(xi) otherwise
increment failed move attempts(i).
Step 7.3. If ∆F > 0 then Do

Step 7.3.1. Update the current solution for the individual, xi = xi’ .
Step 7.3.2. If fitness(xi’) - fitness(xi*) > 0 then update the best solution for the
individual, xi* = xi’ .

Step 7.4. If ∆F ≤ 0 then if AcceptanceProbability > random [0,1] then xi = xi’ .
Step 7.5. If the AcceptanceProbability equals zero (process is cooled) and
FailedMoveAttempts(i) > MaxFailedAttempts then implement the Heavy Mutation Operator
to disturb the current solution xi.

***** Common Cooling Schedule Update *****
Step 8. Update AcceptanceProbability according to common cooling schedule.
Step 9. If stopping condition satisfied finish, otherwise go to Step 7.

Figure 5.3. The population-based hybrid metaheuristic uses a common cooling schedule to control the
simulated annealing phase for the whole population of individuals.

Hybrid Metaheuristic Approaches

 108

To summarise, the population-based hybrid metaheuristic incorporates a

population of individuals that cooperate during the search by using the common

neighbourhood search strategy and memory structures. Also, the annealing process

for the whole population is driven by a common cooling schedule in which the

control of the acceptance probability is distributed over all individuals in the

population. The various features of the proposed algorithm are further described in

the following subsections.

5.4.1. The Shared Memory Structures

Instead of maintaining a single solution, a set of individuals are evolved in the

extended algorithm. Therefore, in order to take advantage of the collective searching

process, the memory structures containing tabu and attractive genes (matrixes MT

and MA) are shared among all individuals in the population. In this way, the heuristic

HLS for neighbourhood exploration can be seen as a cooperative mechanism by

which the good and bad parts of solutions encountered by the various members of the

population are stored so that a more effective search can be performed collectively.

Then, the neighbourhood search in the population-based hybrid metaheuristic is

performed as in the previous chapter by using the heuristic HLS with the same

memory structures and diversification and intensification mechanisms. Referring to

the pseudocode in figure 5.3, xi represents the current solution for the ith individual in

the population, xi* represents the best solution found so far by the i th individual and

the shared memory structures are updated accordingly each time a candidate solution

xi’ is generated for the ith individual. Experiments were carried out to assess the

contribution of the shared memory structures to the performance of the extended

algorithm and the results obtained are presented later in this chapter.

5.4.2. The Common Cooling Schedule

The other feature which is characteristic of the population-based hybrid

metaheuristic is that a common cooling schedule is used to control the evolution of

the whole population. This strategy of using a common cooling schedule for the

whole population makes it possible to have a set of co-operating individuals that

react differently to the annealing process. The way in which the common annealing

Hybrid Metaheuristic Approaches

 109

process is controlled permits the algorithm to find one high quality solution in a short

computation time or a set of good solutions provided more computation time is

available. This section describes how the common annealing schedule (step 8 in

figure 5.3) operates upon the population.

The AcceptanceProbability is decreased (process is cooled) after IntervalCounter

iterations (complete executions of step 7 in figure 5.3) as AcceptanceProbability =

AcceptanceProbability⋅α where α takes values between 0.97 and 0.99 as in the

single-solution hybrid metaheuristic. A counter ReheatCounteri is maintained for

each individual i in the population and it is incremented in one each time the

candidate solution xi’ does not improve upon the current solution xi and the

AcceptanceProbability equals zero. There is a global counter GlobalReheatCounter

that is set to the highest ReheatCounteri of all individuals each time the step 7.5 in

figure 5.3 is processed. This means that as soon as one of the individuals cannot be

improved for ReheatInterval iterations, the common AcceptanceProbability is raised

again. The effect of this common annealing strategy is that while one (maybe more)

individual is stuck during the search, the others may not be yet. Then, by switching

to the random phase of the simulated annealing algorithm (AcceptanceProbability

above 0.001) the exploration of the search space can continue. It may appear that

waiting for all the individuals to achieve the most improvement possible before

raising the global acceptance probability makes more sense. However, our

experiments showed that when this was done, few individuals in the population were

likely to achieve further improvement after getting stuck in a possible local optima.

On the other hand, using the strategy proposed above permitted more individuals to

explore other areas of the search space and more improvements were obtained which

allowed the algorithm to produce better results overall.

5.5. On the Performance of the Population-Based Hybrid

5.5.1. Experiments and Results

Since in the previous section it was observed that the single-solution hybrid

metaheuristic obatined the best results among all the single-solution algorithms, the

first set of experiments in this section seeks to compare the performance of the

Hybrid Metaheuristic Approaches

 110

single-solution hybrid metaheuristic and the population-based variant. Experiments

were also carried out to assess the contribution of the shared memory structures and

the heavy mutation operator on the performance of the population-based algorithm.

For each test problem, the same initial population of p = 20 individuals used for the

single-solution variant was also taken as the initial population for the population-

based hybrid metaheuristic. The overall computing time assigned to each algorithm

was the same. That is, while each of the 20 runs (one run for each individual) of the

single-solution hybrid metaheuristic was given a certain execution time trun according

to the test instance, the execution time for one run of the population-based approach

was set to 20⋅trun. Another run of the population-based approach without the shared

memory structures and without the heavy mutation operator but using the same

initial population was executed. This experiment was repeated 10 times. That is, 200

solutions were produced in total with each of the theree algorithms compared.

Problem Instance
Total Penalty

F(x)

Single-solution
hybrid

metaheuristic

Population-based
hybrid

metaheuristic

Population-based
hybrid

metaheuristic’
best-average 576.15 619.02 681.69
average 592.24 633.10 668.61
minimum 527.15 575.51 641.38
std. dev. 47.21 44.67 67.33
diversity V(p) 32.85 61.96 62.58

nott1
reference = 599.56

execution time (s) 300 6000 6000
best-average 3614.85 3787.56 4279.78
average 3676.36 3817.34 4319.19
minimum 3526.27 3669.97 4238.67
std. dev. 120.54 115.90 69.88
diversity V(p) 30.72 80.65 80.94

trent1
reference = 3873.51

execution time (s) 120 2400 2400
best-average 639.94 664.12 681.63
average 642.17 677.85 690.73
minimum 634.19 634.25 634.19
std. dev. 61.23 53.16 74.02
diversity V(p) 28.41 45.31 44.63

wolver1
reference = 1141.01

execution time (s) 15 300 300

Table 5.3. Quality and diversity of the final population obtained by the single-solution hybrid
metaheuristic and the population-based variant on the three tests problems. Population-based hybrid
metaheuristic’ refers to the modified algorithm when the shared memory structures and the mutation
operator are not implemented. The quality of the reference solution is also shown for comparison.

Table 5.3 shows the results of these experiments. For each algorithm and each

test instance, this table reports the following: the minimum penalty (the best of the

200 obtained solutions), average penalty (average of all 200 solutions), best-average

penalty (the best value selected from the averages of the 10 repetitions), the standard

Hybrid Metaheuristic Approaches

 111

deviation (measured for all 200 solutions), the diversity of solutions (for all 200

obtained solutions) measured as described in section 2.4.3 and the execution time in

seconds. The values in the third column are the results obtained by the single-

solution hybrid metaheuristic apoproach in section 5.3 (see table 5.1). The fourth

column shows the results obtained by the population-based hybrid metaheuristic

(complete version) while the last column shows the results obtained by this approach

when no shared memory structures are used during the neighbourhood search and no

mutation operator was implemented.

It can be observed that the population-based algorithm (the complete version)

produces solutions that are very competitive with those obtained by the single-

solution approach for the three test problems. In particular, note that the best

solutions found by both algorithms are of similar quality. It appears that in terms of

the quality of solutions, the results produced by the single-solution approach are

better that those obtained with the population-based variant. That is, the average and

best-average values obtained with the single-solution method are better than those

produced with the population-based variant in the three test cases and the standard

deviations are very similar. However, an interesting observation can be made by

looking at the results obtained with respect to the diversity of solutions. It is clear

that the population-based algorithm produces more diverse sets of solutions for the

three test instances. In other words, although the sets of solutions obtained with the

single-solution approach seem to be of better quality, the diversity values obtained

(around 30%) suggest that all the 20 solutions are in fact very similar in structure. On

the other hand, the population-based variant produces sets of solutions of slightly

lower quality but which are more diverse in structure. As discussed above, this can

be particularly important in some scenarios where a set of solutions that actually

represent very different allocations are required so that the decision-makers can

choose the most appropriate. These results on the diversity of solutions motivated a

further investigation of this aspect in the next chapter. The interest on this arises from

the fact that obtaining a set of diverse solutions is an important goal in areas such as

multicriteria decision-making and multiobjective optimisation.

From the results presented and discussed above, it appears that the population-

based variants achieve solutions that are not only competitive with those produced by

Hybrid Metaheuristic Approaches

 112

the single-solution method in terms of the solution quality, but also the diversity of

the population is clearly higher. It is also noted that when the shared memory

structures and mutation operator are eliminated from the population-based approach,

the performance of this algorithm is worsened as reflected by the results shown in the

last column of table 5.3, although the diversity of the obtained populations is still

high.

5.5.2. Variants of the Population-Based Hybrid

So far, the single-solution hybrid metaheuristic has produced the best solutions in

two of the three test instances. The population-based approach generated solutions of

slightly less quality. The aim of this section is to further investigate the performance

of this population-based approach and present a variant of it that seems to outperform

the best results produced by the single-solution hybrid metaheuristic. In the previous

section, the termination criterion for the experiments was a fixed computation time.

An insight into the behaviour of the population-based algorithm is observed when the

termination criterion is a maximum number of iterations without improvement (idle

iterations) on the best solution achieved by each individual. In order to assess the

effect of the strategy selected to control the evolution of the population in the

population-based approach, more experiments were carried out using a maximum

number of iterations without improvement over the best solutions so far as the

termination criterion in the iterative improvement and the simulated annealing phases

(steps 4 and 9 respectively in figure 5.3). This permits us to produce a set of

solutions of uniform quality or one high quality solution with the rest of the

population being considerably less fit. Suppose that the termination condition is a

number of iterations without improvement upon the best solution, i.e. for the ith

individual, the counter NoImprovesCounteri is incremented each time the candidate

solution xi’ does not improve upon the best solution xi* . Obviously, some individuals

would reach this condition before others. If the algorithm is stopped after the first

individual reaches this condition, one high quality solution is obtained after a

relatively short computation time. But if the algorithm is stopped after all individuals

have reached the above condition, a set of solutions of uniform high quality will be

obtained at the expense of more computation time.

Hybrid Metaheuristic Approaches

 113

Two versions of the population-based hybrid metaheuristic were implemented:

the population-based hybrid metaheuristic-single and the population-based hybrid

metaheuristic-multiple (referred to as PMHS and PMHM respectively in the results

presented below). The termination condition for the iterative improvement and

simulated annealing phases was set to 5⋅n and 2⋅ReheatInterval (i.e. 20⋅n) iterations

without improvement respectively. In the PMHS approach, these two phases are

terminated when the first individual in the population reaches the corresponding

termination condition. In the PMHM approach, these phases are terminated until all

individuals in the population reach the termination condition. The single-solution

approach of section 5.2 was also implemented using 2⋅ReheatInterval idle iterations

as the termination condition (step 13 in figure 5.1). As before, 20 individuals were

generated and the same initial population was used for each of the three algorithms.

Ten repetitions of the experiment were executed for each algorithm and each test

instance. The results obtained in these experiments are presented in table 5.4.

Problem instance Total Penalty
F(x)

Population-based
hybrid metaheuristic

single strategy
PMHS

Population-based
hybrid metaheuristic

multiple strategy
PMHM

Single-solution
hybrid

metaheuristic

best-average 1001.76 780.90 835.89
average 825.18 698.75 780.27
minimum 664.19 619.21 647.61
std. dev. 102.26 50.67 89.19
diversity V(p) 67.44 61.25 32.77

nott1
reference = 599.56

time (s) 526 2150 620
best-average 4166.59 3892.93 4260.69
average 3937.63 3789.43 4056.22

minimum 3711.75 3580.10 3909.87
std. dev. 155.66 85.36 112.75
diversity V(p) 82.56 80.79 39.51

trent1
reference = 3873.51

time (s) 890 2220 720
best-average 834.59 905.27 638.09
average 725.71 735.71 634.58
minimum 637.22 638.36 634.19
std. dev. 65.30 88.11 1.20
diversity V(p) 47.82 46.95 41.73

wolver1
reference = 1141.01

time (s) 225 300 210

Table 5.4. Solutions obtained by the single-solution hybrid metaheuristic over 20 runs and the
population-based variants with a population of 20 individuals when a number of idle iterations is used
as termination criterion.

Several observations can be made from the results summarised in table 5.4. Both

population-based variants seem capable of finding solutions of higher quality than

those obtained with the single-solution approach with the exception on the wolver1

Hybrid Metaheuristic Approaches

 114

test instance were all 20 solutions are of high quality as reflected by the low standard

deviation value. It is clear that the population of solutions produced by the PMHM

algorithm are the best for the trent1 and nott1 test problems. For these instances, this

variant obtains a population of high quality solutions while the PMHS approach

obtains populations in which an outstanding high quality solution can be identified

with the rest of the population being noticeably less fit, which is also reflected by the

values of the standard deviation. It is observed that the single-solution variant is

capable of producing high quality solutions for the three test instances but the

variation between the results over the runs is also considerable. With respect to the

computation time spent in these runs, as was expected, the PMHS variant finds a

good quality solution quickly while the PMHM variant requires more execution time

to achieve a set of high quality solutions. The execution time required by the single-

solution hybrid metaheuristic is the lowest in the wolver1 and trent1 test problems

but not in the nott1 instance where the best computation time is that of the PMHS

approach. An additional observation is that as before, the diversity of the populations

produced by the single-solution approach is the lowest while both population-based

variants produce sets of solutions that are very different in their structure. This aspect

is further investigated in chapter 6 where a multiobjective approach is adopted.

Figure 5.4. Contribution of the space misuse and soft constraints violation to the total penalty. For
each test instance, the reference allocation (REF) and average solutions obtained with the single-
solution iterative hybrid metaheuristic (HMH), the population-based hybrid metaheuristic single
(PMHS) and the population-based hybrid metaheuristic multiple (PMHM) varianst are presented.

problem nott1 problem wolver1 problem trent1

0

100

200

300

400

500

600

700

800

900

REF-HMH-PMHS-PMHM

T
ot

al
 P

en
al

ty

0

500

1000

1500

2000

2500

3000

3500

4000

4500

REF-HMH-PMHS-PMHM

T
ot

al
 P

en
al

ty

0

200

400

600

800

1000

1200

REF-HMH-PMHS-PMHM

T
ot

al
 P

en
al

ty

space misuse soft constraints violation

Hybrid Metaheuristic Approaches

 115

Figure 5.4 shows the contribution of space misuse and violation of soft

constraints to the total penalty with respect to the average quality in the populations

produced by each of the algorithms compared in this section. As before, the reference

solution for each test problem is also shown for comparison. In the wolver1 instance,

the single-solution approach finds solutions that are the best even than the reference

solution and with no soft constraint violations. For the trent1 problem, the three

algortihms are comparable. The PMHM variant and the single-solution approaches

obtain solutions with slightly better space utilisation than in the reference solution.

Finally, it is also observed that for the nott1 instance, none of the algorithms match

the manually constructed solution with respect to the satisfaction of soft constraints,

although all the solutions found are better than this reference solution on the space

utilisation. Then, it is confirmed that the nott1 test instance seems to be particularly

difficult to solve due to the high number of constraints that should be satisfied in this

problem.

5.6. Summary and Final Remarks

In this chapter, competitive hybrid metaheuristic approaches for the space allocation

problem were described and tested on some test instances. Van Veldhuizen and

Lamont expressed that “the selection of an appropriate solution technique must

follow after a detailed examination of the problem to solve has been accomplished to

integrate both problem and algorithm domains” (Van Veldhuizen and Lamont,

2000). The approaches presented here were designed by a combination of the best

features of several algorithms and a certain amount of knowledge about the problem

domain. As a result, improved solutions have been produced with these hybrid

algorithms over those generated with the ‘pure’ approaches investigated in chapter 4.

The single-solution approach described in section 5.2 is a hybrid that

incorporates elements from the various techniques investigated in chapter 3: iterative

improvement, simulated annealing, tabu search and genetic algorithms. The hybrid

algorithm clearly outperforms the other techniques in the experiments carried out in

this thesis. In the population-based approach described in section 5.4, the

combination of adaptive cooling schedules in simulated annealing, population-based

techniques and shared memory structures is proposed as an effective technique to

Hybrid Metaheuristic Approaches

 116

tackle the space allocation problem. The population-based technique produces very

competitive results when compared to the single-solution hybrid but still the latter

obtains the best solutions. However, with respect to the population diversity, the

population-based variant produces much better results than those obtained with the

single-solution approach. In addition, it was shown that when the shared memory

structures and the mutation operator are not present in the population-based

algorithm, the performance of this technique deteriorates considerably.

The population-based metaheuristic was modified in order to produce one single

high quality solution in a short amount of time (PMHS algorithm) or a population of

high-quality allocations provided more computation time is available (PMHM

algorithm). The two variants of the population-based technique and the single-

solution hybrid were again compared in section 5.5.2. The advantage of having a

population of solutions is evident when the cooling schedule is controlled over a

maximum number of iterations with no improvement (idle iterations). Under this

condition, the PMHM algorithm was capable of producing sets of solutions with

better quality and which are more diverse than those obtained with the single-

solution approach for two of the test instances. The techniques proposed in this

chapter seek to combine the best features from the metaheuristics studied in chapter 4

so that better results can be obtained for the problem studied in this thesis. If a

diverse set of high quality solutions is required, then the population-based

approaches are more appropriate but if the required non-similarity between

allocations is low, then the single-solution hybrid metaheuristic is the most

appropriate approach.

As with other combinatorial optimisation problems, in the real instances of the

academic space allocation problem it is usually desirable to present a set of high

quality solutions so that a human administrator can decide which allocation will be

finally implemented (Burke and Varley, 1998). In such situations, two possible ways

of achieving this are suggested here: reinitiate the single-solution hybrid

metaheuristic to find several solutions, or use the population-based approaches. It is

shown that the population-based techniques described here are capable of finding

sets of high quality solutions. Given the considerable non-similarity between the

solutions obtained (population diversity), it is clear that these solutions represent

Hybrid Metaheuristic Approaches

 117

very different allocations, which is valuable in some scenarions where one solution

has to be chosen by the decision-makers. This observations motivated the

investigation presented in chapter 6 on the multiobjective nature of this problem.

Multiobjective Approaches

 118

Chapter 6. Multiobjective Approaches

6.1. Introduction

In the previous chapters, the space allocation problem has been approached as a

single-objective optimisation problem. The single goal has been the minimisation of

the total penalty F(x) (eq. 2.7), i.e. the sum of space misuse and violation of soft

constraints. This chapter investigates the space allocation problem from a

multiobjective perspective based on the concepts of Pareto optimisation (Rosenthal,

1985; Steuer, 1986). We consider the multiple objectives separately and use the

concept of dominance to assign fitness to solutions. Instead of combining all the

criteria into a single scalar value, the solution fitness is represented by a k-

dimensional vector containing all the k criteria. A solution x is said to be non-

dominated with respect to a set of solutions if there is no other solution x’ in that set

that is as good as x in all the criteria and better in at least one of them. The Pareto

optimal front is the set of non-dominated solutions with respect to the whole solution

space. The aim in Pareto optimisation is to find the Pareto optimal front or a set of

non-dominated solutions that constitutes a good approximation to that front.

Two main issues are investigated in this chapter. First, the hybrid metaheuristics

developed in chapter 5 are adapted to approach the space allocation problem from a

multiobjective perspective. Then, an investigation of the influence that different

fitness evaluation methods have on the performance of some multiobjective

optimisation algorithms is carried out. Since non-dominated solutions represent the

goal, the dominance relation is frequently used to establish preference between

solutions in Pareto optimisation. It has been argued that using aggregating functions

to evaluate the solution fitness in multiobjective optimisers is not adequate (Deb,

2001). Recently, relaxed forms of the dominance relation have been proposed in the

literature for improving the performance of multiobjective optimisers (Kokolo et al.,

2001). It is shown in this chapter that the method used to evaluate the fitness of

candidate solutions during the search affects the performance of the algorithms tested

here and it appears that the dominance relation is not always the best method to use,

in particular if the search space is highly constrained. The research work presented in

Multiobjective Approaches

 119

this chapter is included in the papers [Bur2002] and [Bur2003] (see the appendix on

page 199).

6.2. A Brief Review of Multiobjective Optimisation

6.2.1. Multiple Criteria Decision-Making

In multiobjective combinatorial optimisation problems, various criteria exist to

evaluate the quality of the solution and there is an objective (minimisation or

maximisation) attached to each of these criteria. It is commonly the case that some of

the criteria are in conflict, i.e. an improvement in one of them can only be achieved

at the expense of worsening another. Moreover, some of the criteria may be

incommensurable, i.e. the units used to measure the compliance with each of the

criteria are not comparable at all.

