-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Nottingham ePrints

r The Uniyersitg of
M | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Landa Silva, Jesus Dario (2003) Metaheuristic and
Multiobjective Approaches for Space Allocation. PhD
thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10147/1/JDLSPHDTHESIS.PDF

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

Copyright and all moral rights to the version of the paper presented here belong to
the individual author(s) and/or other copyright owners.

To the extent reasonable and practicable the material made available in Nottingham
ePrints has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-
for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

https://core.ac.uk/display/33563787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

METAHEURISTIC AND MULTIOBJECTIVE

APPROACHES FOR SPACE ALLOCATION

by Jesus Dario Landa Silva, BEng, MSc

Thesis submitted to the University of Nottingham
for the degree of Doctor in Philosophy
School of Computer Science and Information Technology

November 2003

TABLE OF CONTENTS

Table of Contents

List of Figures 6
List of Tables 8
Abstract 9
Aknowledgemets 10
1. INTRODUCTION
1.1.Background and Motivation 12
1.2.Aims and Scope 14
1.3.0verview of this Thesis 15
1.4.Contributions of this Thesis 17
2. THE SPACE ALLOCATION PROBLEM
2.1.Introduction 18
2.2.Related Problems 19
2.2.1.Multiple Knapsack Problem 19
2.2.2.Generalised Assignment Problem 20
2.3. Space Allocation in Academic Institutions 21
2.3.1.Space Allocation in UK Universities 22
2.3.2.Manual Approach to Space Allocation 24
2.3.3.The Multiobjective Nature of the Problem 25
2.4. Problem Formulation 26
2.4.1.Types of Constraints 27
2.4.2.Evaluation of an Allocation 28
2.4.3.A Metric for Population Diversity 30
2.5. Test Data Sets From UK Universities 32
3. LITERATURE REVIEW
3.1.Introduction 35
3.2.Previous Research on Space Optimisation 35
3.3.0ther Space Optimisation and Related Problems 38
3.3.1.Space Planning 38
3.3.2.Shelf Space Allocation 39
3.3.3.Constrained Variants of Knapsack Problems 39
3.3.4.Related Scheduling Problems 40

3.4.Complexity Theory and the No Free Lunch Theorem

Table of Contents

-

d>

3.4.1.Algorithms Complexity

3.5.Review of Metaheuristic Approaches

3.5.1.Introduction

3.5.3.Constructive Heuristics

3.5.4.Simple Local Search

3.5.6.Guided Local Search

3.5.7.lterated Local Search

3.5.10.Simulated Annealing
3.5.11.Tabu Search

3.5.12.Genetic Algorithms

3.5.14.Hybrid Metaheuristics

4.1.Introduction

4.3.Neighbourhood Structures

4.4 Fitness Evaluation Routines

4.5.1.Constructive Heuristics

4.5.3.Neighbourhood Exploiah

4.6.Iterative Improvement Algorithm
4.7.Simulated Annealing

4.8.Tabu Search

4.9.Genetic Algorithm

4.9.1.Selection of Parents

41
3.4.2.Problem Complexity — The P and NP Classes 42
3.4.3.Approaches to Solve Optimisation Problems 45
3.4.4.The No Free Lunch Theorem 46
47
47
3.5.2.Classification of Metaheuristics 47
48
49
3.5.5.Greedy Randomised Adaptive Search Procedure 52
52
54
3.5.8.Variable Neighbourhoofearch 54
3.5.9.Threshold Acceptance Algorithms 55
56
61
63
3.5.13.0ther Evolutionary Algorithms 66
69

3.5.15.Evaluating the Performance of Metaheuristics 72

4. GENERAL METAHEURISTIC APPROACHES

73
4.2.Solution Representation and Data Structures 5
{7
78

4.5.Constructive Heuristics and Neighbourhood Exploration 79
80

4.5.2.Neighbourhood Structure |8&tion 81
82
84
85
86

4.8.1.Matrices of Tabu and Attractive Genes 8
4.8.2.Intensification and Diversification Strategies 88
89