The first decision that has to be made when dealing with a multiobjective

optimisation problem is how to combine the search and the decision-making

processes. This can be done in one of three ways (Steuer, 1986; Goicoechea et al.,

1982):

§ Decision-making and then search. Also known as the a priori approach because

the preferences for each of the objectives have to be set by the decision-makers

and then, one or various solutions satisfying these preferences have to be found.

§ Search and then decision-making. This is also known as the a posteriori

approach because various solutions have to be found and then, the decision-

makers select the most adequate. All the solutions presented to the decision-

makers should normally represent a trade-off between the various objectives.

§ Interactive search and decision-making. In this approach the decision-makers

intervene during the search in order to guide it towards promising solutions by

adjusting the preferences in the process.

Another important decision in multiobjective optimisation is how to deal with

the multiple objectives. At present, three methods can be identified in the literature

(Coello Coello, 2000; Coello Coello et al., 2002):

Multiobjective Approaches

 120

§ Combine the objectives. This is one of the classical methods to evaluate the

solution fitness in multiobjective optimisation. It refers to converting the

multiobjective problem into a single-objective one by combining the various

criteria into a single scalar value. The most common way of doing this is by

setting weights to each criterion and then adding them all together using an

aggregating function. This is the approach used in previous chapters in this thesis.

§ Alternating the objectives. This approach refers to optimising one criterion at a

time while imposing constraints on the others. The difficulty here is establishing

the ordering in which the criteria should be optimised since this can have an effect

on the success of the search.

§ Optimising all objectives simultaneously (Pareto optimisation). In this method,

a vector containing all the objective values represents the solution fitness and the

concept of dominance is used to establish preference between solutions.

Commonly, in the first two methods, preferences are established a priori

(decision-making and then search) while in Pareto optimisation, no preferences are

considered or are available before the search (search and then decision-making).

6.2.2. Pareto Optimisation

Formally, the dominance relation is described as follows (Dasgupta et al., 1999):

Suppose we have two distinct vectors V = (v1,v2,…,vk) and U = (u1,u2,…uk)

containing the objective values of two solutions for a k-objective minimisation

problem, then:

§ V strictly dominates U if vi < ui , for i = 1,2,..,k.

§ V loosely dominates U if vi ≤ ui , for i = 1,2,..,k and vi < ui , for at least one i.

§ V and U are incomparable if neither V (strictly or loosely) dominates U nor U

(strictly or loosely) dominates V.

Other researchers refer to strict dominance and loose dominance as dominance

and weak dominance respectively (Zitzler, 1999). Minimisation is considered here

because of the problem tackled in this thesis, but the above definitions are altered in

Multiobjective Approaches

 121

the obvious way for the case of maximisation problems. It is important to note that

using strict or loose dominance can have an effect on how the search is performed.

This is because if a solution is strictly dominated then it is outperformed by the other

solution in all criteria while if the solution is loosely dominated it means that it is

outperformed in some of the criteria but as good as the other solution in at least one

of them. Then, finding a new solution that strictly dominates the current one may be

more difficult than finding a solution that loosely dominates it. This is particularly

true in some combinatorial problems in which the connectedness of the search space

is such that some solutions are more difficult to reach from the current one. In such

cases, using loose dominance may enable more solutions to be reached (Ehrgott and

Klamroth, 1997).

In this thesis, strict dominance is used to distinguish a dominated solution from a

non-dominated one, i.e. only solutions that are strictly dominated are rejected. This

means that solutions that are loosely dominated are also considered because of the

interest in obtaining diversity in the solution space. In the rest of this document, strict

dominance is referred to as dominance.

A solution x is said to be non-dominated with respect to a set of solutions S if

there is no other solution in S that dominates x. The Pareto-optimal front in

multiobjective optimisation is the set of all non-dominated solutions in the whole

solution space (Coello Coello et al., 2002; Deb, 2001; Steuer, 1986). When there is

no knowledge of the localization of the Pareto-optimal set, the set found should be

referred to as the obtained non-dominated set or the known Pareto front. In the test

instances of the problem tackled in this thesis, there is no knowledge about the

localization or shape of the Pareto-optimal front.

The appeal of Pareto optimisation derives from the fact that in most

multiobjective optimisation problems there is no single-best solution or global

optima and it is also very difficult to establish preferences among the criteria before

the search process is carried out. Even when this is possible, it may be that these

preferences change and having a set of solutions eases the decision-making process.

One of the conditions that must be satisfied for a problem to be considered to be truly

multiobjective is that the criteria are in conflict. Two objectives are in conflict if the

Multiobjective Approaches

 122

complete satisfaction of one of them prevents the complete satisfaction of the other.

If any improvement in one of the objectives induces a detriment on the other, then

the objectives are said to be strictly conflicting (Bagchi, 1999). It has been argued by

some researchers that even if the conflicting nature of the criteria is not proved,

Pareto-based metaheuristics would be able to find the ideal solution that is the best in

all criteria (Fonseca and Fleming, 1995).

Since in Pareto optimisation the final outcome must be a set of non-dominated

solutions, another important aspect to consider is how to evaluate the quality of the

obtained non-dominated front. This is a multiple criteria problem on its own because

several aspects have to be considered to determine how good the obtained front is.

Among these aspects there are the following (Zitzler, 1999; Deb, 2001):

§ The number of non-dominated solutions obtained.

§ The closeness between the obtained front and the Pareto optimal front (if known).

§ The coverage of the front, i.e. the spread and distribution of the non-dominated

solutions.

Several methods have been proposed to evaluate the quality of the obtained non-

dominated front in Pareto optimisation and therefore, assess the performance of

multiobjective optimisers (Fonseca and Fleming, 1996; Van Veldhuizen and Lamont

2000b; Knowles and Corne, 2002). Since the Pareto optimal front is defined with

respect to the objective space, is it common that most of the metrics proposed are

also defined with respect to the objective space. One aspect that is frequently

overlooked is the diversity of the obtained front with respect to the solution space. In

fact, when researchers report on the quality of the obtained non-dominated sets it is

very rare for information to be provided regarding the diversity in the solution space.

This is extremely important because although the obtained non-dominated solutions

may be well spread and distributed over the front in the objective space, it may be

that the solutions are structurally very similar between them. Considering diversity in

the solution space when assessing the quality of the obtained front becomes even

more important in real-world multiobjective combinatorial optimisation problems

(like the one tackled in this thesis) because this type of similarity directly relates to

how different the solution structures are.

Multiobjective Approaches

 123

Large multiobjective combinatorial optimisation problems are particularly

difficult to tackle. One reason for this is that the size of the search space grows

exponentially as the problem size increases. Also, theoretical understanding of the

solution space is lacking and as a consequence, in many problems of this type, there

is no notion of the localization and shape of the Pareto optimal front (Ulungu and

Teghem, 1994).

6.2.3. Metaheuristics for Multiobjective Optimisation

This section provides an overview of some proposed techniques for Pareto

optimisation but no attempt is made to present an exhaustive survey of the field. This

brief review is limited to multiobjective metaheuristics, in particular to evolutionary

algorithms and approaches based on local search, and does not cover classical

techniques because they are not relevant to the work reported in this thesis. The

classical methods (also called traditional methods in the literature) include weighting

approaches, goal programming, constraint methods, the Tchebycheff method and

others. For reviews on classical techniques for multiobjective optimisation refer to

(Steuer, 1986; Belton et al., 2002; Goicoechea et al., 1982; Miettinen, 2001).

In recent years, metaheuristics have received considerable attention in the area of

multiobjective optimisation. Several surveys on the application of metaheuristics to

multiobjective optimisation are available in the literature (Coello Coello, 1999;

Coello Coello, 1999a; Van Veldhuizen and Lamont, 2000; Ehrgott and Gandibleux,

2000; Jones et al., 2001). Also, there are several studies that focus on measuring and

comparing the performance of different algorithms for multiobjective optimisation

(Zitzler and Thiele, 1998; Zitzler et al., 2000; Van Veldhuizen and Lamont, 2000b;

Zydallis et al., 2001; Tan et al., 2001; Purshouse and Fleming, 2001).

Multiobjective Evolutionary Algorithms

A number of multiobjective evolutionary algorithms have been proposed in recent

years and the increasing interest in these methods has motivated the extension of

evolutionary algorithms (originally proposed for single-objective optimisation) to

multiobjective variants. See (Coello Coello, 2001) for a brief tutorial on this topic.

Some of these algorithms are briefly described next.

Multiobjective Approaches

 124

Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985). This is perhaps

the first genetic algorithm that used dominance for evaluating and selecting

individuals. In each generation, a group of individuals is selected according to one of

the k objectives in the problem until k groups are formed. That is, each group of

individuals excels in one of the k criteria. Then the k groups are shuffled together and

the genetic operators are applied to produce the new population.

Multiobjective Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993). In this

algorithm each individual is assigned a rank according to the number of individuals

in the population by which it is dominated, i.e. all non-dominated solutions are

assigned rank 1. The fitness is assigned to each individual using an interpolation

between the best and the worst rank. A scheme for niche formation is used in which

fitness in the objective domain is shared among non-dominated individuals in order

to maintain a uniform distribution of individuals over the trade-off surface. The

fitness of all individuals in the same rank is averaged and this value is assigned to all

of them. A more recent version of this algorithm is described and compared against

other methods in (Purshouse and Fleming, 2001).

Niche Pareto Genetic Algorithm (NPGA) (Horn et al., 1994). The selection of

individuals is carried out using a tournament scheme based on the concept of

dominance. The two individuals competing for selection are compared against a

subset of the population and the one that is non-dominated (assuming the other is

dominated) is selected for reproduction. If both competitors are dominated or non-

dominated, a sharing scheme based on the size of the niche (equivalence class

sharing) is used to break the tie. The improved version of this algorithm, called

NPGA-2 is described in (Erickson et al., 2001).

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1995).

This algorithm also classifies individuals according to dominance in a ranking

scheme similar to the one used in (Fonseca and Fleming, 1993). However, a dummy

fitness value proportional to the population size is determined for each dominance

class. Fitness sharing within the same class is also implemented to help maintain a

well-distributed population over the trade-off front. Once the whole population is

classified, a stochastic remainder proportionate selection scheme is used to ensure

Multiobjective Approaches

 125

that the individuals in the first front get more copies for reproduction than the rest of

the population. Updated versions of this algorithm incorporating elitism are

described in (Deb, 2001).

Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999). This

algorithm was proposed as an approach that incorporates several of the desirable

features of other multiobjective evolutionary algorithms. The three features common

to other approaches and put together here are: the use of dominance to evaluate and

select solutions, the use of additional populations to store non-dominated solutions

and the use of a niching or clustering scheme. The particular feature in this approach

is that the non-dominated individuals in the external population are used to determine

the fitness of individuals in the current population and also participate in the

selection process for reproduction. In addition, a niche method based on Pareto

dominance is proposed which does not require any measure of distance between

individuals as in other clustering techniques. The improved version of this technique,

called SPEA2 is described in (Zitzler et al., 2001).

Pareto-Archived Evolutionary Strategy (PAES) (Knowles and Corne, 2000). This

algorithm starts with one randomly initialised solution and then, one candidate

solution is generated in each iteration by means of mutations. An external archive (of

limited size) is maintained to collect non-dominated solutions. An adaptive grid that

divides the objective space is used to evaluate how much crowded the region (in

which each solution lies) is. The candidate solution is discarded if it is dominated by

the current solution or any other solution in the external archive. The candidate

solution is added to the archive and becomes the current solution if it dominates the

current solution. If none of them dominates the other, the decision as to which

solution becomes the current solution and whether to add or not the candidate

solution to the archive is made based on the crowding mechanism. Other variants of

this algorithm with population sizes greater that one, were also proposed (Knowles,

2001).

Other Multiobjective Evolutionary Algorithms. The algorithms above are just a

sample of the vast number of methods proposed in the literature in recent years.

Other approaches include the multiobjective messy genetic algorithm (MOMGA) I

Multiobjective Approaches

 126

and II (Van Veldhuizen and Lamont, 2000) and the Pareto converging genetic

algorithm (PCGA) (Kumar and Rockett, 2002). Another multiobjective genetic

algorithm was proposed in (Murata et al., 1996; Murata et al., 1996b). Subsequent

variants of this algorithm were presented in (Ishibuchi et al., 1997; Ishibuchi and

Murata, 1998; Murata et al., 2000; Murata et al., 2001; Ishibuchi et al., 2002;

Ishibuchi et al., 2002a). In the last two years, many other extensions of evolutionary

algorithms for multiobjective optimisation have been proposed. For example,

variants of micro-genetic algorithms, cellular genetic algorithms, particle swarm

optimisation methods, agent-based algorithms and others can be found in

proceedings of recent conferences in this area (EMO 2001, EMO 2003, CEC 2002,

GECCO 2002, GECCO 2003, PPSN VII).

Other Multiobjective Metaheuristics

Another class of metaheuristics for Pareto optimisation are those that explicitly use

local search or neighbourhood exploration (instead of genetic operators) to drive the

search or as an important component of the process (hybrid approaches). Several

multiobjective metaheuristics using local search have been put forward in the

literature. Some of these multiobjective metaheuristics are briefly described below.

Simulated Annealing for Multiobjective Optimisation (Serafini, 1992). This was

perhaps the first extension of simulated annealing for multiobjective optimisation

reported in the literature. The proposed idea was to modify the acceptance criteria of

candidate solutions in the original algorithm. Various alternative criteria were

investigated in order to increase the probability of accepting non-dominated

solutions. A special rule given by the combination of several criteria was proposed in

order to concentrate the search almost exclusively on the non-dominated solutions.

Multiobjective Tabu Search (MOTS) (Hansen, 1997). This algorithm is a

population-based extension of the tabu search metaheuristic that uses a set of weights

to guide the search towards the Pareto frontier. Each solution maintains its own tabu

list and the weights are adjusted in order to keep the solutions away from their

neighbours and therefore, attempt to cover the whole trade-off surface.

Multiobjective Approaches

 127

Pareto Simulated Annealing (PSA) (Czyzak and Jaskiewicz, 1998). This is a

population-based extension of simulated annealing proposed for multiobjective

combinatorial optimisation problems. The population of solutions explore their

neighbourhood in a similar manner to classical simulated annealing, but weights for

each objective are tuned in each iteration in order to assure a tendency to cover the

trade-off surface. The weights for each solution are adjusted in order to increase the

probability of moving away from the closest neighbourhood in a similar way as in

the multiobjective tabu search algorithm (Hansen, 1997). From simulated annealing,

this hybrid metaheuristic borrows the idea of neighbourhood search, probabilistic

acceptance of candidate solutions and the dependence of this acceptance from a

temperature parameter. From genetic algorithms, the approach incorporates the idea

of using a sample population of interacting solutions.

Multiobjective Simulated Annealing (MOSA) (Ulungu et al., 1999). This approach

is another extension of simulated annealing in which a weighted aggregating function

is used to evaluate the fitness of solutions to attempt approximating the various

regions of the trade-off surface. The algorithm works with only one current solution

but maintains a population with the non-dominated solutions found during the

search.

Evolutionary Local Search Algorithm (ELSA) (Menczer et al., 2000). This is an

evolutionary algorithm that uses local selection as the main component in order to

minimise the interaction between the individuals in the population. The idea behind

this approach is that a population of competing individuals can search the space in a

parallel fashion. This algorithm does not use recombination and the only operator to

generate new solutions is mutation. The authors stressed that the major strengths of

this algorithm are its potential to be implemented in parallel and that it maintains the

diversity of the population in a way similar to fitness sharing but more efficiently.

Memetic PAES (M-PAES) (Knowles and Corne, 2000b). This is a memetic variant

originated from the PAES method. This memetic algorithm incorporates a population

and a crossover operator but uses the same selection mechanism as PAES. Two

archives are used, one is the global archive of non-dominated solutions and another

serves as the comparison set in the local search phase. The second archive is emptied

Multiobjective Approaches

 128

after each local search and filled again with solutions from the global archive. The

authors reported that this memetic version outperformed the original algorithm on

test instances of the multiobjective knapsack problem.

Genetic Local Search (GLS) (Jaszkiewicz, 2002). This algorithm is a hybrid

between genetic algorithms and local search in which a weighted aggregating

function is generated at random in each iteration. This function is used to select the

solutions that will be recombined to form the offspring and to guide the local

optimisation of this offspring.

Simulated Annealing for Multiobjective Optimisation (Suppapitnarm et al.,

2000). This is another extension of simulated annealing in which one temperature is

associated to each objective in the problem. The algorithm uses only one solution

and the annealing process adjusts each temperature independently according to the

performance of the solution in each criterion during the search. An archive is used to

store all the non-dominated solutions visited.

Other Multiobjective Metaheuristics Using Local Search. Many other approaches

have been proposed and investigated in the literature. For example, the tabu search

variant of (Baykasoglu et al., 1999) maintains a single solution but additional lists of

non-dominated solutions found during the search are kept in order to seed and guide

the search. Another tabu search approach using weights adaptation was proposed

specifically for the bi-objective knapsack problem in (Gandibleux and Freville,

2000). Other multiobjective variants of ant colony optimisation, hybrids between

tabu search and evolutionary algorithms and other implementations of multiobjective

genetic local search can be found in proceedings of recent conferences (EMO 2001,

EMO 2003, CEC 2002, GECCO 2002, GECCO 2003, PPSN VII).

6.3. Conflicting Objectives in Space Allocation

Using the dominance relation when dealing with a multiobjective optimisation

problem makes sense only if the objectives are partially or totally conflicting. If the

objectives are uncorrelated or reinforce each other, it is often adequate to combine all

of them into a single scalar value and approach the problem as a single-objective one.

More than two objectives could be considered in the space allocation problem as

Multiobjective Approaches

 129

described in chapter 2. In fact, it can be argued that this problem is an eight-objective

optimisation problem, i.e. the satisfaction of each of the six types of constraints listed

in section 2.4.1 plus the minimisation of space wastage and space overuse (eq. 2.10).

Sets of experiments were carried out in order to investigate the conflicting nature

of the objectives in the space allocation problem. For the test problems nott1, trent1

and wolver1 described in section 2.5, eight sets of ten runs were executed using the

single-solution hybrid metaheuristic described in section 5.2. In each set of ten runs,

one of the eight objectives was subject to optimisation, i.e. only the value of that

objective was used to assign fitness to solutions while the value of the other seven

objectives were traced to observe their response. Since in each set of runs one of the

objectives is subject to optimisation, it is possible to calculate the correlation

between that objective and the others. A positive correlation is an indication that the

two objectives are reinforcing each other or moving together, i.e. improvements in

one objective are associated to improvements in the other. A negative correlation is

an indication of the conflict between two objectives, i.e. improvements in one

objective are associated with detriments in the other. A correlation value near to zero

is an indication that the two objectives being unrelated or not affecting each other.

 Objective being traced
 ws os ai af at tg sh gp

ws --- 0.98 0.04 -0.04 -0.15 -0.70 -0.50 -0.40

os 0.99 --- -0.35 -0.23 -0.61 -0.50 0.55 0.48

ai -0.21 0.34 --- 0.18 0.88 0.24 0.02 0.02

af -0.48 0.02 0.06 --- 0.04 0.06 0.28 0.03

at -0.82 -0.74 0.08 0.07 --- 0.34 -0.01 0.53

tg -0.69 -0.69 0.30 0.05 0.30 --- 0.60 0.60

sh -0.83 -0.83 0.06 0.01 -0.01 0.06 --- 0.08 O
bj

ec
tiv

e
be

in
g

op
tim

is
ed

gp -0.24 -0.50 -0.04 0.02 0.72 0.77 0.54 ---

Table 6.1. Correlation between objectives for the nott1 test instance.

The correlation values obtained in each set of ten runs were averaged for each

pair of objectives. Results are presented in table 6.1 for the nott1 test problem. Each

row corresponds to the objective being subject to optimisation and the columns in

that row contain the correlation with each of the other (traced) seven objectives. The

corresponding abbreviation for each objective is as follows: ws is wasted space, os is

overused space, ai is allocated in, af is away from, at is adjacent to, tg is together

Multiobjective Approaches

 130

with, sh is not sharing and gp is grouped with. The negative correlation values

corresponding to pairs of conflicting objectives are highlighted in table 6.1.

It can be observed that there is a high positive correlation between the

minimisation of space wastage (ws) and the minimisation of space overuse (os). It

appears then that these two objectives reinforce each other or cooperate strongly. On

the other hand, it can be noted that in most of the cases, the correlation values

between these two objectives and those corresponding to the satisfaction of soft

constraints are negative or very near to zero. Only the minimisation of space overuse

(os) has a relatively high positive correlation with the satisfaction of not sharing (sh)

constraints and the satisfaction of grouped with (gp) constraints. It seems that the

minimisation of space misuse is in conflict with the satisfaction of soft constraints in

general. With respect to the correlation values between the six objectives associated

to the satisfaction of constraints, it is observed that most of the values are positive

and near to zero. Only two (very low) negative values were obtained corresponding

to the correlations between at and sh. It appears that in general, the satisfaction of

one type of soft constraints is not in conflict with the satisfaction of another type of

soft constraint.Similar observations were made in the results obtained for the other

two test instances. These results permit us to conclude that, at least on the test

instances used in this thesis, not all the eight objectives are conflicting. We then

grouped the eight objectives into two conflicting objectives: the minimisation of

space misuse and the minimisation of soft constraint violation. It should be noted that

the conflicting nature of the objectives will depend very much on the constraints that

exist in each particular problem instance and therefore, an analysis similar to the one

described here would be appropriate in order to illustrate the multiobjective nature of

the problem.

In order to confirm that the two objectives considered here are conflicting, the

experiments described next were carried out to observe the behaviour of each

objective while the other was subject to optimisation. Two sets of ten runs were

executed for each test instance (nott1, trent1 and wolver1) and each run was executed

for a fixed number of iterations (20000, 10000 and 5000 respectively). In each set of

runs, only one of the objectives was subject to optimisation (i.e. considered for

evaluation of the solution quality) while the values of the other objective were

Multiobjective Approaches

 131

monitored during the search. For clarity, only two of each set of ten runs are shown

in figures 6.1 to 6.3, but similar results (discussed below) were obtained in all runs.

Figure 6.1. Response of one of the objectives while minimising the other using the single-solution
hybrid metaheuristic on the nott1 instance.

Figure 6.2. Response of one of the objectives while minimising the other using the single-solution
hybrid metaheuristic on the trent1 instance.

The graphs presented in figures 6.1 to 6.3 show, to some extent, the conflicting

nature of the two objectives in the space allocation problem: the minimisation of

space misuse and the minimisation of soft constraints violation. For example, in

figure 6.1.a it is observed that in both runs the space utilisation has to be worsened

(space misuse increases in the graph) at some stages during the optimisation of the

soft constraints satisfaction. Similarly, figure 6.1.b shows that the violation of soft

constraints has to be increased if the space misuse is to be optimised. Note also that

this behaviour can occur in an unpredictable way. While in the two runs in figure

a) response of space misuse while
minimising soft constraints violation

b) response of soft constraints violation
while minimising space misuse

200

600

1000

1400

1800

2200

2007001200170022002700

soft constraints violation

sp
ac

e
m

is
us

e

Run A Run B

1400

1700

2000

2300

2600

2900

0300600900120015001800

space misuse

so
ft

co
ns

tr
ai

nt
s

vi
ol

at
io

n

Run A Run B

a) response of space misuse while
minimising soft constraints violation

b) response of soft constraints violation
while minimising space misuse

300

400

500

600

700

800

250031003700430049005500

soft constraints violation

sp
ac

e
m

is
us

e

Run A Run B

4800

5000

5200

5400

5600

0100200300400500600

space misuse

so
ft

co
ns

tr
ai

nt
s

vi
ol

at
io

n

Run A Run B

Multiobjective Approaches

 132

6.1.a the conflict appears to be accentuated towards the end of the run, in figure 6.1.b

the conflict between the two objectives occurs at different stages in each run.

Moreover, if their corresponding graphs are compared, it is also apparent that the

conflicting performance of the objectives is different for the three test problems. It

should be noted that in the case of the wolver1 test instance, the particular shape of

the graphs presented in figure 6.3.a can be explained because the problem has a small

number of soft constraints which are satsified very easily at the begining of the

search.

Figure 6.3. Response of one of the objectives while minimising the other using the single-solution
hybrid metaheuristic on the wolver1 instance.

6.4. Pareto Optimisation of Space Allocation

6.4.1. Adapating the Hybrid Algorithms

This section assess the suitability of the hybrid metaheuristics presented in the

previous chapter for the Pareto optimisation of the space allocation problem. The two

algorithms were slightly modifed in order to apply them to the space allocation

problem treated as a two-objective optimisation problem. A mechanism to archive

non-dominated solutions found during the search was added. Solutions visited during

the search can be considered for updating this external archive. Since both the single-

solution and the population-based algorithms employ the HLS neighbourhood search

heuristic of section 4.5.2, candidate solutions are generated which may replace the

current solution if they are considered to be better than the existing one. Every time a

candidate solution is generated, the dominance relation is used to decide if the new

solution replaces the current solution or not. The external archive is not used for this

a) response of space misuse while
minimising soft constraints violation

b) response of soft constraints violation
while minimising space misuse

500

700

900

1100

1300

1500

1700

-50-30-10103050

soft constraints violation

sp
ac

e
m

is
us

e

Run A Run B

200

800

1400

2000

2600

3200

40060080010001200

space misuse

so
ft

co
ns

tr
ai

nt
s

vi
ol

at
io

n

Run A Run B

Multiobjective Approaches

 133

purpose, i.e. it is enough for the candidate solution to dominate the existing current

solution in order to replace it. However, every candidate solution is considered for

updating the archive of non-dominated solutions because even if the current solution

is not replaced by the new one, the candidate solution may dominate some of the

solutions in the archive. The purpose here is to investigate if these adapted versions

of the algorithms (which perform well on the single-objective case) are capable of

producing good results on the two-objective version of the space allocation problem.

6.4.2. Experiments and Results

In these experiments only the nott1 and trent1 test problems were used. Two reasons

exist for this. On one hand the wolver1 test instance has been consistently the easiest

to solve by the algorithms tested so far and, on the other hand, only few soft

constraints exist in that instance so that it becomes almost a single-objective problem

(as shown in figure 6.3). The experiments here consisted of applying the single-

solution hybrid metaheuristic and the two versions of the population-based hybrid

metaheuristic (PMHS and PMHM) to the test problems. Ten runs of each algorithm

were executed on each test instance. The termination condition in each run was a

number of idle iterations equal to 2⋅ReheatInterval as in the experiments of the

previous chapter. Figure 6.4 shows the offline non-dominated populations (i.e. the

non-dominated solutions collected after the ten runs) found by each algorithm.

Figure 6.4. Non-dominated solutions obtained by the single-solution hybrid metaheuristic (HMH) and
the two variants of the population-based hybrid metaheuristic (PHMS and PHMM) on the nott1 and
the trent1 test instances.

Although the three algorithms are capable of producing non-dominated

solutions, it is clear from figure 6.4 that for the nott1 test instance, the PMHM

a) Problem nott1 a) Problem trent1

500

700

900

1100

1300

100 150 200 250 300

HMH

PHMS

PHMM

3500

3700

3900

4100

4300

4500

0 50 100 150 200 250 300 350

HMH

PHMS

PHMM

Multiobjective Approaches

 134

algorithm multiple produces the best results since the solutions found by this

approach dominate all the solutions found by the two other approaches. In the case of

the test instance trent1, the solutions obtained with the single-solution hybrid

metaheuristic dominate all solutions produced by the PMHS algorithm and some of

the ones produced by the population-based hybrid metaheuristic multiple. However it

is clear that in terms of the distribution and spread of the solutions, the results

produced by the single-solution hybrid metaheuristic are not competitive. Similar

experiments were carried out with the nott1b and nott1c tests instances and the same

observations were made. From these results, it was clear that among these three

methods, the PMHM algorithm obtains the best sets of non-dominated solutions

overall. Since this approach is slightly different (dominance-based fitness evaluation

and archive of non-dominated solutions added) from the one described in chapter

five, in the rest of this chapter this modified version is referred to as the population-

based hybrid annealing algorithm (PBAA).

6.5. The Influence of the Fitness Evaluation Method

6.5.1. Assigning Fitness to Solutions in Pareto Optimisation

In Pareto optimisation we usually wish to establish the way in which the various

objectives will be handled in order to assign fitness to candidate solutions during the

search and therefore, decide which solutions will survive and which ones will be

discarded. Three ways of doing this are investigated here: an aggregating function,

the dominance relation and a relaxed form of the dominance relation. With

aggregating functions, the two objective values are combined into a single scalar

value as shown in section 2.4.2 (eq. 2.7). With this method, the solution with the

smaller value of F(x) is preferred or considered to be better. In Pareto dominance, the

solution fitness is represented using a two-dimensional vector containing the values

of the two objectives (F1(x),F2(x)) and preference between solutions is established

as described in section 6.2.2. The relaxed dominance method is described in the next

section.

Multiobjective Approaches

 135

6.5.2. Relaxed Pareto Dominance

Relaxed forms of Pareto dominance have been proposed by researchers as a means to

improve the performance of multiobjective optimisers. For example, Kokolo et al.

suggested the use of α-dominance for dealing with what they call dominance

resistant solutions, i.e. solutions that are fairly inferior quantitatively but other

solutions that dominate them are scarcely found (Kokolo et al., 2001). This variant of

dominance establishes lower and upper bounds for trade-off between the objectives.

In α-dominance, small detriments in one of the objectives are considered to be

acceptable if this leads to an attractive improvement in the other objective.

Figure 6.5. Three fitness evaluation methods: aggregating function, dominance relation and α-
dominance (relaxed dominance) in a two-objective minimisation problem. Solutions in region A
dominate x. Solutions in regions B, C and D α-dominate x. Solutions above the sloping line have a
better aggregated value than x.

Figure 6.5 illustrates the concept of α-dominance for a two-objective

minimisation problem and it also compares it to the other two evaluation methods

considered here: dominance and aggregation of objectives. Solutions in regions B, C

and D all α-dominate solution x. Then, in region C for example, βuv represents the

maximum detriment permitted in objective u given the minimum improvement γvu in

objective v. In region D, βvu and γuv are defined in a similar way. Solution x is

dominated by all solutions in region B while solution x dominates all solutions in

region A. When using the aggregation of objective values, a line that splits the

objective space into two regions can be drawn. All the solutions above the line are

considered to be worse than x and all solutions below the line are considered better

objective v

objective u

A

B

C

D x βvu

βuv

γuv

γvu

maximum

maximum

minimum

minimum

Multiobjective Approaches

 136

that x. A line at 45 degrees of inclination is used here according to equal weight

values for the two objectives but different slopes will reflect different preferences.

In α-dominance, given an optimisation problem with k objectives, the relation

between βvu and γuv for each pair of objectives u ≠ v represents the relation between

the detriment permitted in the objective v and the improvement obtained in the

objective u. For the formal definition of α-dominance see (Kokolo et al., 2001). A

similar form of relaxed dominance called ε-dominance was recently suggested by

Laumanns et al. to implement better archiving strategies that permit us to overcome

the difficulty of multiobjective evolutionary algorithms to converge towards the

Pareto-optimal set and maintain a wide diversity in the population at the same time

(Laumanns et al., 2002). In some sense, the relaxed forms of dominance (α-

dominance and ε-dominance) are similar to establishing preferences among the

objectives using weights in an aggregating function. In both cases, a detriment in one

or more of the objectives is permitted in an attempt to widen the search by accepting

not only dominating solutions. The different perspectives in viewing candidate

solutions affects the way in which surviving solutions are selected. An algorithm

may find it difficult to discover feasible solutions that dominate the current one(s).

This is particularly true in highly constrained combinatorial optimisation problems

like the one presented here. Then, by accepting α-dominating (or ε-dominating)

solutions or solutions for which the aggregated value is better, it is possible to

provide the algorithm with a wider view of the potential ways to approach the

Pareto-optimal front.

The relaxed form of dominance implemented here for the two-objective space

allocation problem follows the same principle as α-dominance and ε-dominance but

it is slightly different. Let x be the current solution and x’ be a candidate solution

with fitness vectors given by V = (v1,v2,…,vk) and U = (u1,u2,…,uk) respectively. If

the first objective in the candidate solution is better than in the current solution, i.e.

u1 < v1, the corresponding gain or improvement proportion is gain = (v1 – u1) / v1.

The candidate solution x’ is considered to be better than the current solution x if the

detriment proportion in the other objective is at most gain, i.e. if u2 < v2⋅(1+gain).

This calculation is modified in the obvious way in the case ui < vi for i = 1,2,…,k.

Multiobjective Approaches

 137

6.5.3. Multiobjective Algorithms Tested

Justification

The two algorithms used in this investigation are: the population-based hybrid

annealing algorithm of section 6.4 and the (1+1)-Pareto archived evolutionary

strategy proposed in (Knowles and Corne, 2000). It was observed in preliminary

experiments that when applying the population-based hybrid annealing algorithm to

the two-objective space allocation problem, better non-dominated fronts were

produced if the aggregation of objectives or the relaxed concept of dominance was

used instead of the dominance relation to assign fitness to solutions during the

search. In order to investigate whether this behaviour is due to the search strategy

used by the algorithm or due to the problem domain, a multiobjective optimiser that

has been well-studied in the specialised literature was also implemented and tested.

The (1+1)-Pareto archived evolutionary strategy is a modern multiobjective

optimisation technique that is simple to implement, it has been tested across a range

of problems and it is considered to be competitive with other modern multiobjective

evolutionary algorithms (Knowles, 2001; Tan et al., 2001).

The two approaches above are alike in the sense that both evolve solutions based

on self-adaptation, i.e. the current solution is modified by mutation or local search

and no recombination is used. Algorithms like these are often referred to as

trajectory-based methods because the candidate solution is somehow similar to the

existing one. The population-based hybrid annealing algorithm has been tested on

various instances of the space allocation problem in previous chapters while the

(1+1)-Pareto archived evolutionary strategy is an approach that has been applied to

many other multiobjective optimisation problems but not to the one tackled in this

thesis. Then, by using these two algorithms in this study, the effect of the fitness

evaluation method can be further investigated without bias due to the algorithm

design. Also, previous experience has shown that the recombination of solutions in

this highly constrained problem almost always produces infeasible solutions (see

chapter 4). Since both algorithms use local search as the main operator to generate

candidate solutions, they show good performance when applied to the highly

constrained two-objective space allocation problem. A brief description of the (1+1)-

Pareto archived evolutionary strategy is given below.

Multiobjective Approaches

 138

The (1+1)-Pareto Archived Evolutionary Strategy

This algorithm starts with one initial solution and in each iteration, one candidate

solution is generated by means of mutations. An external archive (of limited size) is

maintained to collect non-dominated solutions. An adaptive grid that divides the

objective space is used to evaluate how crowded the region in which each solution

lies is. The candidate solution is discarded if it is dominated by the current solution

or any other solution in the external archive. The candidate solution is added to the

archive and becomes the new current solution if it dominates the old current solution.

If none of them dominates the other, the decision on which solution becomes the

current solution and whether to add or not the candidate solution to the archive is

made based on the crowding mechanism, see (Knowles and Corne, 2000) for a

detailed description. For the problem domain considered here, when a mutated

solution is infeasible, successive mutations are tried until a feasible solution is

generated. This is a very fast operation and it worked well in this implementation.

6.5.4. Experimental Settings

The nott1, nott1b and trent1 test instances described in section 2.5 were used in these

experiments. For each test instance and each fitness evaluation method (aggregation

of objectives, dominance and relaxed dominance) ten repetitions of the experiments

(as described next) were executed. An initial population of size 20 was generated as

described above. The population-based hybrid annealing algorithm was executed for

eval solutions evaluations. Since the Pareto archived evolutionary strategy evolves a

single solution, one run of the algorithm corresponds to 20 executions for eval/20

solution evaluations, one with each of the 20 initial solutions. That is, the same initial

population was used in each set of runs comparing the three evaluation methods in

the two algorithms, i.e. 10 different populations were generated and in total 90 runs

were executed for each algorithm.

For the population-based hybrid annealing algorithm, the parameters were set as

follows: α = 0.95, IntervalCounter = n and ReheatCounter = 10⋅n (see figure 5.3).

The number of maximum solution evaluations eval was set to 100000, 80000 and

50000 for the nott1, nott1b, and trent1 test instances respectively. The number of

non-dominated solutions in the external archive was limited to 30 in both algorithms

Multiobjective Approaches

 139

although in some cases fewer solutions were obtained in the final set. In the rest of

this chapter, the population-based hybrid annealing algorithm and the (1+1)-Pareto

archived evolutionary strategy are referred to as PBAA and PAES respectively.

6.5.5. The Offline Non-dominated Sets

For each set of ten runs corresponding to the same triplet (algorithm, problem,fitness

evaluation method) the offline non-dominated sets were collected and these are

presented in figures 6.6 to 6.8. It is observed from figure 6.6 that for the nott1

problem, the non-dominated sets obtained with both algorithms using the relaxed

dominance and the aggregating function are better than those sets produced using the

standard dominance relation. For both algorithms, the relaxed dominance clearly

produces better results than the dominance relation. Also for both algorithms, a

considerable section of the front obtained using the relaxed dominance is dominated

by the front obtained using the aggregating function with the exception of a few

solutions at the top end of these fronts. That is, using the aggregating function seems

to benefit the performance of the algorithms in finding more solutions with low

violation of soft constraints (small values of F2(x)) but none of the solutions obtained

have values of space misuse (F1(x)) as low as some of the solutions obtained using

the relaxed dominance relation.

Figure 6.6. Offline non-dominated sets obtained by the PBAA and PAES algorithms with each
evaluation method for the test instance nott1.

For the problem nott1b, figure 6.7 shows that the non-dominated sets obtained

using the standard dominance and the relaxed dominance are comparable in the case

of the two algorithms. That is, none of these two fitness evaluation methods appears

PBAA PAES

200

400

600

800

1000

1200

1400

1600

120 150 180 210 240 270 300

F1(x)

F2(x)

Agg
Dom
Rel.Dom.

200

400

600

800

1000

1200

1400

1600

120 150 180 210 240 270 300

F1(x)

F2(x)

Agg
Dom
Rel.Dom.

Multiobjective Approaches

 140

to clearly outperform the other. With PBAA some of the solutions obtained using

dominance have better space utilisation while with the PAES many solutions

obtained using relaxed dominance are better with respect to the satisfaction of soft

constraints. It is noticeable that for both algorithms, none of the solutions obtained

using the aggregating function is dominated by solutions produced with the other two

fitness evaluation methods. However, as in the nott1 problem, using the aggregating

function produces solutions that excell with respect to the minimisation of soft

constraint violation (F2(x)) but solutions with very low values of space misuse

(F1(x)) are not found.

Figure 6.7. Offline non-dominated sets obtained by the PBAA and PAES algorithms with each
evaluation method for the test instance nott1b.

Figure 6.8. Offline non-dominated sets obtained by the PBAA and PAES algorithms with each
evaluation method for the test instance trent1.

PBAA PAES

3000

3250

3500

3750

4000

4250

4500

4750

0 50 100 150 200 250 300 350

F1(x)

F2(x)

Agg
Dom
Rel.Dom.

3000

3250

3500

3750

4000

4250

4500

4750

0 50 100 150 200 250 300 350

F1(x)

F2(x)

Agg
Dom
Rel.Dom.

PBAA PAES

0

250

500

750

1000

1250

1500

50 100 150 200 250 300

F1(x)

F2(x)

Agg
Dom
Rel.Dom.

0

250

500

750

1000

1250

1500

50 100 150 200 250 300

F1(x)

F2(x)

Agg
Dom
Rel.Dom.

Multiobjective Approaches

 141

Figure 6.8 shows that for the trent1 problem, the comparison between the non-

dominated sets obtained using the standard dominance and the aggregating function

is very tight. In the case of PBAA the aggregating method outperforms the

dominance relation with respect to the solutions in the bottom half of the front, i.e.

solutions with low values of soft constraint violation. But in the case of the PAES,

using the dominance relation generates a few solutions that dominate a section in the

middle of the front produced with the aggregating method. Note that the results

obtained using the relaxed dominance are very poor for both algorithms. Only a few

solutions in the top end of the front produced with the relaxed form of dominance are

competitive with those produced by the two other evaluation methods. It seems that

when the relaxed dominance is used in problem trent1, both algorithms have

difficulty in finding solutions with low values of soft constraints violation (F2(x)).

One of the reasons for this behaviour might be the levels established for the relation

between improvement in one of the objectives and the corresponding detriment in the

other. This is further investigated later in this chapter.

6.5.6. The Online Non-dominated Sets

With respect to the online performance, the non-dominated populations obtained in

the runs using the same algorithm on the same test instance but with the three

different fitness evaluation methods were compared by using the metric proposed by

(Zitzler et al., 2000). This metric was selected because it directly compares the

quality of two non-dominated sets, it is not required to know the Pareto optimal front

and it is simple to compute. Various other metrics are described in (Knowles and

Corne, 2002). The metric by Zitzler et al. is described by the equation 6.1, where A,

B are sets of non-dominated vectors.

B

baAaBb
BAC

|}:;{|
),(

p∈∃∈= (6.1)

A value of C(A,B) = 1 indicates that all solutions in set B are dominated by at

least one solution in set A while a value of C(A,B) = 0 indicates that no solution in

set B is dominated by a solution in set A. Ten values of C(dom,agg), C(agg,dom),

C(dom,reldom), C(reldom,dom), C(agg,reldom) and C(reldom,agg) were computed

Multiobjective Approaches

 142

and averaged for each set of runs comparing the three fitness evaluation methods

using the same algorithm and test problem. These results are shown in table 6.2.

By observing the comparison between the aggregating function results and the

two other evaluation methods, it can be said that in general the aggregating function

helps both algorithms to obtain the best results or at least it is as competitive as the

relaxed dominance. Only for the PBAA method on the trent1 instance, the average

coverage C(dom,agg) is slightly better than the average coverage C(agg,dom). When

comparing the results obtained with the stardard dominance and relaxed dominance,

it is clear that for the nott1 instance the relaxed dominance is better. In the case of the

nott1b instance, both strategies appear to be comparable along the ten runs. However,

as mentioned above, in the trent1 instance the performance of both algortihms when

using the relaxed dominance is very poor and beaten clearly by the standard

dominance too. The following section presents and discusses results in terms of the

population diversity.

 PBAA PAES

 nott1 nott1b trent1 nott1 nott1b trent1

C(dom,agg) 0.13 0 0.39 0.08 0.17 0.28
C(agg,dom) 0.99 0.76 0.23 0.96 0.81 0.32

C(dom,reldom) 0 0.58 0.94 0 0.51 0.92
C(reldom,dom) 1 0.49 0.14 0.98 0.64 0.21

C(agg,reldom) 0.65 0.54 0.97 0.77 0.62 0.96
C(reldom,agg) 0.41 0.43 0.10 0.26 0.35 0.17

Table 6.2. Comparing the online performance of each algorithm using the three evaluation methods,
where agg = aggregating function, dom = dominance relation and reldom = relaxed dominance.

6.5.7. Results on Diversity

Table 6.3 shows the results with respect to the diversity V(p) (see section 2.4.3) of

the non-dominated sets obtained in the experiments described above. For each set of

10 runs corresponding to the same triplet (algorithm, test problem, fitness evaluation

method), the values of V(p) were averaged and these are shown as the online results

in table 6.3. The values of V(p) were also computed for the offline populations

collected after each set of ten runs and these are shown as the offline results in the

same table.

Multiobjective Approaches

 143

It can be observed that with respect to the online performance, both algorithms

obtain non-dominated sets with very similar diversities for the three fitness

evaluation methods in the three test problems. In all cases, the relaxed dominance

helps both algorithms to achieve slighlty more diverse populations but the difference

with the other methods is almost insignificant. In the case of the offline non-

dominated sets, although the results obtained with the three fitness evaluation

methods are still very similar, greater differences between the diversity values

obtained can be observed. For example, the aggregating function benefits PBAA in

problems nott1 and nott1b and PAES in problem nott1b. The relaxed dominance

method favors PBAA in the trent1 problem and PAES in the nott1 problem. The

standard dominance relation helps PAES to obtain a slightly more diverse offline

population in problem trent1. In general, it can be said from these results, that none

of the three fitness evaluation methods seems to be clearly more beneficial than the

others with respect to the population diversity that the two algorithms achieve.

However, some improvement in the diversity of the obtained solutions can be noted

when using the relaxed dominance and the aggregating function.

 PBAA PAES

 nott1 nott1b trent1 nott1 nott1b trent1
agregating 71.3 75.7 81.9 71.2 75.7 82.9

dominance 72.1 76.9 81.5 73.6 75.9 81.8
online

(average) relaxed dominance 72.5 78.2 84.4 73.8 77.5 83.6

agregating 32.2 53.8 32.0 28.1 48.8 30.5

dominance 27.0 39.1 32.8 29.7 30.5 33.6
offline

relaxed dominance 26.3 34.6 40.0 32.5 32.3 23.5

Table 6.3. Results on diversity for the online and offline non-dominated sets obtained with each
algorithm when using the three different fitness evaluation methods.

In the next section, further experiments are carried out in order to investigate the

reasons why the relaxed dominance appears to adversely affect the performance of

both algorithms in the trent1 instance as noted in section 6.5.5.

6.5.8. Compromise Between Objectives in Relaxed Dominance

As described above, in the relaxed dominance relation used here, the detriment

proportion acceptable in one of the objective values cannot be greater than the gain

or improvement proportion obtained in the other objective value. If improvements

Multiobjective Approaches

 144

for one of the objectives are more difficult to achieve than for the other, then the

above compromise may not be as beneficial as thought. This appears to be the case in

the trent1 problem instance as revealed in the experiments and results presented next.

Given the results obtained with the relaxed dominance as evaluation method in

the trent1 problem, it was decided to carry out more experiments with different levels

of compromise between the two objectives. Consider the current and candidate

solutions x and x’ with fitness vectors V = (v1,v2) and U = (u1,u2) respectively. Four

levels of trade-off between the two objectives were considered as described below.

Relaxed Dominance. In this case the compromise is set as described in section 6.5.2.

In the three cases below gain is calculated as before.

Relaxed Dominance Variant A. Now, a greater detriment proportion is permitted in

F1(x) given an improvement in F2(x). That is, when u2 < v2 then x’ is considered

better than x if u1 < v1⋅(1+10⋅gain). When u1 < v1, the detriment permited in v2 is as

before.

Relaxed Dominance Variant B. In this case, a greater detriment proportion is

permited in F2(x) given an improvement in F1(x). That is, when u1 < v1 then x’ is

considered better than x if u2 < v2⋅(1+10⋅gain). When u2 < v2, the detriment permited

in v1 is as before.

Relaxed Dominance Variant C. Now, the detriment proportion permited in F2(x)

given an improvement in F1(x) is less than in the previous case. That is, when u1 < v1

then x’ is considered better than x if u2 < v2⋅(1+5⋅gain). When u2 < v2, the detriment

permited in v1 is as before.

The variant A refers to the case in which an improvement in the satisfaction of

soft constraints (F2(x)) is more desirable and therefore more detriment in space

misuse (F1(x)) is permitted. The other two variants reflect the case in which the

improvement in space misuse (F1(x)) is considered more attractive and the detriment

permited in the soft constraints satisfaction (F2(x)) is greater. Sets of runs were

executed as described in section 6.5.4 but using only the above four variants of

relaxed dominance relation on the trent1 instance. The results (offline non-dominated

sets) of these experiments are presented in figure 6.9.

Multiobjective Approaches

 145

It is clear that the level of compromise between the objectives has an influence

on the performance of both algorithms when solving the trent1 instance. Among the

levels of compromise considered here, the best results are obtained when greater

detriments in the satisfaction of soft constraints (F2(x)) are allowed given an

improvement in the space misuse (F1(x)). This can be interpreted in two ways. It

may be that improvements in F1(x) are difficult to achieve so they are highly

welcomed no matter what the detriment caused in F2(x). The other possibility is that

improvements in F2(x) are the ones that are difficult to achieve so that this objective

is permitted to deteriorate sometimes in order to find improvements later in the

search. In order to find out which of the above possibilities is ocurring here, counters

were maintained for the number of times in which the combination of improvement

in one objective and detriment in the other led to the candidate solution being

considered to be better. The results given next correspond to the relaxed dominance

variant B (the one producing better results above).

Figure 6.9. Offline non-dominated sets obtained by the PBAA and PAES algorithms using the four
variants of the relaxed dominance relation for the test instance trent1.

In the case of PBAA, out of the total number of times in which an improvement

in at least one of the objectives was achieved, 70% of these times F1(x) was

improved and 32% of these times F2(x) was improved. The sum is greater than 100%

since sometimes both objectives are improved. Out of the number of times in which

F1(x) was improved, in 30% of these the detriment in F2(x) was acceptable and the

new solution considered better than the current one. Out of the number of times in

which F2(x) was improved, in 35% of these the detriment in F1(x) was acceptable

and the new solution considered to be better than the current one. For PAES the

PBAA PAES

3500

3750

4000

4250

4500

4750

0 50 100 150 200 250 300 350

F1(x)

F2(x)

Rel.Dom.A
Rel.Dom.B
Rel.Dom.C
Rel. Dom.

3500

3750

4000

4250

4500

4750

0 50 100 150 200 250 300 350

F1(x)

F2(x)

Rel.Dom.A
Rel.Dom.B
Rel.Dom.C
Rel. Dom.

Multiobjective Approaches

 146

results are as follows: out of the total number of times in which an improvement in at

least one of the objectives was achieved, 61% of the times F1(x) was improved and

41% of the times F2(x) was improved. Out of the number of times in which F1(x)

was improved, in 43% of these the detriment in F2(x) was acceptable and the new

solution considered to be better than the current one. Out of the number of times in

which F2(x) was improved, in 35% of these the detriment in F1(x) was acceptable

and the new solution considered to be better than the current one.

The above results suggest that, for the trent1 instance, finding candidate

solutions with lower values of soft constraint violation (F2(x)) than the current

solution is more difficult in general. Then, it seems that by relaxing the acceptance of

solutions with higher values of F2(x) in the trent1 problem, the algorithms are

provided with a wider view and these solutions may lead to better ones later on in the

search. Finally, figure 6.10 compares, for the trent1 instance, the offline non-

dominated sets obtained with the relaxed dominance variant B and the other two

evaluation methods, standard dominance and aggregating function.

Figure 6.10. Offline non-dominated solutions obtained by the each algorithm with each evaluation
method for the test instance trent1.

Although the non-dominated sets obtained with both algorithms, using the

relaxed dominance variant B, are much better that the ones obtained with the original

relaxed dominance (shown in figure 6.8), still the two other fitness evaluation

methods help to obtain better results in both algorithms. In the next section, more

results are presented in an attempt to investigate the effect of the fitness evaluation

method used on the evolution of the objective values.

PBAA PAES

3000

3250

3500

3750

4000

4250

4500

4750

0 50 100 150 200 250 300 350

F1(x)

F2(x)

Agg
Dom
Rel.Dom.B

3000

3250

3500

3750

4000

4250

4500

4750

0 50 100 150 200 250 300 350

F1(x)

F2(x)

Agg
Dom
Rel.Dom.B

Multiobjective Approaches

 147

6.5.9. The Evolution of Objective Values

To investigate the effect of the fitness evaluation method on the evolution of the

objectives, the values of F1(x), F2(x) and F(x) for each individual in the best

populations of PBAA (see figure 5.3) were recorded. The same was done for the

current solution in PAES. Only a sample of the results are presented here, but the

graphs shown below are typical of the observations made in all the runs of the

experiments for both algorithms and the three test problems. Figures 6.11 to 6.13

show for the nott1 instance and the PBAA, the evolution of F1(x), F2(x) and F(x) for

one individual when each of the evaluation methods was used.

As expected, the values of F1(x) or F2(x) when using the aggregating function

are sometimes worsened in favor of improving the aggregated value but frequently

that detriment is temporal and the previous value is recovered or improved later on in

the process. Similar observations can be made when the relaxed dominance is used to

evaluate solution fitness. This, of course, cannot happen when using the standard

dominance relation since the candidate solution is accepted only if at least one of the

objectives is improved without worsening the other.

Figure 6.11. Evolution of the objective values for one individual in the best population of PBAA
during a typical run using the aggregating function.

Figure 6.12. Evolution of the objective values for one individual in the best population of PBAA
during a typical run using the standard dominance.

0

1000

2000

3000

0 5000Evaluations

F1(x) F2(x) F(x)

0

1000

2000

3000

0 5000Evaluations

F1(x) F2(x) F(x)

Multiobjective Approaches

 148

Figure 6.13. Evolution of the objective values for one individual in the best population of PBAA
during a typical run using the relaxed dominance.

6.5.10. Further Discussion of Results

There is an increasing interest by researchers in various fields in the application of

metaheuristics to multiobjective optimisation problems. Most of the published

research on this subject has been focused on the development of new algorithms or

extending existing single-objective ones towards multiobjective approaches. As we

noted in section 6.2.3, a considerable number of papers report on the comparison

between multiobjective optimisers on test and real-world problems. However, it is

also fundamental to investigate the reasons why metaheuristics for multiobjective

optimisation succeed or fail in certain problem domains to achieve a better

understanding of their functioning in order to design more effective and efficient

approaches. Although some research has been published on the effect that some

strategies have on the performance of some metaheuristics for multiobjective

optimisation (Deb, 1999; Laumanns et al., 2001), we believe that more research on

this subject is required.

The research presented here aims to be a contribution to the better understanding

of the mechanisms and conditions that influence the performance of multiobjective

optimisers. The subject of study here has been the effect of the method used to assign

fitness to solutions (and therefore select surviving ones) on the performance of some

algorithms for Pareto optimisation. The fitness evaluation methods considered here

were: the aggregation of objectives, the dominance relation and a relaxed form of

this dominance relation. Arguments can be found in the literature in favor and

against the use of aggregating functions or the use of dominance within

metaheuristics for Pareto optimisation. For example:

0

1000

2000

3000

0 5000Evaluations

F1(x) F2(x) F(x)

Multiobjective Approaches

 149

§ Some researchers have expressed that Pareto-based evolutionary algorithms are

more suitable for multiobjective optimisation than local search methods using

aggregation of objectives (Coello Coello et al., 2002; Deb, 2001) while other

researchers have shown that approaches that use local search and aggregating

functions are suitable for dealing with various multiobjective optimisation

problems (Jaszkiewicz, 2002; Czyak and Jaszkiewicz, 1998; Gandibleux and

Freville, 2000; Menczer et al. 2000; Ulungu et al. 1999).

§ Knowles proposed and evaluated several approaches (single-point and population-

based) for multiobjective optimisation based on a form of local search: mutation

operators and using the dominance relation to evaluate solutions (Knowles, 2001).

§ Jaszkiewicz expressed that “…Pareto ranking is not well suited for hybridization

with local search” and found that weighted linear functions had better ability than

Tchebycheff functions in finding potential non-dominated solutions within a

genetic local search algorithm (Jaszkiewicz, 2002, page 54).

§ Knowles et al. suggested that using the dominance relation can be beneficial even

in single-objective optimisation for reducing the number of local optima (Knowles

et al., 2001).

§ Kokolo et al. illustrated the difficulty that approaches using dominance selection

may exhibit in finding Pareto optimal solutions and suggested the use of relaxed

dominance (α-dominance) instead (Kokolo et al., 2001).

§ Laumanns et al. used ε-dominance (similar to α-dominance) to implement better

archiving strategies that overcome the difficulty of multiobjective evolutionary

algorithms to converge towards the optimal Pareto front and maintain a wide

diversity in the population at the same time (Laumanns et al., 2002).

§ The use of subcost guided search was proposed by Wright to deal with compound-

objective timetabling problems (Wright, 2001). An improvement of a subcost

(objective) is preferred even if the overall cost or solution fitness is not improved

at all or it is worsened. The hope is that the detriment suffered will be repaired

later in the process since the improvement in one aspect of the solution (the

subcost) enables a kind of guided diversification towards promising areas of the

solution space.

Multiobjective Approaches

 150

The above points show the various opinions (some of these conflicting) that

researchers have expressed when referring to the fitness evaluation method used

when implementing algorithms for multiobjective optimisation. In relation to this,

the investigation carried out in this chapter shows the reader that, although an

approximation to the Pareto optimal set is the aim, the (standard) dominance relation

is not always the best method to assign fitness to solutions. The results from the

experiments described here suggest that the performance of the multiobjective

metaheuristics investigated is very much influenced by the method used to evaluate

the fitness of solutions during the search process. The problem tackled here is a

highly constrained combinatorial optimisation problem and the existence of

constraints seems to be a reason for the difference observed in the performance of

both algorithms when using different fitness evaluation methods. It is apparent that if

it is more difficul to achieve improvements in one of the objectives (F2(x) here) than

in the other (F1(x) here). Then, a compromise that allows detriments in the objectives

should be made so that the algorithms are provided with better mechanisms to

explore other areas of the solution space. In terms of both online and offline

performance, the inferiority of the dominance evaluation method is evident. Between

the aggregating function and the relaxed dominance it seems that the first one helps

us to achieve better values on the minimisation of soft constraints violation (F2(x))

while with respect to the minimisation of space misuse (F1(x)) the relaxed

dominance benefits the most. It also appears that the relaxed dominance evaluation

method helps to achieve a better coverage of the intended compromise surface.

However, the distance between the obtained non-dominated fronts and the intended

compromise surface is shorter when using the aggregating method. In terms of

diversity in the solution space for the obtained sets, the three methods seem to be

competitive but a small inferiority of the dominance relation can be observed.

6.6. Summary and Final Remarks

This chapter presented an investigation into the space allocation problem from a

multiobjective perspective. First, experiments were carried out to compute the

correlation between the various criteria (six soft constrainst types, space wastage and

space overuse) in order to determine if they were in conflict or not (Wright and

Multiobjective Approaches

 151

Marett, 1996). It was shown that not all the criteria are in conflict and therefore, they

were grouped into two conflicting objectives: the minimisation of soft constraints

and the minimisation of space misuse. Additional experiments were carried out to

confirm the conflicting nature of these two objectives in the test problems used here.

It was observed that, in general, while optimising one of these two objectives the

other one suffered considerable detriment.

Given the two conflicting objectives, the hybrid metaheuristics developed in

chapter 5 were adapted for the Pareto optimisation of the academic space allocation

problem. These approaches were modified in order to collect a set of non-dominated

solutions to be presented at the end of the search. It was observed by experimentation

that the population-based hybrid annealing algorithm produced the best results

overall. During the experiments, it was noted that this technique is capable of

obtaining sets of non-dominated allocations that are also highly diverse. It can be

suggested that this is because, instead of recombination, the algorithm is based on

self-adaptation operators to evolve solutions. The cooperation among individuals

within the population is encouraged by a mechanism to share information during the

evolution process. Although it was shown that this population-based hybrid is an

effective technique for the Pareto optimisation of the space allocation problem,

experiments with other benchmark problems, like those proposed in (Deb, 1999;

Zitzler, 1999; Knowles and Corne, 2000; Ulungu and Teghem, 1994), are required to

validate the effectiveness of this approach in other problem domains.

An investigation was also carried out in this chapter to assess the influence that

different methods of assigning fitness to solutions have on the performance of

multiobjective optimisers. We questioned the circumstances (problem domain and

search strategy) under which the dominance relation is the best alternative to identify

improvement during the search. As shown in section 6.5, sometimes it is more

beneficial to use the combination of objectives (aggregating functions) or relaxed

forms of dominance (that allow detriment of objective values) for assessing solutions

during the search in Pareto optimisation. An interesting future research direction is

the evaluation of solution fitness using different strategies within the population. For

example, some solutions in the population can be evaluated using dominance while

others using an aggregated function and others using relaxed dominance.

Multiobjective Approaches

 118

Chapter 7. Hybrid Evolutionary Metaheuristics
Based on Cooperative Local Search

7.1. Introduction

As noted in the literature review of chapter 3 (section 3.5.14), the hybridisation of

metaheuristics has proven to be very successful in many applications. Among the

hybrid approaches reported in the literature, some common ideas have been

comprehensively explored while other alternatives appear less frequently. This

chapter focuses on the concept of cooperative local search and proposes this method

for extending a range of single-solution local search algorithms to hybrid

evolutionary metaheuristics. Instead of incorporating local search into a population-

based approach, a scheme that promotes the cooperation between various local

searchers by sharing the information gained during the search is proposed.

At a high level of abstraction there are two ways in which the hybridisation of

population-based algorithms (such as genetic algorithms) with local search-based

techniques (such as simulated annealing or tabu search) can be achieved. One is

adding local search components that ‘help’ the population-based method by

providing it with ‘intensification’ mechanisms (Reeves, 1996b). The second way is

to consider a population of local searchers and a powerful cooperation mechanism

that allows then to ‘help’ each other. The first approach has received considerable

attention and the hybrids obtained are commonly known as memetic algorithms,

genetic local search, hybrid genetic algorithms and other names (Moscato, 1999;

Moscato and Cotta, 2003). It has been shown that by adding intensification local

search techniques to the explorative capability of genetic algorithms better results

can be produced in many optimisation problems. See for example (Fox, 1993;

Reeves, 1996; Reeves, 1996b; Glover et al., 1995).

The hypotheis presented here is that the second method of ‘keeping’ local search

as the driving mechanism and ‘helping’ it when required to perform a better

exploration can be effective in those combinatorial optimisation problems in which

the recombination of solutions is not straightforward. This includes problems such as

space allocation, scheduling, timetabling, grouping and other constrained problems

Multiobjective Approaches

 119

that require special attention when recombining solutions. In these cases, specific

solution encodings, recombinative operators, reparing methods or unfeasibility

penalty schemes have to be designed (Michalewicz, 1999). On the other hand, good

local search heuristics can be (relatively) easily implemented for many of the

problems mentioned above (Aarts and Lenstra, 1999). Then, by having a population

of local searchers that share the information obtained during the search, a form of

recombination can be achieved and the performance of the local search mechanism

can be improved. In order to illustrate this form of hybridisation, a range of single-

solution local search algorithms are extended towards hybrid evolutionary

approaches by adding a population and a mechanism that promotes cooperation

between the members of the population during the search. Experiments are carrried

out to compare the performance of the original and the extended variants of the

algorithms when applied to test instances of the space allocation problem. The main

goal of this chapter is to propose and evaluate some ideas for hybridising

metaheuristics particularly for problems where several high quality and diverse

solutions are required and the design of recombinative operators requires extra effort.

The research presented in this paper is included in the paper [Bur2003b] (see the

appendix on page 199).

7.2. Hybridising Recombinative and Local Search Methods

The hybridisation of recombinative approaches and local search techniques has been

extensively studied and, in particular, the integration of simulated annealing, tabu

search and genetic algorithms has received considerable attention. See for example

(Abboud et al., 1998; Chen and Lin, 2000; Fox, 1993; Glover et al., 1995). The

hybrid metaheuristics proposed in the previous chapters are also examples of this

type of hybridisation. Moreover, the incorporation of local search heuristics,

specialised recombination/mutation operators and other ‘helpers’ specifically

designed to exploit the knowledge of the problem domain into genetic algorithms has

led to the development of so-called memetic algorithms (Moscato 1989, Moscato,

1999; Moscato and Cotta, 2003). The name memetic algorithms is a relatively recent

terminology that attempts to include all algorithms that fit the description given

above but other names for this class of methods include genetic local search, hybrid

Multiobjective Approaches

 120

1. Generate initial population
2. Select individuals for recombination
3. Recombine
4. Select individuals for mutation
5. Mutate
6. Select individuals to for the new population
7. Got to the next generation

problem domain
knowledge, specialised
operators, specialised
heuristics, etc.

‘helpers’

genetic algorithms and others. See for example (Burke and Smith, 1999; Burke and

Newall, 1999; Burke and Smith, 2000; Burke et al., 2001; Falkenauer, 1996;

Ishibuchi et al., 1997; Jaszkiewicz, 2002; Reeves, 1996; Reeves, 1996b).

One of the most common strategies used by researchers and practitioners to

design memetic algorithms is to add ‘helpers’ to an evolutionary algorithm

(commonly a genetic algorithm). That is, the structure of the evolutionary algorithm

based on the concepts of generations, recombination, selection and mutation is

maintained and the knowledge of the problem domain is added to ‘help’ to achieve a

better performance. This strategy is illustrated in figure 7.1.

Figure 7.1. Common strategy for designing memetic algorithms.

The design of specialised recombination/mutation operators is not

straightforward for some combinatorial problems such as scheduling, timetabling,

rostering and related problems (Aickelin and Dowsland, 2000; Burke et al., 1995;

Erben, 2001; Falkenauer, 1994). Also, dealing with highly constrained problems

adds additional difficulties to the application of recombinative techniques (Coello

Coello, 2000; Kellerer and Pferschy, 1999; Thiel and Voss, 1999). It must be said

that despite these difficulties, many successful applications of recombinative

techniques to these and other problems exist. See for example (Aickelin and

Dowsland, 2000; Brizuela et al., 2001; Burke et al., 1995; Chambers, 2001; Chu and

Beasley, 1997; Chu and Beasley, 1998; Falkenauer, 1994; Falkenauer, 1996).

However, it can also be noted that not many hybrids based on the opposite

philosophy have been investigated. That is, given a local search method to

incorporate ‘helpers’ perhaps inspired from population-based methods that improve

the explorative ability of the algorithm. In fact, very efficient single-solution local

search heuristics have been developed for some combinatorial problems and their

Multiobjective Approaches

 121

possible extension to population-based approaches deserves attention. One way in

which this concept can be implemented is by, what in this chapter is called,

cooperative local search which will be described in the next section.

7.3. Cooperative Local Search

The goal here is to describe algorithms that were implemented following the idea of

enriching local search methods with elements of recombinative approaches. In

cooperative local search, there is a population of local searchers and each of them

can be thought of as an explorer. Each explorer is associated with a particular

solution. Several explorers can be made to cooperate by sharing the information that

each of them obtains or learns during the search. This cooperation can be achieved,

for example, by sharing promising parts of good discovered solutions. But also

sharing ‘bad experiences’ among the population can prevent some explorers from

being trapped in areas of poor solutions. This information sharing can be

implemented by recombinative operators or by keeping track of good and bad moves.

Moreover, these periods of cooperation are not necessarily driven by the principle of

generations as in genetic algorithms. That is, each explorer searches the given

solution space on its own and the cooperation occurs whenever it is required. It may

be that some explorers achieve better results than others resulting in asynchronous

converging times. Then those explorers that cannot achieve further improvement ask

for the cooperation of others. This concept of cooperative local search is illustrated in

figure 7.2.

Figure 7.2. The cooperative local search scheme where each individual carries out its own local
search. When an individual gets stuck it asks for the cooperation of the population in order to find
something to do to get unstuck and continue the search from another position in the solution space.
The results achieved by each individual may be different at different times and this encourages
diversity within the population.

start searching cycle
of each individual

gets stuck
finds something to
do, gets unstuck

self-improvement
by local search

ask for cooperation from other
members of the population

sharing moves, sharing
parts of good and bad
solutions, centralised
control, etc.

‘cooperation mechanisms’

Multiobjective Approaches

 122

Each explorer can have its own intensification and diversification mechanisms

and some degree of cooperation during the intensification phases could be permitted

(for example, by means of a common control scheme). However, the central idea is

to allow each explorer to do its own search and implement the cooperative phases

when required. Using the terminology presented by Preux and Talbi (section 3.5.14)

the cooperation can be synchronous or asynchronous, the explorers can use the same

(homogeneous) or different (heterogeneous) search strategies and can search the

same of different solution spaces (global, partial or functional). Similar concepts to

the ones illustrated in figure 7.3 were proposed by Salman et al. in their

implementation of a cooperative team of heuristics to solve a variant of the multiple

knapsack problem (Salman et al., 2002).

7.4. Hybrid Evolutionary Metaheuristics

7.4.1. Relation to Previous Work

The application of various metaheuristic approaches, including genetic algorithms, to

solve the space allocation problem has been investigated earlier in this thesis. It was

shown in chapter 4, that despite designing specialised genetic operators to deal with

the existing constraints, the genetic algorithm was outperformed by the other three

local search techniques implemented: iterative improvement, simulated annealing

and tabu search. Then in chapter 5, components from various metaheuristics were

incorporated into one single-solution hybrid approach and it produced very good

results. Also in that chapter, the single-solution hybrid approach was extended

towards two population-based variants using the concepts of cooperative local search

presented above. One population-based approach obtained a high quality solution

(with the rest of the population being substantially less fit) in a short computation

time while the other approach generated a set of high quality solutions at the expense

of longer computation time. In this chapter, the cooperation mechanism described in

section 5.4 has been enhanced as detailed next in section 7.4.2 and is used to extend a

range of single-solution approaches to hybrid evolutionary variants.

Multiobjective Approaches

 123

7.4.2. The Cooperation Mechanism

As discussed in section 7.3, the design of a hybrid evolutionary approach based on

the idea of cooperative local search could be implemented in several ways. The way

in which this was done for the space allocation problem domain using the single-

solution algorithms presented in chapter four is illustrated next. The cooperation

mechanism implemented here attempts to promote the idea that individual explorers

should share information during the search and it differs from the one in chapter five

on the heavy mutation operator. The two matrices ΜA and ΜT (described in section

4.8.1) are shared among all individuals in the population in order to store the tabu

and attractive moves explored by all individuals in a shared memory scheme. That is,

this strategy can be regarded as a way of storing parts of attractive solutions in ΜA

and parts of unattractive solutions in ΜT (genetic material in recombinative

algorithms terminology). The information stored in the two matrices is used in the

cooperative local search scheme in two ways:

Information sharing . Each explorer performs the neighbourhood exploration but the

matrices are updated by all individuals in the population so that the whole population

contributes to the tabu and attractive moves stored in MT and MA. When a single-

solution explorer cannot get a feasible solution from the neighbourhood search

heuristic HLS (see section 4.5.2), i.e. when the cooperation mechanism is invoked, a

heuristic is used to modify the solution using the information stored in ΜA. This

heuristic goes through each row i in the matrix and explores the most attractive

allocations for that entity. That is, it starts with the cell having the highest value and

continues to the one with the lowest value and makes the allocation entity to a room

that is suitable (keeps the solution feasible) and is different from the one in the

current solution. The changes are made even if the solution is worsened and in order

to avoid a potential high disruption a maximum of n/20 changes are implemented in

this way.

Heavy mutation. A mutation operator that ‘heavily’ disrupts the current solution is

implemented as follows. Those entities that are penalised the most (are involved in

the violation of soft constraints or in the misuse of space) are removed from their

assigned rooms. Then, the allocation of each of these (now unallocated) entities to

various rooms is attempted. For each entity, the rooms from the first to the last one

Multiobjective Approaches

 124

are evaluated for a feasible allocation with the exception of those allocations marked

as tabu in the matrix ΜT. The degree of disturbance carried out by the mutation

operator is controlled by setting the maximum number of penalised entities that will

be unallocated (many can be penalised). A maximum of n/5 entities are permitted to

be unallocated here. The purpose of this ‘heavy’ disturbance is to encourage each

explorer to search a (hopefully) very different area of the solution space.

7.4.3. Extending the Single-Solution Approaches

Given a single-solution explorer (local searcher) LSSS that takes the current solution

x and attempts to find a better next solution x’, a hybrid evolutionary approach LSPB

based on cooperative local search can be designed. The three single-solution local

search metaheuristics described in chapter 4 (iterative improvement, simulated

annealing and tabu search) were extended to hybrid evolutionary algorithms as

described in the pseudocode given in figure 7.3 in order to illustrate the idea of

cooperative local search.

Extended Population-based Approach LSPB

Step 1. Generate the initial current population.
Step 2. Archive the current population as the best population so far.
Step 3. Do

Step 3.1. Do population self-improvement (intensification) updating the best population so far,
i.e. each individual in the population executes the single-solution local search approach
LSSS using the information sharing mechanism and attempts to improve its own
solution iteratively. This phase continues until no further self-improvement is possible,
i.e. it terminates when none of the individuals in the population can improvement its
current solution.

Step 3.2. Do random variation of the population (diversification), i.e. since all individuals
appear to be ‘stuck’, all of them are disturbed using the heuristic heavy mutation
operator.

Step 4. Until the termination criterion is satisfied.

Figure 7.3. Hybrid evolutionary scheme based on cooperative local search.

The first phase (step 1) corresponds to the construction of a population of

explorers each one associated to an initial solution. In the intensification phase (step

3.1) each explorer aims to achieve self-improvement using the information sharing

mechanism. In the diversification phase (step 3.2), each explorer randomly modifies

its current solution using the heavy mutation operator. The best solution found by

each explorer is maintained in the best population so far. This population serves as an

Multiobjective Approaches

 125

archive that keeps the best solution visited by each explorer in the population. Note

that although the improvement rate of some of the explorers could be better than

others, each explorer has its own solution and none is permitted to contribute more

than one solution to the best population so far. This has been decided for two

reasons: 1) to encourage diversity in the population by avoiding one or more

explorers to dominate the search, and 2) to assess the effect of the cooperation

mechanism in the experiments presented later.

The detailed pseudocode for each hybrid evolutionary approach is not included

here. However, note that the modification consists of replacing LSSS by each single-

solution technique in the pseudocode shown in figure 7.3 above. Then, the algorithm

variants implemented here are the following: the iterative improvement algorithm of

section 4.6 and its population-based variant (IISS and IIPB); the simulated annealing

algorithm of section 4.7 and its population-based variant (SASS and SAPB) and the

tabu search algorithm of section 4.8 and its population-based variant (TSSS and

TSPB).

7.5. On the Performance of the Extended Approaches

7.5.1. Experimental Settings

Several sets of experiments were carried out in order to assess the validity of the

concepts presented and described in the previous sections. The main issue was to

evaluate whether it is beneficial or not to extend a single-solution technique towards

a population-based approach as proposed above. The experiments were designed to

compare the performance of the population-based variant against the performance of

the corresponding single-solution technique for finding a set of high quality

allocations which are also diverse with respect to the solution space. A fair way to do

that is to execute each method for an equal computation time. The number of

solution evaluations or neighbourhood move explorations is another possibility for

comparison but because the population-based approaches spend extra time using the

cooperation mechanism this could be unfair for the single-solution methods. Given a

short computation time, the single-solution approaches quickly achieve improvement

but they get stuck relatively early too while the population-based approaches can

Multiobjective Approaches

 126

take more time (relatively to the single-solution variants) to reach high quality

solutions. With this in mind, experiments were carried out to find the computation

time tind for which the single-solution approaches achieved no further improvement

for a considerable number of iterations.

Given an initial population of size p, the single-solution approach was applied

for tind computation time to each of the solutions in this population and the best

solution at the end of each run was archived, i.e. p solutions are obtained. Then, the

corresponding population-based approach was applied to the same initial population

for p⋅tind computation time. This process was repeated ten times for each of the

problem instances used here: nott1, nott1b, nott1c and trent1 (described in section

2.5). For each set of p solutions obtained, the best, average and worst solution

qualities were recorded and these values were averaged for each set of ten

repetitions. In order to further compare the performance of each population-based

variant against its corresponding single-solution algorithm, experiments were carried

out using small and large populations with low and high diversity for each test

instance as shown in table 7.1 below. The results obtained from the experiments

described here are presented and discussed in the following subsections.

 p = 20 p = 5
 65% < Vip > 90% 20% < Vip < 40% 65% < Vip > 90% 20% < Vip < 40%

nott1 , tind = 120 nott1A nott1A2 nott1B nott1B2
nott1b , tind = 60 nott1bA nott1bA2 nott1bB nott1bB2
nott1c , tind = 30 nott1cA nott1cA2 nott1cB nott1cB2
trent1 , tind = 70 trent1A trent1A2 trent1B trent1B2

Table 7.1. Initial populations of different sizes and diversity values for the four test problems.

7.5.2. Results on the Fitness of Solutions

In this section, the single-solution approaches and corresponding population-based

variants are compared with respect to the fitness of the solutions obtained. Each of

the graphs in figures 7.4 to 7.7 summarises all the results obtained using the various

initialised populations for one of the test instances. In each pair of bars in these

graphs, the left bar refers to the results produced by the population-based variant of

one algorithm, the right bar refers to the results obtained by the corresponding single-

solution approach and a line is drawn between the averaged solution fitness obtained

so that the comparison is clearer.

Multiobjective Approaches

 127

From figures 7.4 to 7.7 it is apparent that the solutions obtained by the

population-based variants are better than those produced with the single-solution

approaches. It can be observed that the best, average and worst solution qualities are

better for the extended algorithms in most cases of each test instance. This is clear

for the nott1 and nott1c test instances as shown in figures 7.4 and 7.6 respectively. In

the results for the nott1b instance shown in figure 7.5, the extended simulated

annealing algorithm is outperformed by the single-solution approach when the initial

population is small and the diversity is low (nott1bB2). Also, in some cases the worst

solution found by the population-based variant of one algorithm has a lower quality

than the one found by the corresponding single-solution approach. This is true for the

simulated annealing algorithm on the nott1bA, nott1bA2, nott1bB and trent1A2

cases and the tabu search algorithm on the nott1bB and nott1bB2 cases.

Figure 7.4. Results obtained by the hybrid evolutionary approaches for the problem nott1.

Figure 7.5. Results obtained by the hybrid evolutionary approaches for the problem nott1b.

350

400

450

500

550

600

650

700

F(x)

nott1bA nott1bA2 nott1bB nott1bB2

II SA TS II SA TS II SA TS II SA TS

300

400

500

600

700

800

900

1000

1100

1200

F(x)

nott1A nott1A2 nott1B nott1B2

II SA TS II SA TS II SA TS II SA TS

Multiobjective Approaches

 128

Another important observation in these graphs is that in some cases, even the

worst solution produced by the extended algorithm outperforms (or at least matches)

the quality of the best solution found by the corresponding single-solution approach.

This is true for the iterative improvement algorithm on most cases of the nott1c and

trent1 problems, the simulated annealing algorithm on the nott1cA and trent1B cases

and the tabu search algorithm on nott1cB, nott1cB2 and trent1A2 cases.

Figure 7.6. Results obtained by the hybrid evolutionary approaches for the problem nott1c.

Figure 7.7. Results obtained by the hybrid evolutionary approaches for the problem trent1.

The size of each bar gives an indication of the difference in quality between the

worst and best solutions found by each algorithm variant and it is observed that in

general this difference appears to be smaller for the population-based approaches

compared with the corresponding single-solution algorithms. The exception to the

above seems to be on the nott1b test instance for which the bars corresponding to the

extended approaches are larger than those of the single-solution variants in most of

200

300

400

500

600

700

800

F(x)

nott1cA nott1cA2 nott1cB nott1cB2

II SA TS II SA TS II SA TS II SA TS

II SA TS II SA TS II SA TS II SA TS

2100

2400

2700

3000

3300

3600

3900

4200

4500

4800

F(x)

trent1A trent1A2 trent1B trent1B2

Multiobjective Approaches

 129

the cases. An interesting result observed from the figures 7.4 to 7.7 is that in some

cases the extended variant of a less sophisticated algorithm outperforms the single-

solution variant of another more elaborate technique. For example, in figure 7.4 it

can be seen that the extended variant of the iterative improvement algorithm clearly

outperforms the single-solution variant of the simulated annealing algorithm on the

nott1B case. The next subsection presents and discusses the results obtained in terms

of the population diversity.

7.5.3. Results on the Diversity of Solutions

Tables 7.2 and 7.3 show the diversity for the initial population (indicated Vip) and the

diversity of the set of solutions produced (indicated Vfp) by each algorithm variant on

the experiments described above. Each value corresponds to the averaged (over the

ten runs) percentages of the population diversity (see section 2.4.3).

 Vfp values obtained by the single-solution and population-
based variants of each algorithm

Test Case Vip IISS IIPB SASS SAPB TSSS TSPB

P1A 75 57.5 59.9 58.3 59.5 57.6 55.9

P1B 90 69.7 73.7 71.6 71.5 71.6 70.4

P2A 78 68.3 72.0 70.7 71.8 68.2 67.9

P2B 95 88.2 87.5 87.0 85.8 88.9 83.1

P3A 65 37.9 46.6 39.4 47.0 37.6 45.4

P3B 86 50.5 58.5 52.9 59.8 49.4 50.7

nott1A 84 68.9 74.0 72.8 74.0 71.7 77.3

nott1B 95 85.4 84.6 85.4 87.2 86.0 88.0

Table 7.2. Average diversity in the final population when the diversity of the initial population is high.

 Vfp values obtained by the single-solution and population-
based variants of each algorithm

Test Case Vip IISS IIPB SASS SAPB TSSS TSPB

P1A2 28 35.4 59.5 44.2 57.1 34.4 55.9

P1B2 32 48.0 71.9 38.5 73.2 46.6 70.8

P2A2 39 48.9 72.8 41.0 71.9 48.9 69.0

P2B2 34 56.2 87.0 57.7 88.4 55.3 55.0

P3A2 31 25.9 47.5 37.1 44.0 25.8 43.8

P3B2 26 29.7 58.7 41.5 58.2 39.7 56.6

nott1A2 23 40.9 73.7 42.4 72.7 51.8 76.5

nott1B2 40 37.0 87.0 54.9 85.5 44.7 87.5

Table 7.3. Average diversity in the final population when the diversity of the initial population is low.

Multiobjective Approaches

 130

Table 7.2 shows the results obtained when the initial population has a high

diversity while table 7.3 shows the results obtained when the initial population has a

low diversity. When comparing the results obtained with the two variants of each

algorithm in each problem, the best diversity (highest value) is underlined to make

the comparison clearer. In those cases in which the initial population is highly

diverse, it is observed in table 7.2 that the population-based variants are capable of

obtaining better results than the corresponding single-solution approaches in many

cases. In the rest of the cases in table 7.2, the diversities of the populations produced

by the extended approaches are very competitive with those of the single-solution

variants. On the other hand, if the initial population has a low diversity (table 7.3),

the extended approach is capable of improve upon the diversity of the initial

population in some cases and although the single-solution variants also achieve a

certain improvement in this respect, the diversities obtained by the extended

approaches are far better in almost all cases.

7.5.4. On the Rate of Improvement

From the results presented and discussed above it is clear that the population-based

variants are capable of finding a high quality and diverse set of solutions regardless

of the diversity (low or high) and size (small or larger) of the initial population. This

section reports on the performance of the single-solution and extended methods with

respect to the computation time required to achieve the results reported above. Figure

7.8 shows typical runs for the single-solution and extended approaches over the

computation time for the problem case trent1B in which the population size equals 5

and the initial population is highly diverse. These graphs show the quality of the best,

average and worst individuals in the population at each time during the run. Note that

since the population size is 5, the processing time shown for the extended approaches

is five times longer (5⋅tind) than the processing time shown for the single-solution

methods. However, as explained in section 7.5.1 the total time spent by each variant

to process the whole population is the same because in each run, the single-solution

method was applied to each individual in the initial population. Only the graphs of

typical runs for one problem case are shown here, but similar results were observed

for all problems in runs with different population sizes and different initial

diversities.

Multiobjective Approaches

 131

Figure 7.8.b shows that the single-solution variant of iterative improvement (IISS)

achieves its best performance very quickly in slightly less than 20 seconds. For the

population-based variant of the same algorithm (IIPB) comparable high quality

solutions are found after 100 seconds, although further improvement and the best

average are achieved after 250 seconds (figure 7.8.a). In other words, it takes about

275 seconds for the extended approach to find the best values for the best, average

and worst statistics in this population of 5 solutions. For the single-solution variant it

takes about 20 seconds to achieve its best statistics for each of the individuals in the

population.

Figure 7.8. Rate of improvement over the computation execution time on the problem trent1B for each
algorithm. The worst, average and best solutions for a typical run are show here.

3000

3500

4000

4500

5000

5500

6000

0 10 20 30 40 50 60 70

CPU Time (secs)

F(x)

Worst
Average
Best

3000

3500

4000

4500

5000

5500

6000

0 50 100 150 200 250 300 350

CPU Time (secs)

F(x)

Worst
Average
Best

3000

3500

4000

4500

5000

5500

6000

0 10 20 30 40 50 60 70

CPU Time (secs)

F(x)

Worst
Average
Best

3000

3500

4000

4500

5000

5500

6000

0 50 100 150 200 250 300 350

CPU Time (secs)

F(x)

Worst
Average
Best

3000

3500

4000

4500

5000

5500

6000

0 10 20 30 40 50 60 70

CPU Time (secs)

F(x)

Worst
Average
Best

b) IISS

d) SASS

e) TSPB

c) SAPB

f) TSSS

3000

3500

4000

4500

5000

5500

6000

0 50 100 150 200 250 300 350

CPU Time (secs)

F(x)

Worst
Average
Best

a) IIPB

Multiobjective Approaches

 132

As expected, the single-solution variant is less computationally expensive but no

further improvements can be achieved. Although the population-based approach

takes more time to produce a set of high quality solutions, even the worst solution

found here outperforms the best result obtained with the single-solution method.

Moreover, after a long processing time IIPB still improves the average quality of the

population while IISS does not produce any better result. Assuming that we need to

obtain only one good solution and that we do not have much computation time

available, then IISS is a perfectly acceptable approach. However, if 5 good solutions

are required in order to carry out comparisons and select the most appropriate one,

then it will take about 20 x 5 = 100 seconds for the IISS to achieve this (by re-starting

the algorithm). At this time IIPB has already achieved a much better best solution and

the average is as good (if not better) than the one produced by IISS. However, it is

clear that it is possible for IIPB to further improve the quality of the population after

this computation time. Similar observations can be made for the variants of the

simulated annealing and tabu search algorithms.

It could be argued that the execution times used here present an advantage for the

population-based approaches, therefore experiments were carried out to run the

single-solution variants for the same time as the corresponding population-based

approach. For example, for problem trent1B, IISS was executed for 350 seconds

(5⋅tind) for each individual in the population. That is, the total time spent to obtain the

set of 5 solutions was 1750 secs. These results were compared with those obtained by

IIPB after an execution time equal to 350 seconds (the same as before). In any of the

cases, the single-solution variant outperformed the extended approach even with this

advantage of longer execution time. The same was observed for the three algorithms

in all test problems, i.e. none of the single-solution methods achieved further

improvements after longer execution times.

7.6. The Best Results for All Test Instances

A single-solution hybrid metaheuristic and population-based variants of that

approach were presented and tested in chapter 5. Those population-based methods

incorporated a cooperation mechanism similar to one described in section 7.4.2. to

share information within the population during the search. However, that mechanism

Multiobjective Approaches

 133

is less elaborate and effective than the one proposed in this chapter. The focus in

chapter five was on implementing a common annealing schedule to control the

evolution of the whole population. This section compares the performance of the

hybrid evolutionary algorithms presented in this paper and the PMHM approach

described in chapter five. In addition, the single-solution hybrid metaheuristic

presented in chapter five is also extended as proposed here using the scheme of

figure 7.3. That is, this extended variant MHPB differs from the PMHM approach

with respect to the cooperation mechanism, which was enhanced in this chapter by

incorporating a more ‘intelligent’ heavy mutation operator.

Two goals were pursued in the experiments carried out here. First, to further

assess the performance of the various hybrid evolutionary metaheuristics developed

in this thesis and second, to report on the best produced results for all the test

instances of the space allocation problem described in section 2.5. Ten repetitions of

the experiments (as described next) were carried out. For each test instance, a

population of 20 initial solutions were generated using the Allocate-Rnd-BestRnd

heuristic described and tested in chapter 4. Then, each of the population-based hybrid

algorithms was applied to that initial population for p⋅tind computation time. That is,

ten different initial populations were generated for each test instance and in each

repetition, the same initial solutions were used for all the algorithms. After collecting

all the solutions obtained by each hybrid evolutionary algorithm on each test

instance, the overall best and average solutions are reported in table 7.4. The best

results among all the algorithms for each of these test instances are indicated in bold.

Also as a reference, table 7.4 shows the quality of the manually constructed solution

for each test instance.

The first observation that can be made is that the wolver1 test problem is easily

solved by all the algorithms and the solutions produced are far better than the

manually contructed allocation. It is also observed that for this problem, the average

solution quality obtained by the PMHM and the MHPB algorithms is the same as the

best solution found, i.e. these algorithms are capable of finding the best solution in

all the runs. As it was noted in previous chapters, this test problem seems easy to

solve because of the low number of constraints that it contains.

Multiobjective Approaches

 134

nott1
p⋅tind = 2400

nott1a
p⋅tind = 1600

nott1b
p⋅tind = 1200

nott1c
p⋅tind = 600

trent1
p⋅tind = 1400

wolver1
p⋅tind = 500

 Best Aver Best Aver Best Aver Best Aver Best Aver Best Aver

Manual 599.56 ----- 592.22 ----- 538.44 ----- 337.04 ----- 3873.56 ----- 1141.0 -----

II PB 568.13 728.42 574.53 731.61 468.47 544.02 348.27 424.69 3439.12 3736.22 634.19 821.41

SAPB 543.78 687.07 575.76 704.53 470.72 575.38 342.55 418.73 2724.47 3756.46 634.19 697.24

TSPB 491.25 680.14 558.40 684.79 432.69 547.76 323.82 391.46 2682.98 3510.64 634.19 669.58

PMHM 525.93 647.74 540.65 693.56 458.06 505.84 334.91 378.54 3217.40 3618.78 634.19 634.15

MH PB 482.21 621.56 521.91 648.05 417.16 479.50 315.41 392.16 2531.41 3104.01 634.19 634.13

Table 7.4. Comparing the performance of the hybrid evolutionary metaheuristics on the test instances
of the space allocation problem.

For the rest of the test problems, it can be observed from table 7.4 that the new

population-based variant of the hybrid metaheuristic (MHPB) outperforms the

previous extended version (PMHM). That is, the enhanced cooperation mechanism

proposed in this chapter permits this hybrid evolutionary algorithm to produce even

better results. With the exception of test instance nott1a, the population-based tabu

search approach also produces better results than those obtained with the PMHM

algorithm. The IIPB and the SAPB approaches produce competitive results overall but

are clearly outperformed by the other three algorithms. Only on test instance nott1c,

the population-based variants of the iterative improvement and simulated annealing

algortihms do not match the quality of the manually constructed solution. In the rest

of the cases, all algorithms are capable of finding allocations with higher quality than

the reference solution. Table 7.4 shows that, in all the test problems used in this

thesis, the best solutions are also produced with the MHPB algorithm, i.e. the hybrid

evolutionary approach obtained from extending the single-solution hybrid

metaheuristic presented in chapter 5.

7.7. Summary and Final Remarks

This chapter has reported results from a range of experiments on extending four

single-solution techniques: iterative improvement, simulated annealing, tabu search

and a hybrid algorithm, towards population-based approaches in order to illustrate

the concept of cooperative local search that was proposed here. The cooperation

mechanism implemented consists of adding an information sharing scheme and a

heavy mutation operator that allows individuals in the population to share good and

Multiobjective Approaches

 135

bad parts of solutions during the evolution process. This cooperating local search

scheme can be seen as an alternative to the design of elaborate recombination or

repairing operators for highly constrained optimisation problems. Also, since each

individual in the population uses mainly local search, no specific mechanism is

required to maintain diversity (in the solution space) within the population. This way

of approaching hybridisation seems to be a good alternative for improving upon the

performance of other single-solution metaheuristics when a set of solutions is

required. Other alternatives as discussed throughout the chapter are: designing a

sophisticated version of the algorithm, fine-tuning the parameters, designing

specialised heuristics and operators, hybridising using other schemes, etc.

From the experiments carried out here, it is clear that the performance of the

extended versions of the four metaheuristics, when solving the set of tests instances

of the space allocation problem, is better than the performance of the corresponding

single-solution algorithm. It also appears that population size and diversity in the

initial population does not decrease the effectiveness of the extended variants. This is

an attractive feature of the scheme proposed here since other population-based

approaches such as genetic algorithms usually require larger populations in order to

operate or they tend to converge prematurely unless mechanisms to maintian

diversity are added (Horn, 1997). Note that the implementations described here are

relatively simple and not a lot of parameter tuning was necessary. However, it would

be important to evaluate the effect on the sensitivity to parameter tuning of the

population-based variants with respect to the original single-solution methods, but

this is left for future work.

The main purpose of this chapter was to propose and illustrate the concept of

cooperative local search towards the design of hybrid evolutionary metaheuristics. In

addition, this chapter also justifies the effectiveness of the method by presenting the

best available results on a set of test instances of the space allocation problem. It is

shown that the best results overall are produced by the hybrid evolutionary

metaheuristic MHPB and that very competitive results are obtained with the TSPB

approach. The research and results presented here summarise the work carried out by

the author over the last few years on the application of metaheuristics to the solution

of the space allocation problems in academic institutions.

Conclusions and Future Work

 170

Chapter 8. Conclusions and Future Work

8.1. Conclusions

In order to draw some conclusions from the investigation presented in this thesis, it is

important to consider the aims and scope that were established when this research

programme was started. The overriding aim was to carry out an investigation on the

suitability of applying metaheuristic techniques to tackle the space allocation

problem in academic institutions. The complete construction of allocations was

considered here. That is, we were concerned with allocating a set of entities into the

available room space so that the space misuse and the satisfaction of soft constraints

are minimised. The emphasis was in obtaining a set of high quality (i.e. not

necessarily optimal) allocations that are also structurally non-similar (i.e. diverse

with respect to the solution space) so that the decision-makers can select the most

appropriate solution. Since very few publications in the literature have approached

the space allocation problem, an additional aim here was to give a detailed

description and appropriate formulation of this problem.

8.1.1. Description and Formulation of the Problem

The overall space allocation process in UK universities was well described in (Burke

and Varley, 1998). The present thesis focused on the construction of allocations and

this problem was described and formulated here. A metric to measure the non-

similarity between allocations was proposed. This is a meaningful metric for

decision-makers because it directly reflects how different the allocations are between

them. Also, test data sets were prepared from real data provided by some UK

universities (available from http://www.cs.nott.ac.uk/~jds/research/spacedata.html).

All this work, will help researchers and practitioners to obtain a better understanding

of this problem for future research in this area.

8.1.2. Design of Basic Operators

Flexible data structures based on linked lists were proposed to represent the problem

instance being solved and the allocation or solution. Using this representation was

beneficial in three aspects. First, the characteristics of the problem instance and the

Conclusions and Future Work

 171

allocation can be easily updated. Second, fast solution evaluation routines can be

implemented. And third, considering the highly constrained nature of the problem,

the flexibility of the data structures assisted the implementation of the local search

and genetic operators. A number of heuristics for initialising solutions were designed

and the best are the AllocateRnd-BestRnd and the AllocateCsrt-BestRnd

heuristics, which generate sets of solutions with a good compromise between quality

and diversity. Three neighbourhood structures were designed: relocate, swap and

interchange. The heuristic (HLS) designed to choose the neighbourhood to explore

takes into consideration the current status of the allocation and the history of the

search. Several heuristics were designed to explore the neighbourhood structures. It

was found that the best strategy (Rnd-BestRnd) is to choose one of the elements of

the move (entity or room) at random and then to explore a subset to choose the

second element of the move (entity or room). Various genetic operators were

implemented including two for the recombination of solutions that were specifically

designed for the space allocation problem. Even with these tailored operators,

maintaining the feasibility of allocations while recombining solutions proved to be a

difficult task in the space alloction problem.

8.1.3. Suitability of Metaheuristics

To the best knowledge of the author, this thesis presents the first investigation on the

application of metaheuristic techniques to the space allocation problem in academic

institutions. It was shown that metaheuristics can produce good solutions in much

shorter time than required when constructing allocations manually. Four well-known

metaheuristics were implemented in the first step of this research: iterative

improvement, simulated annealing, tabu search and a genetic algorithm. The methods

were reasonable adapted to the problem and benchmark results were provided. Tabu

search and iterative improvement performed the best, simulated annealing produced

acceptable results while the genetic algorithm exhibited a poor performance. The

strong intensification feature of iterative improvement and tabu search and the

memory structures for genes collection in the latter, helped these two algorithms to

produce the best results among the four metaheuristics. The difficulty of recombining

solutions and maintaining feasibility in this problem, contributed to the failure of the

genetic algorithm which performed well only in the less constrained test instance.

Conclusions and Future Work

 172

8.1.4. The Hybrid Algorithms Proposed

The single-solution hybrid metaheuristic designed in this thesis, surpassed the

performance of the other four methods previously implemented. Although this hybrid

produced solutions of better quality than the manually constructed allocation in the

test problems, this is because the obtained allocations have less space misused than

the reference solutions but the satisfaction of soft constraints is higher. This confirms

the difficulty of solving the space allocation problem due to the high number of

constraints present. The population-based hybrid metaheuristic (extended variant of

the single-solution hybrid) designed in this thesis permitted us to obtain sets of good

quality allocations that are also highly diverse. It was shown that the shared memory

structures and heavy mutation operator are crucial components of this approach

because without them, the performance of the algorithm deteriorates considerably.

8.1.5. The Two-Objective Problem

Although multiple objectives can be considered when tackling the space allocation

problem, experimental justification was provided in this thesis for approaching it as a

two-objective minimisation problem. It was also shown that the hybrid algorithms

developed are suitable for generating good sets of non-dominated solutions without

the need to incorporate complex mechanisms to maintain diversity. From these

hybrids, the PHMM algorithm produced the best non-dominated fronts.

8.1.6. Influence of Fitness Evaluation in Pareto Optimisation

The problem tackled here is highly constrained and the recombination of solutions

while maintaining feasibility is difficult. The algorithms that performed well are

based on the self-adaptation of solutions. Given these circumstances, it was shown

that the method used to evaluate solutions during the search in Pareto optimisation

has an impact on the performance of the algorithm. The aggregation of objectives

and relaxed forms of dominance can be more beneficial than the standard dominance

relation. This is because they allow detriments in some objectives in order to achieve

improvements in others, facilitating the generation of promising candidate solutions.

A tunable (for the trade-off between objectives) form of relaxed dominance which is

very intuitive and simple to compute was also proposed in this thesis.

Conclusions and Future Work

 173

8.1.7. Cooperative Local Search

The concept of cooperative local search for the hybridisation of metaheuristics was

proposed and illustrated here. It was shown that by adding elements of population-

based techniques to algorithms based on local search, effective hybrid evolutionary

approaches are created. A crucial element for this type of hybridisation is the design

of a cooperation mechanism that permits the population of explorers to share the

information gained during the search. The cooperation mechanism implemented here

consisted of collecting good and bad genes (parts of solutions) in shared memory

structures. Four single-solution algorithms were extended using the cooperative local

search scheme and the population variants produced much better results than the

single-solution methods. This hybridisation scheme is simple to implement and is

particularly appropriate when the recombination of solutions requires considerable

extra effort. The performance of the hybrid evolutionary approaches is not affected

by the size and diversity of the initial population. For all the test data sets used in this

investigation, the best known solutions are also reported which are obtained by the

MH PB hybrid evolutionary algorithm.

8.1.8. Scope of the Conclusions

Since the investigation presented in this thesis was focused on the space allocation

problem in academic institutions, it should be kept in mind that the conclusions given

above are within this context. However, the experiences of this study can also be

beneficial for research in related areas such as space planning, shelf space allocation,

academic timetabling, constrained knapsack problems, etc. Also, the algorithms

described and tested here can be the starting point for the development of a fully

automated system for the space allocation process (Burke and Varley, 1998).

8.2. Future Work

8.2.1. From the Space Allocation Perspective

The obvious suggested future step is the incorporation of the work presented here

into a fully automated system and test it with a comprehensive range of data sets

from as many different universities as possible. Another suggested step is to consider

other aspects of the problem besides the complete construction of allocations. For

Conclusions and Future Work

 174

example, the modification of allocations given a change on the conditions of the

problem (number of entities, number of rooms, constraints, etc.). It is also interesting

to consider the situation in which construction work (for the modification of rooms)

is required so that alternative layouts can be automatically generated.

8.2.2. From the Metaheuristics Perspective

Given the similarity of the space allocation problem with multiple knapsack

problems, some heuristics proposed in the literature were tried in preliminary

experiments (Abdelaziz et al., 1999; Jaszkiewicz, 2001). However, dissapointing

results were obtained due to the existence of many constraints in the problem tackled

here. Applying the hybrid metaheuristics developed in this thesis to problem domains

which are similar to the space allocation problem, would permit us to assess their

suitability and robustness. Another research direction is to compare the parameter

sensitivity (also for assessing robustness) between the single-solution approaches and

the extended variants. Further validation of the cooperative local search scheme can

be achieved by extending other single-solution approaches based on local search (e.g.

guided local search, iterated local search, variable neighbourhood search, etc.).

Forms of relaxed dominance can be used to evaluate solutions in Pareto optimisation

of other multiobjective combinatorial optimisation problems in order to investigate if

the performance of recombinative methods can also be improved. Moreover,

different fitness evaluation methods can be used to assess the fitness of different

individuals within the same population. The evaluation of solutions in the population

can be adapted in order to exploit the phenomenon of global convexity which implies

that local optima can be concentrated in different small areas of the solution space

(Borges and Hansen, 1998). An interesting way to evaluate solution fitness that can

be investigated is extremal optimisation which is based on successively eliminating

extremely undesirable parts of near-to-optimal solutions instead of successively

improving the quality of poor initial solutions (Boettcher and Percus, 2000).

References

 175

REFERENCES

Aarts, E. and Korst, J. (eds.) (1998). Simulated Annealing and Boltzman Machines.

Wiley.

Aarts, E. and Lenstra, J.K. (eds.) (1997). Local Search in Combinatorial

Optimisation. Wiley.

Abboud, N. Inuiguchi, M. Sakawa, M. and Uemura, Y. (1998). Manpower

Allocation Using Genetic Annealing. European Journal of Operational

Research, 111(3), 405-420.

Abdelaziz, F.B. Krichen, S. and Chaouachi, J. (1999). A Hybrid Heuristic for

Multiobjective Knapsack Problems. In: Voss S., Martello S., Osman I.H.,

Roucairol C. (eds.). Meta-Heuristics: Advances and Trends in Local Search

Paradigms for Optimization, Kluwer Academic Publishers, 205-212.

Abramson, D. (1991). Constructing School Timetables Using Simulated Annealing:

Sequential and Parallel Algorithms. Management Science, 37(1), 98-113, 1991.

Aickelin, U. and Dowsland, K.A. (2000). Exploiting Problem Structure in a Genetic

Algorithm Approach to a Nurse Rostering Problem. Journal of Scheduling,

3(3), 139-153.

Alves, M.J. and Climaco, J. (2000). An Interactive Method for 0-1 Multiobjective

Problems Using Simulated Annealing and Tabu Search. Journal of Heuristics,

6(3), 385-403.

Baase, S. (1998). Computer Algorithms: Introduction to Design and Analysis.

Addison Wesley.

References

 176

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University

Press.

Bäck, T. Fogel, D. and Michalewicz Z. (eds.) (1997). Handbook of Evolutionary

Computation. Institute of Physics Publishing and Oxford University Press.

Bagchi, T.P. (1999). Multiobjective Scheduling By Genetic Algorithms. Kluwer

Academic Publishers.

Baykasoglu, A. Owen, S. and Gindy, N. (1999). A Taboo Search Based Approach to

Find the Pareto Optimal Set in Multiple Objective Optimisation. Engineering

Optimization, 31, 731-748.

Belton, V. and Stewart, T.J. (2002). Multiple Criteria Decision Analysis - An

Integrated Approach. Kluwer Academic Press.

Benjamin, C. Ehie, I. and Omurtag, Y. (1992). Planning Facilities at the University

of Missoury-Rolla. Journal of Interfaces, 22(4), 95-105.

Bentley, P.J. and Corne, D.W. (eds.) (2002). Creative Evolutionary Systems. Morgan

Kaufmann Academic Press.

Bland, J.A. (1999). Layout of Facilities Using an Ant System Approach.

Engineering Optimization, 32, 101-115.

Bland, J.A. (1999b). Space-Planning By Ant Colony Optimisation. International

Journal Of Computer Applications In Technology, 12(6), 320-328.

Blum, C. and Roli, A. (2001). Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison. Technical Report TR/IRIDIA/2001-13,

IRIDIA, Belgium.

Boettcher, S. and Percus, A. (2000). Nature's Way of Optimizing. Artificial

Intelligence, 119, 275-286.

References

 177

Borges, P.C. and Hansen, M.P. (1998). A Basis for Future Success in Multiobjective

Combinatorial Optimization. Technical Report IMM-REP-1998-8, Technical

University of Denmark.

Bremmermann, H. (1962). Optimisation Through Evolution and Re-Combination.

In: Yovits, M. Sawbi, G. and Goldstein, G. (eds), Self-Organising Systems,

Washington DC, Spartan Books.

Brizuela, C. Sannomiya, N. and Zhao, Y. (2001). Multi-objective Flow-Shop:

Preliminary Results. Proceedings of the 1st International Conference on

Evolutionary Multi-Criterion Optimization EMO 2001, Lecture Notes in

Computer Science, 1993, Zurich Switzerland, Springer, 443-457.

Burke, E.K. Cowling, P. De Causmaecker, P. and Vanden Berghe, G. (2001). A

Memetic Approach to the Nurse Rostering Problem. Applied Intelligence,

15(3), 199-214.

Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001b). On the Performance of

Population-Based Metaheuristics for the Space Allocation Problem: An

Extended Abstract. Proceedings of the 2001 Metaheuristics International

Conference MIC 2001, Porto Portugal, 579-583.

Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001c). Hybrid Population-Based

Metaheuristic Approaches for the Space Allocation Problem. Proceedings of

the 2001 Congress on Evolutionary Computation CEC 2001, Seoul Korea,

232-239.

Burke, E.K. Cowling, P. Landa Silva, J.D. and McCollum, B. (2001d). Three

Methods to Automate the Space Allocation Process in UK Universities. In:

Burke, E.K. and Erben, W. (eds.) The Practice and Theory of Automated

Timetabling III: Selected Papers from the 3rd International Conference on the

Practice and Theory of Automated Timetabling PATAT 2000, Lecture Notes in

Computer Science, 2079, Springer, 254-273.

References

 178

Burke, E.K. Cowling, P. Landa Silva, J.D. McCollum, B. and Varley, D. (2000a). A

Computer Based System for Space Allocation Optimisation. Proceedings of

the 27th International Conference on Computers and Industrial Engineering

ICC&IE 2000, Beijing China.

Burke, E.K. Cowling, P. Landa Silva, J.D. and Petrovic, S. (2001e). Combining

Hybrid Metaheuristics and Populations for the Multiobjective Optimisation of

Space Allocation Problems. Proceedings of the 2001 Genetic and Evolutionary

Computation Conference GECCO 2001, San Francisco USA, 1252-1259.

Burke, E.K. De Causmaecker, P. Petrovic, S. and Vanden Berghe, G. (2002). A

Multi Criteria Meta-heuristic Approach to Nurse Scheduling. Proceedings of

the 2002 Congress on Evolutionary Computation CEC 2002, Hawaii USA,

1197-1202.

Burke, E.K. Elliman, D.G. and Weare R. (1995). Specialised Recombinative

Operators for Timetabling Problems. Proceedings of the Artificial Intelligence

and Simulation of Behaviour Workshop on Evolutionary Computing AISB

1995, University of Sheffield UK, Springer, 75-85.

Burke, E.K. and Landa Silva, J.D. (2002b). Improving the Performance of

Multiobjective Optimisers by Using Relaxed Dominance. Proceedings of the

4th Asia-Pacific Conference on Simulated Evolution and Learning SEAL 2002,

Singapore, 203-207.

Burke, E.K. and Landa Silva, J.D. (2003). The Influence of the Fitness Evaluation

Method on the Performance of Multiobjective Optimisers. Submitted to the

European Journal of Operational Research, February 2003.

Burke, E.K. and Landa Silva, J.D. (2003b). Hybrid Evolutionary Metaheuristics

Based on Cooperative Local Search. Submitted to the IEEE Transactions on

Evolutionary Computation Journal, March 2003.

References

 179

Burke, E.K. and Newall J.P. (1999). A Multi-Stage Evolutionary Algorithm for the

Timetable Problem. IEEE Transactions on Evolutionary Computation, 3(1),

1085-1092.

Burke, E.K. Newall, J.P. and Weare R.F. (1996). A Memetic Algorithm for

University Exam Timetabling. In: Burke, E.K. and Ross, P. (eds.) The Practice

and Theory of Automated Timetabling: Selected Papers from the 1st

International Conference on the Practice and Theory of Automated

Timetabling PATAT 1995, Lecture Notes in Computer Science, 1153,

Springer, 241-250.

Burke, E.K. Newall, J.P. and Weare R.F. (1998). Initialisation Strategies and

Diversity in Evolutionary Timetabling. Evolutionary Computation, 6(1), 81-

103.

Burke, E.K. and Smith, A.J. (1999). A Memetic Algorithm to Schedule Planned

Maintenance for the National Grid. ACM Journal of Experimental

Algorithmics, 4(1), 1084-1054.

Burke, E.K. and Smith, A.J. (2000). Hybrid Evolutionary Techniques for the

Maintenance Scheduling Problem. IEEE Transactions on Power Systems,

15(1), 122-128.

Burke, E.K. and Varley, D.B. (1998). Space Allocation: An Analysis of Higher

Education Requirements. In: Burke, E.K. and Carter, M.W. (eds.) The Practice

and Theory of Automated Timetabling II: Selected Papers from the 2nd

International Conference on the Practice and Theory of Autometed

Timetabling PATAT 1997, Lecture Notes in Computer Science, 1408,

Springer, 20-33.

Burke, E.K. and Varley D.B. (1998b). Automating Space Allocation in Higher

Education. Selected Papers from the 2nd Asia Pacific Conference on Simulated

Evolution and Learning SEAL 98, Lectures Notes in Artificial Intelligence,

References

 180

1585, Springer, 66-73.

Calegari, P. Coray, G. Hertz, A. Kobler, D. and Kuonen, P. (1999). A Taxonomy of

Evolutionary Algorithms in Combinatorial Optimization. Journal of

Heuristics, 5(2), 145-158.

Chambers, Lance (ed.) (2001). The Practical Handbook of Genetic Algorithms

Applications. Chapman&Hall/CRC.

Chen, W.H. and Lin, C.S. (2000). A Hybrid Heuristic to Solve a Task Allocation

Problem. Computers and Operations Research, 27, 287-303.

Chu, P.C. and Beasley J.E. (1997). A Genetic Algorithm for the Generalised

Assignment Problem. Computers and Operations Research, 24(1), 17-23.

Chu, P.C. and Beasley, J.E. (1998). A Genetic Algorithm for the Multidimensional

Knapsack Problem. Journal of Heuristics, 4(1), 63-86.

Coello Coello, C.A. (1999). A Comprehensive Survey of Evolutionary Based

Multiobjective Optimization Techniques. Knowledge and Information Systems,

1(3), 269-308.

Coello Coello, C.A. (1999a). An Updated Survey of Evolutionary Multiobjective

Optimization Techniques: State of the Art and Future Trends. Proceedings of

the 1999 Congress on Evolutionary Computation CEC 1999, Washington

USA, 3-13.

Coello Coello, C.A. (2000). Treating Constraints as Objectives for Single-Objective

Evolutionary Optimization. Engineering Optimization, 32, 275-308.

Coello Coello, C.A. (2001). A Short Tutorial on Evolutionary Multiobjective

Optimization. Proceedings of the 1st International Conference on Evolutionary

Multi-Criterion Optimization EMO 2001, Lecture Notes in Computer Science,

1993, Zurich Switzerland, Springer, 21-40.

References

 181

Coello Coello, C.A. Van Veldhuizen, D.A. and Lamont, G.B. (2002). Evolutionary

Algorithms for Solving Multi-Objective Problems, Kluwer Academic

Publishers.

Coley, D.A. (1999). An Introduction to Genetic Algorithms for Scientists and

Engineers. World Scientific Publishing.

Colorni, A. Dorigo, M. and Maniezzo, V. (1998). Metaheuristics for High School

Timetabling. Computational Optimization and Applications, 9, 275-298.

Cook, S.A. (1971). The Complexity of Theorem-proving Procedures. Proc. 3rd Ann.

ACM Symp. on Theory of Computing, Association for Computing Machinery,

New York, 151-158.

Corne, D. Ross, P. and Fang, H.L. (1994). Fast Practical Evolutionary Timetabling.

Selected Papers from the AISB Workshop on Evolutionary Computation,

Lecture Notes in Computer Science, 865, Springer, 220-263.

Corne, D. and Ross P. (1995). Some Combinatorial Landscapes on which a GA

Outperforms Other Stochastic Iterative Methods. Evolutionary Computing:

Lecture Notes in Computer Science, Selected Papers of the AISB Workshop,

993, Springer, 1-13.

Corne, D. and Ross P. (1996). Peckish Initialisation Strategies for Evolutionary

Timetabling. In: Burke, E.K. and Ross, P. (eds.) The Practice and Theory of

Automated Timetabling: Selected Papers from the 1st International Conference

on the Practice and Theory of Automated Timetabling PATAT 1995, Lecture

Notes in Computer Science, 1153, Springer, 227-240.

Corne, D. Dorigo, M. and Glover, F. (eds.) (1999). New Ideas in Optimisation.

McGraw Hill.

Costa, Daniel (1994). A Tabu Search Algorithm for Computing an Operational

Timetable. European Journal of Operational Research, 76, 98-110.

References

 182

Czyzak, P. and Jaszkiewicz, A. (1998). Pareto Simulated Annealing - a

Metaheuristic for Multiple-Objective Combinatorial Optimization. Journal of

Multi-Criteria Decision Analysis, 7(1), 34-47.

Dasgupta. P. Chakrabarti, P.P. and Desarkar, S.C. (1999). Multiobjective Heuristic

Search: An introduction to Intelligent Search Methods for Multicriteria

Optimization. Computational Intelligence – Vieweg.

Davis, Lawrence (ed.) (1991). Handbook of Genetic Algorithms. Van Nostrand

Reinhold.

Dawande, M. Kalagnanam, J. Keskinocak, P. Ravi, R. and Salman, F.S. (2000).

Approximation Algorithms for the Multiple Knapsack Problem with

Assignment Restrictions. Journal of Combinatorial Optimization, 4(2), 171-

186.

Deb, K. (1999). Multi-objective Genetic Algorithms: Problem Difficulties and

Construction of Test Problems. Evolutionary Computation, 7(3), 205-230.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley.

Di Caspero, L. and Schaerf, A. (2001). Tabu Search Techniques for Examination

Timetabling. In: Burke, E.K. and Erben, W. (eds.) The Practice and Theory of

Automated Timetabling III: Selected Papers from the 3rd International

Conference on the Practice and Theory of Automated Timetabling PATAT

2000, Lecture Notes in Computer Science, 2079, Springer, 104-117.

Diaz, J.A. and Fernandez, E. (2001). A Tabu Search Heuristic for the Generalized

Assignment Problem. European Journal of Operational Research, 132, 22-38.

Diminnie, C.B. and Kwak, N.K. (1986). A Hierarchical Goal-programming

Approach to Reverse Resource Allocation in Institutions of Higher Learning.

Journal of the Operational Research Society, 37, 1, 59-66.

References

 183

Dorigo, M. Maniezzo, V. and Colorni, A. (1996). The Ant System: Optimization by

a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and

Cybernetics - Part B, 26(1), 1-13.

Dowsland, K.A. (1996). Simulated Annealing Solutions for Multi-Objective

Scheduling and Timetabling. In: Rayward-Smith V.J., Osman I.H., Reeves

C.R., Smith G.D. (eds.) Modern Heuristic Search Methods, John Wiley &

Sons, 155-166.

Dowsland, K.A. (1998). Off-the-peg or Mafe-to-measure? Timetabling and

Scheduling with SA and TS. In: Burke, E.K. and Carter, W. (eds.) The Practice

and Theory of Automated Timetabling III: Selected Papers from the 2nd

International Conference on the Pracatice and Theory of Automated

Timetabling PATAT 1997, Lecture Notes in Computer Science, 1408,

Springer.

Ehrgott, M. and Klamroth K. (1997). Connectedness of Efficient Solutions in

Multiple Criteria Combinatorial Optimization. European Journal of

Operational Research, 97, 159-166.

Ehrgott, M. and Gandibleux, X. (2000). A Survey and Annotated Bibliography of

Multiobjective Combinatorial Optimization. OR Spectrum, 22(4), Springer,

425-460.

Elmohamed, M.A.S. Coddington, P. and Fox, G. (1998). A Comparison of

Annealing Techniques for Academic Course Scheduling. In: Burke, E.K. and

Carter, M.W. (eds.) The Practice and Theory of Automated Timetabling II:

Selected Papers from the 2nd International Conference on the Practice and

Theory of Automated Timetabling PATAT 1997, Lecture Notes in Computer

Science, 1408, Springer, 92-112.

Erben, Wilhelm (2001). A Grouping Genetic Algorithm for Graph Colouring and

Exam Timetabling. In: Burke, E.K. and Erben, W. (eds.) The Practice and

References

 184

Theory of Automated Timetabling III: Selected Papers from the 3rd

International Conference on the Practice and Theory of Automated

Timetabling PATAT 2000, Lecture Notes in Computer Science, 2079,

Springer, 132-156.

Erickson, M. Mayer, A. and Horn, J. (2001). The Niched Pareto Genetic Algorithm 2

Applied to the Design of Groundwater Remediation Systems. Proceedings of

the 1st International Conference on Evolutionary Multi-Criterion Optimization

EMO 2001, Lecture Notes in Computer Science, 1993, Springer, Zurich

Switzerland, 681-695.

Falkenauer, E. (1994). A New Representation and Operators for Genetic Algorithms

Applied to Grouping Problems. Evolutionary Computation, 2(2), 123-144.

Falkenauer, E. (1996). A Hybrid Grouping Genetic Algorithm for Bin Packing.

Journal of Heuristics, 2(1), 5-30.

Fonseca, C.M. and Fleming, P.J. (1993). Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization. Proceedings of the

Fifth International Conference on Genetic Algorithms, San Mateo USA, 416-

423.

Fonseca, C.M. and Fleming, P.J. (1995). An Overview of Evolutionary Algorithms

in Multiobjective Optimization. Evolutionary Computation, 3(1), 1-16.

Fonseca, C.M. and Fleming, P.J. (1996). On the Performance Assessment and

Comparison of Stochastic Multiobjective Optimizers. Proceedings of the

Parallel Problem Solving From Nature IV, Berlin Germany, 584-593.

Fox, B.L. (1993). Integrating and Accelerating Tabu Search, Simulated Annealing

and Genetic Algorithms. Annals of Operations Research, 41, 47-67.

Francis, R.L. McGinnis Jr., L.F. and White J.A. (1992). Facility Layout and

Location: An Analytical Approach. Prentice-Hall.

References

 185

Gandibleux, X. and Freville, A. (2000). Tabu Search Based Procedure for Solving

the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case. Journal

of Heuristics, 6(3), 361-383.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability - A Guide to

the Theory of NP-Completeness. W.H. Freeman.

Giannikos, J. El-Darzi, E. and Lees, P. (1995). An Integer Goal Programming Model

to Allocate Offices to Staff in an Academic Institution. Journal of the

Operational Research Society, 46(6), 713-720.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research, 13, 533-549.

Glover, F. Kelly, J.P. and Laguna, M. (1995). Genetic Algorithms and Tabu Search:

Hybrids for Optimization. Computers and Operations Research, 12(1), 111-

134.

Glover, F.W. and Kochenberger, G.A. (eds.) (2003). Handbook of Metaheuristics.

Kluwer Academic Publishers.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

Glover, F. Taillard, E. and De Werra, D. (1993). A User's Guide to Tabu Search.

Annals of Operations Research, 41, 3-28.

Goicoechea, A. Hansen, D.R. and Duckstein L. (1982). Multiobjective Decision

Analysis with Engineering and Business Applications. Wiley.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimisation and Machine

Learning. Addison Wesley.

Hanafi, S. Freville, A. and El Abdellaoui, A. (1996). Comparison of Heuristics for

the 0-1 Multidimensional Knapsack Problem. In: Osman I.H., Kelly J.P. (eds.),

References

 186

Meta-Heuristics: Theory and Applications, Kluwer Academic Publishers, 449-

465.

Hansen, P. (1986). The Steepest Ascent Mildest Descent Heuristic for Combinatorial

Programming. Congress on Numerical Methods in Combinatorial

Optimization, Capri, Italy.

Hansen, M.P. (1997). Tabu Search for Multiobjective Optimization: MOTS.

Technical Report Presented at 13th International Conference on MCDM,

Technical University of Denmark.

Hansen, P. and Mladenovic, N. (2001), Variable Neighbourhood Search: Principles

and Applications. European Journal of Operational Research, 130(3), 449-

467.

Hasan, M. AlKhamis, T. and Ali, J. (2000). A Comparison Between Simulated

Annealing, Genetic Algorithm and Tabu Search Methods for the

Unconstrained Quadratic Pseudo-Boolean Function. Journal of Computers and

Industrial Engineering, 38, 323-340.

Hertz, A. and Klober, D. (2000). A Framework for the Description of Evolutionary

Algorithms. European Journal of Operational Research, 126(1), 1-12.

Higgins, A.J. (2001). A Dynamic Tabu Search for Large-Scale Generalised

Assignment Problems. Computers and Operations Research, 28(10), 1039-

1048.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of

Michigan Press, Anna Arbor.

Horn, J. Nafpliotis, N. and Goldberg, D.E. (1994). A Niched Pareto Genetic

Algorithm for Multiobjective Optimization. Proceedings of the First IEEE

Conference on Evolutionary Computation, IEEE World Congress on

Computational Intelligence, 1, Piscataway USA, 82-87.

References

 187

Horn, J. (1997). Multicriteria Decision Making and Evolutionary Computation. In:

Bäck, T. Fogel, D.B. and Michalewicz, Z. (eds.). Handbook of Evolutionary

Computation, Institute of Physics, 1997.

Ingber, Lester (1996). Adaptive Simulated Annealing (ASA): Lessons Learned.

Control and Cybernetics, 25(1), 33-54.

Ishibuchi, H. Murata, T. and Tomioka, S. (1997). Effectiveness of Genetic Local

Search Algorithms. Proceedings of the Seventh International Conference on

Genetic Algorithms, 505-512.

Ishibuchi, H. and Mutara, T. (1998). A Multi-Objective Genetic Local Search

Algorithm and its Application to Flowshop Scheduling. IEEE Transactions on

Systems, Man and Cybernetics - Part C: Applications and Reviews, 28(3), 392-

403.

Ishibuchi, H. Yoshida, T. and Murata, T. (2002). Selection of Initial Solutions for

Local Search in Multiobjective Genetic Local Search. Proceedings of the 2002

Congress on Evolutionary Computation CEC 2002, Hawaii USA, 950-955.

Ishibuchi, H. Yoshida, T. and Murata, T. (2002a). Balance Between Genetic Search

and Local Search in Hybrid Evolutionary Multi-Criterion Optimization

Algorithms. Proceedings of the 2002 Genetic and Evolutionary Conference

GECCO 2002, New York USA, 1301-1308.

Jaszkiewicz, A. (2001). Comparison of Local Search-based Metaheuristics on the

Multiple Objective Knapsack Problem. Foundations of Computing and

Decision Sciences, 26(1), 99-120.

Jaszkiewicz, A. (2002). Genetic Local Search for Multi-objective Combinatorial

Optimization. European Journal of Operational Research, 137(1), 50-71.

Jones, D.F. Mirrazavi, S.K. and Tamiz, M. (2001). Multiobjective Meta-heuristics:

An Overview of the Current State-of-the-Art. European Journal of

References

 188

Operational Research, 137(1), 1-9.

Julstrom, B.A. (1995). What Have You Done for Me Lately? Adapting Operator

Probabilities in Steady-Sate Genetic Algorithm. Proceedings of the Sixth

International Conference on Genetic Algorithms, 81-87.

Kallarath, J. and Wilson, J.M. (1997). Business Optimisation Using Mathematical

Programming. Macmillan.

Kellerer, H. and Pferschy, U. (1999). Cardinality Constrained Bin-packing Problems.

Annals of Operations Research, 92, 335-348.

Kennedy, J. and Eberhart, R.C. (1999). The Particle Swarm: Social Adaptation in

Information-Prcessing Systems. In: Corne, D. Dorigo, M. and Glover, F. (eds.),

New Ideas in Optimisation, McGraw Hill.

Kim, J.G. and Kim, J.D. (1998). A Space Partitioning Method for Facility Layout

Problems with Shape Constraints. IIE Transactions, 30, 947-957.

Kirkpatrick, S. Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by Simulated

Annealing, Science, 220, 671-380.

Knowles, J.D. (2001). Local-Search and Hybrid Evolutionary Algorithms for Pareto

Optimization. PhD Thesis, Department of Computer Science, University of

Reading, UK.

Knowles, J. and Corne D.W. (2000). Approximating the Nondominated Front Using

the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2), 149-

172.

Knowles, J.D. and Corne, D.W. (2000b). M-PAES A Memetic Algorithm for

Multiobjective Optimization. Proceedings of the 2000 Congress on

Evolutionary Computation CEC 2000, Piscataway USA, 325-332.

References

 189

Knowles, J. and Corne, D. (2002). On Metrics for Comparing Nondominated Sets.

Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,

Hawaii USA, IEEE Press, 711-716.

Knowles, J.D. Watson, R.A. and Corne, D.W. (2001). Reducing Local Optima in

Single-Objective Problems by Multi-objectivization. Proceedings of the 1st

International Conference on Evolutionary Multi-Criterion Optimization EMO

2001, Lecture Notes in Computer Science, 1993, Springer, 269-283.

Kokolo, I. Hajime, K. and Shigenobu, K. (2001). Failure of Pareto-based MOEAs,

Does Non-dominated Really Mean Near to Optimal?. Proceedings of the 2001

Congress on Evolutionary Computation CEC 2001, Seoul Korea, 957-962.

Kumar, R. and Rockett, P. (2002). Improved Sampling of the Pareto-Front in

Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto

Converging Genetic Algorithm. Evolutionary Computation, 10(3), 283-314.

Kusiak, A. (2000). Computational Intelligence in Design and Manufacturing. Wiley.

Laguna, M. (2002). Scatter Search. In: P. M. Pardalos and M. G. C. Resende (eds.)

Handbook of Applied Optimization, Oxford University Press, 183-193.

Larson, N. and Kusiak, A. (1995). Work-in-progress Space Allocation: a Model and

an Industrial Application. IIE Transactions, 27, 497-506.

Laumanns, M. Zitzler, E. and Thiele, L. (2001). On the Effects of Archiving,

Elitism, and Density Based Selection in Multi-objective Optimization.

Proceedings of the 1st International Conference on Evolutionary Multi-

Criterion Optimization EMO 2001, Lecture Notes in Computer Science, 1993,

Zurich Switzerland, Springer, 281-196.

Laumanns, M. Thiele, L. Deb, K. and Zitzler, E. (2002). Combining Convergence

and Diversity in Evolutionary Multiobjective Optimization. Evolutionary

Computation, 10(3), 263-282.

References

 190

Liggett, R.S. (2000). Automated Facilities Layout: Past, Present and Future.

Automation in Construction, 9, 197-215.

Liu, J. (1999). The Impact of Neighbourhood Size on the Process of Simulated

Annealing: Computational Experiments on the Flowshop Scheduling Problem.

Computers & Industrial Engineering, 37(1-2), 285-288.

Man, K.F. Tang, K.S. and Kwong, S. (1999). Genetic Algorithms: Concepts and

Design. Springer.

Marett, R. and Wright, M. (1996). A Comparison of Neighbourhood Search

Techniques for Multi-Objective Combinatorial Problems. Computers and

Operations Research, 23(5), 465-483.

Martello, S. and Toth, P. (1990). Knapsack Problems - Algorithms and Computer

Implementations. Wiley.

Menczer, F. Degeratu, M. and Street, W.N. (2000). Efficient and Scalable Pareto

Optimization by Evolutionary Local Selection Algorithms. Evolutionary

Computation, 8(2), 223-247.

Metropolis, N. Rosenbluth A.W., Rosenbluth, M.N., Teller A.H. and Teller, E.

(1953). Equation of State Calculations by Fast Computing Machines. Journal

of Chemical Physics, 21(6), 1087-1092.

Michalewicz, Zbigniew (1999). Genetic Algorithms + Data Structures = Evolution

Programs, 3rd. Ed., Springer.

Michalewicz, Z. and Fogel, D.B. (2000). How to Solve It: Modern Heuristics.

Springer.

Miettinen, K. (2001). Some Methods for Nonlinear Multi-Objective Optimization.

Proceedings of the 1st International Conference on Evolutionary Multi-

Criterion Optimization EMO 2001, Lecture Notes in Computer Science, 1993,

References

 191

Zurich Switzerland, Springer, 1-20.

Mlandenovic, N. and Hansen, P. (1997). Variable Neighbourhood Search.

Computers and Operations Research, 24(11), 1097-1100.

Morrison, R.W. and De Jong, K.A. (2001). Measurement of Population Diversity.

Artificial Evolution: Selected Papers of the 5th International Conference on

Artificial Evolution EA 2001, Lecture Notes in Computer Science, 2310, Le

Creusot France, Springer, 31-41.

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms. Report 826, Caltech Concurrent

Computation Program, California Institute of Technology, Pasadena CA, USA.

Moscato, P. (1999). Memetic Algorithms: A Short Introduction. In: Corne, D.

Dorigo, M. and Glover, F. (eds.), New Ideas in Optimisation, McGraw Hill.

Moscato, P. and Cotta, C. (2003). A Gentle Introduction to Memetic Algorithms. In:

Glover, F.W. and Kochenberger, G.A. (eds.), Handbook of Metaheuristics,

Kluwer Academic Publishers.

Murata, T. Ishibuchi, H. and Tanaka, H. (1996). Multi-Objective Genetic Algorithm

and its Applications to Flowshop Scheduling. Computers and Industrial

Engineering, 30(4), 957-968.

Murata, T. Ishibuchi, H. and Tanaka, H. (1996b). Genetic Algorithms for Flowshop

Scheduling Problems. Computers and Industrial Engineering, 30(4), 1061-

1071.

Murata, T. Ishibuchi, H. and Gen, M. (2000). Cellular Genetic Local Search for

Multi-Objective Optimization. Proceedings of the 2000 Genetic and

Evolutionary Computation Conference GECCO 2000, 307-314.

Murata, T. Ishibuchi, H. and Gen, M. (2001). Specification of Genetic Search

References

 192

Directions in Cellular Multi-objective Genetic Algorithms. Proceedings of the

1st International Conference on Evolutionary Multi-Criterion Optimization

EMO 2001, Lecture Notes in Computer Science, 1993, Zurich Switzerland,

Springer, 82-95.

Nagar, A. Haddock, J. and Heragu, S. (1995). Multiple and Bicriteria Scheduling: A

Literature Survey. European Journal of Operational Research, 81, 88-104.

Osman, I.H. (1995). Heuristics for the Generalised Assignment Problem: Simulated

Annealing and Tabu Search Approaches. OR Spektrum, 17, Springer, 211-225.

Osman, I.H. and Kelly J.P. (eds.) (1996). Meta-Heuristics: Theory & Applications.

Kluwer Academic Publishers.

Osman, I.H. and Laporte, G. (1996). Metaheuristics: A Bibliography. Annals of

Operations Research, 63, 513-623.

Papadimitriou, C.H. and Steiglitz, K. (1999). Combinatorial Optimization:

Algorithms and Complexity. Dover Publications.

Pirlot, M. (1996). General Local Search Methods. European Journal of Operational

Research, 92(3), 493-511.

Poole, D. Mackworth, A. and Goebel, R. (1998). Computational Intelligence - A

Logical Approach. Oxford University Press.

Preux, Ph. and Talbi, E.G. (1999). Towards Hybrid Evolutionary Algorithms.

International Transactions in Operational Research, 6, 557-570.

Purshouse, R.C. and Fleming, P.J. (2001). The Multiobjective Genetic Algorithm

Applied to Benchmark Problems - An Analysis. Technical Report No. 796,

Department of Automatic Control and Systems Engineering, University of

Sheffield, UK.

References

 193

Randall, M. and Abramson, D. (2001). A General Meta-Heuristic Based Solver for

Combinatorial Optimisation Problems. Computational Optimization and

Applications, 20, 185-210.

Rayward-Smith, V.J. (1986). A First Course in Computability. Blackwell.

Rayward-Smith, V.J. Osman, I.H. Reeves, C.R. and Smith, G.D. (eds.) (1996).

Modern Heuristic Search Methods. Wiley.

Reeves, C.R. (ed.) (1995). Modern Heuristic Techniques for Combinatorial

Problems. McGraw-Hill.

Reeves, C. (1996). Hybrid Genetic Algorithms for Bin-packing and Related

Problems. Annals Of Operations Research, 63, 371-396.

Reeves, C. (1996b). Integrating Local Search into Genetic Algorithms. In: Rayward-

Smith V.J., Osman I.H., Reeves C.R., Smith G.D. (eds.), Modern Heuristic

Search Methods, John Wiley & Sons.

Reynolds, R.G. (1999) . Cultural Algorithms: Theory and Applications. In: Corne,

D. Dorigo, M. and Glover, F. (eds.), New Ideas in Optimisation, McGraw Hill.

Ritzman, L. Bradford, J. and Jacobs, R. (1980). A Multiple Objective Approach to

Space Planning for Academic Facilities. Journal of Management Science,

25(9), 895-906.

Romero, D. and Sanchez-Flores, A. (1990). Methods for the One-dimensional Space

Allocation Problem. Computers and Operations Research, 15(5), 465-473.

Rosenthal, Richard E. (1985). Principles of Multiobjective Optimization. Decision

Sciences, 16, 133-152.

Salman, F.S. Kalagnaman, J.R. Murthy, S. and Davenport A. (2002). Cooperative

Strategies for Solving Bicriteria Sparse Multiple Knapsack Problem. Journal of

References

 194

Heuristics, 8, 215-239.

Schaerf, A. (1999). A Survey of Automated Timetabling, Artificial Intelligence

Review, 13, 87-127.

Schaerf, A. (1999b). Local Search Techniques for Large High School Timetabling

Problems. IEEE Transactions on Systems, Man and Cybernetics- Part A:

Systems and Humans, 29(4), 368-377.

Schaffer, J.D. (1985). Multiple Objective Optimization with Vector Evaluated

Genetic Algorithms. Genetic Algorithms and Their Applications: Proceedings

of the First International Conference on Genetic Algorithms, 93-100.

Serafini, Paolo (1992). Simulated Annealing for Multiobjective Optimization

Problems. Procceedings of the 10th International Conference on Multiple

Criteria Decision Making, Taipei Taiwan, 87-96.

Srinivas, N. and Deb, K. (1995). Multiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248.

Steuer, Ralph E. (1986). Multiple Criteria Optimization: Theory, Computation and

Application. Wiley.

Strenski, P.N. and Kirkpatrick, S. (1991). Analysis of Finite Length Annealing

Schedules. Algorithmica, 6, Springer, 346-366.

Suppapitnarm, A. Seffen, A. Parks, G.T. and Clarkson P.J. (2000). A Simulated

Annealing Algorithm for Multiobjective Optimisation, Engineering

Optimization, 33(1), 59-85.

T’kindt, V. and Billaut, J.C. (2002). Multicriteria Scheduling: Theory, Models and

Algorithms. Springer.

Taillard, E.D. Gambardella, L.M. Gendreau, M. and Potvin, J. (2001). Adaptive

References

 195

Memory Programming: A Unified View of Metaheuristics. European Journal

of Operational Research, 135, 1-16.

Talbi, E.G. (2002). A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics, 8,

541-564.

Tan, K.C. Lee, T.H. and Khor E.F. (2001). Evolutionary Algorithms for Multi-

Objective Optimization: Performance Assessments and Comparisons.

Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001,

Seoul Korea, 979-986.

Thiel, J. and Voss, S. (1994). Some Experiences on Solving Multiconstraint Zero-

one Knapsack Problems with Genetic Algorithms. INFOR, 32(4), 226-242.

Thompson, J.M. and Dowsland, K.A. (1996). General Cooling Schedules for a

Simulated Annealing Based Timetabling System. In: Burke, E.K. and Ross, P.

(eds.) The Practice and Theory of Automated Timetabling: Selected Papers

from the 1st International Conference on the Practice and Theory of Automated

Timetabling PATAT 1995, Lecture Notes in Computer Science, 1153,

Springer, 345-363.

Thompson, J.M. and Dowsland, K.A. (1996b). Variants of Simulated Annealing for

the Examination Timetabling Problem. Annals of Operations Research, 63,

105-128.

Tuson, A. and Ross, P. (1998). Adapting Operator Settings in Genetic Algorithms.

Evolutionary Computation, 6(2), 161-184.

Ulungu, E.L. and Teghem, J. (1994). Multi-objective Combinatorial Optimization

Problems: A Survey. Journal of Multi-Criteria Decision Analysis, 3, 83-104.

Ulungu, E.L. Teghem, J. Fortemps, P.H. and Tuyttens, D. (1999). MOSA Method: A

Tool for Solving Multiobjective Combinatorial Optimization Problems.

Journal of Multicriteria Decision Analysis, 8, 221-236.

References

 196

Vaessens, R.J.M. Aarts, E.H.L. and Lenstra, J.K. (1998). A Local Search Template.

Computers and Operations Research, 25(11), 969-979.

Van Veldhuizen, D.A. and Lamont, G.B. (2000). Multiobjective Evolutionary

Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation, 8(2),

125-147.

Van Veldhuizen, D.A. and Lamont, G.B. (2000b). On Measuring Multiobjective

Evolutionary Algorithms Performance. Proceedings of the 2000 Congress on

Evolutionary Computation CEC 2000, Piscataway USA, 204-211.

Varela, R. Vela, C.R. Puente, J. Gomez, A. and Vidal, A.M. (2001). Solving Job-

shop Scheduling Problems by Means of Genetic Algorithms. In: Chambers, L.

(ed.) The Practical Handbook of Genetic Algorithms Applications,

Chapman&Hall/CRC, 275-294

Vasquez, M. and Hao, J.K. (2001). A "Logic-Constrained" Knapsack Formulation

and a Tabu Search Algorithm for the Daily Photograph Scheduling of an Earth

Observation Stellite. Computational Optimization and Applications, 20(2),

137-157.

Voss, S. Martello, S. Osman, I.H. and Roucairol C. (eds.) (1999). Meta-Heuristics:

Advances and Trends in Local Search Paradigms for Optimization, Kluwer

Academic Publishers.

White, G.M. and Xie, B.S. (2001). Examination Timetables and Tabu Search with

Longer-Term Memory. In: Burke, E.K. and Erben, W. (eds.) The Practice and

Theory of Automated Timetabling III: Selected Papers from the 3rd

International Conference on the Practice and Theory of Automated

Timetabling PATAT 2000, Lecture Notes in Computer Science, 2079,

Springer, 85-103.

Wolpert, D. and Macready, W. (1995). No Free Lunch Theorems for Search.

References

 197

Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM, USA.

Wolpert, D. and Macready, W. (1997). No Free Lunch Theorems for Optimization.

IEEE Transactions on Evolutionary Computation, 1(1), 67-82.

Wren, A. (1996). Scheduling, Timetabling and Rostering, a Special Relationship?.

In: Burke, E.K., and Ross, P. (eds.) The Practice and Theory of Automated

Timetabling: Selected Papers from the 1st International Conference on the

Practice and Theory of Automated Timetabling PATAT 1995, Lecture Notes in

Computer Science, 1153, Springer, 46-75.

Wright, M.B. and Marett, R.C. (1996). A Preliminary Investigation into the

Performance of Heuristic Search Methods Applied to Compound

Combinatorial Problems. In: Osman I.H., Kelly J.P. (eds.), Meta-Heuristics:

Theory and Applications, Kluwer Academic Publishers, 299-317.

Yamada, T. and Futakawa, M. (1997). Heuristic and Reduction Algorithms for the

Knapsack Sharing Problem. Computers and Operations Research, 24(10), 961-

967.

Yang, M.H. and Chen, W.C. (1999). A Study on Shelf Space Allocation and

Management. International Journal of Production Economics, 60-61, 309-317.

Yang, M.H. (2001). An Efficient Algorithm to Allocate Shelf Space. European

Journal of Operational Research, 131, 107-118.

Youssef, H. Sait, S.M. and Adiche, H. (2001). Evolutionary Algorithms, Simulated

Annealing and Tabu Search: A Comparative Study. Engineering Applications

of Artificial Intelligence, 14, 167-181.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications. PhD Thesis, The Swiss Federal Institute of

Technology Zurich Switzerland, Shaker Verlag.

References

 198

Zitzler, E. Deb, K. and Thiele, L. (2000). Comparison of Multiobjective

Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2),

173-195.

Zitzler, E. Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the Strength

Pareto Evolutionary Algorithm for Multiobjective Optimization. Proceedings

of the EUROGEN 2001 - Evolutionary Methods for Design, Optimisation and

Control with Applications to Industrial Problems, Barcelona Spain.

Zitzler, E. and Thiele, L. (1998). Multiobjective Optimization Using Evolutionary

Algorithms - A Comparative Case Study. Proceedings of the Parallel, Problem

Solving From Nature PPSN V, 292-301.

Zitzler, E. and Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach. IEEE

Transactions on Evolutionary Computation, 3(4), 257-271.

Zufryden, F.S. (1986). A Dynamic Programming Approach For Production Selection

And Supermarket Shelf-Space Allocation. Journal of the Operational Research

Society, 37(4), 413-422.

Zydallis, J.B. Van Veldhuizen, D.A. and Lamont, G.B. (2001). A Statistical

Comparison of Multiobjective Evolutionary Algorithms Including the

MOMGA-II. Proceedings of the 1st International Conference on Evolutionary

Multi-Criterion Optimization EMO 2001, Lecture Notes in Computer Science,

1993, Zurich Switzerland, Springer, 226-240.

Appendix

 199

APPENDIX − List of Publications

[Bur2000] Burke, E.K. Cowling, P. Landa Silva, J.D. McCollum, B. and
Varley, D. (2000). A Computer Based System for Space
Allocation Optimisation. Proceedings of the 27th International
Conference on Computers and Industrial Engineering (ICC&IE
2000), Beijing China, China Machine Press, ISBN 7-900043-38-
1, 11-13.

[Bur2001] Burke, E.K. Cowling, P. Landa Silva, J.D. and McCollum, B.
(2001). Three Methods to Automate the Space Allocation Process
in UK Universities. The Practice and Theory of Automated
Timetabling III: Selected Papers from the 3rd International
Conference on the Practice and Theory of Automated Timetabling
(PATAT 2000), Lecture Notes in Computer Science, 2079,
Konstanz Germany, Springer, 254-273.

[Bur2001b] Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001). Hybrid
Population-Based Metaheuristic Approaches for the Space
Allocation Problem. Proceedings of the 2001 Congress on
Evolutionary Computation (CEC 2001), Seoul Korea, IEEE Press,
232-239.

[Bur2001c] Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001). On the
Performance of Population-Based Metaheuristics for the Space
Allocation Problem: An Extended Abstract. Proceedings of the
2001 Metaheuristics International Conference (MIC 2001), Porto
Portugal, 579-583.

[Bur2001d] Burke, E.K. Cowling, P. Landa Silva, J.D. and Petrovic, S. (2001).
Combining Hybrid Metaheuristics and Populations for the
Multiobjective Optimisation of Space Allocation Problems.
Proceedings of the 2001 Genetic and Evolutionary Computation
Conference (GECCO 2001), San Francisco USA, Morgan
Kaufmann, 1252-1259.

[Bur2002] Burke, E.K. and Landa Silva, J.D. (2002). Improving the
Performance of Multiobjective Optimisers by Using Relaxed
Dominance. Proceedings of the 4th Asia-Pacific Conference on
Simulated Evolution and Learning (SEAL 2002), Singapore, ISBN
981-04-7523-3, 203-207.

Appendix

 200

[Bur2003] Burke, E.K. and Landa Silva, J.D. (2003). The Influence of the
Fitness Evaluation Method on the Performance of Multiobjective
Optimisers. Submitted to the European Journal of Operational
Research, February 2003.

[Bur2003b] Burke, E.K. and Landa Silva, J.D. (2003). Hybrid Evolutionary
Metaheuristics Based on Cooperative Local Search. Submitted to
the IEEE Transactions on Evolutionary Computation Journal,
March 2003.