89
90

4.9.2.Genetic Operators

4.10.Experiments and Results

Table of Contents

4.11.Summary and Final Remarks

5.1.Introduction

5.2.A Single-Solution Hybrid Metaheuristic

5.2.1.The Hybrid Components

5.3.1.Experimental Settings

5.3.2.Results and Discussion

5.5.1.Experiments and Results

5.6.Summary and Final Remarks

MULTIOBJECTIVE APPROACHES
6.1.Introduction

6.2.2.Pareto Optimisation

6.4.Pareto Optimisation of Space Allocation

6.4.2.Experiments and Results

6.5.4.Experimental Settings

91
4.10.1.The Initialisation Heuristics 91
4.10.2.The Neighbourhood Exploration Heuristics 9.
4.10.3.Comparing the Four Metaheuristics 95
4.10.4.Further Discussion of Results 9
96
HYBRID METAHEURISTIC APPROACHES
99
100
101
5.3.0n the Performance of the Single-Solution Hybrid 103
103
104
5.3.3.Further Comparison with Previous Results 105
5.4. A Population-Based Hybrid Metaheuristic 106
5.4.1.The Shared Memory Structures 108
5.4.2.The Common Cooling Schedule 108
5.5. On the Performance of the Population-Based Hybrid 109
109
5.5.2.Variants of the Population-Based Hybrid 112
115
118
6.2.A Brief Review of Multiobjective Optimisation 119
6.2.1.Multiple Criteria Decision-Making 119
120
6.2.3.Metaheuristics for Multiobjective Optimisation 123
6.3.Conflicting Objectives in Space Allocation 128
132
6.4.1.Adapting the Hybrid Algorithms 132
133
6.5.The Influence of the Fitness Evaluation Method 134
6.5.1.Assigning Fitness to Solutions in Pareto Optimisation ---------------- 134
6.5.2.Relaxed Pareto Dominance 135
6.5.3.Multiobjective Algorithms Tested 137
138
6.5.5.The Offline Non-dominated Sets 139
6.5.6.The Online Non-dominated Sets 141

Table of Contents

6.5.7.Results on Diversity

6.5.8.Compromise Between Obijectives in Relaxed Dominance ------------

6.5.9.The Evolution of Objective Values
6.5.10.Further Discussion of Results

6.6.Summary and Final Remarks

7. HYBRID EVOLUTIONARY METAHEURISTICS BASED ON
COOPERATIVE LOCAL SEARCH

7.1.Introduction

152

7.2.Hybridising Recombinative and Local Search Methods

w

a1

7.3.Cooperative Local Search
7.4.Hybrid Evolutionary Metaheuristics

()

7.4.1.Relation to Previous Work

()

7.4.2.The Cooperation Mechanism

0 ~

7.4.3.Extending the Single-Solution Approaches
7.5.0n the Performance of the Extended Approaches

7.5.1.Experimental Settings

©

7.5.2.Results on the Fitness of Solutions

w O

7.5.3.Results on the Diversity of Solutions
7.5.4.0n the Rate of Improvement

SN

o

7.6.The Best Results for All Test Instances

7.7.Summary and Final Remarks

8. CONCLUSIONS AND FUTURE WORK

8.1.Conclusions

R KR R HE KR PR R B R R R R
md»mm(»még(ﬂmmmm(ﬂ

oo

8.1.1.Description and Formulation of the Problem

8.1.2.Design of Basic Operators
8.1.3.Suitability of Metaheuristics

8.1.4.The Hybrid Algorithms Proposed

8.1.5.The Two-Objective Problem
8.1.6.Influence of Fitness Evaluation in Pareto Optimisation -------------—
8.1.7.Cooperative Local Sear

172
173
173

8.1.8.Scope of Conclusions
8.2.Future Work

173
3

8.2.1.From the Space Allocation Perspective
8.2.2.From the Metaheuristics Perspective

=
1

=
f

[FEQEETIN

4

REFERENCES

APPENDIX — List of Publications

175

199

LIST OF FIGURES

Table of Contents

Figure 3.1.lterative improvement algorithm 50
Figure 3.2.Greedy randomised adaptive search procedure 52
Figure 3.3.Guided local search metaheuristic 53
Figure 3.4.lterated local search metaheuristic 54
Figure 3.5.Variable neighbourhood search metaheuristic 55
Figure 3.6.Threshold acceptance metaheuristic 56
Figure 3.7.Simulated annealing metaheuristic 56
Figure 3.8.Tabu search metaheuristic 61
Figure 3.9.The genetic algorithm framework 63
Figure 3.10.Hierarchy of hybrid evolutionary algorithms 70
Figure 4.1.Data structure used for the space allocation problem ---------———-- 77
Figure 4.2.The approximate fitness evaluation routine yae)
Figure 4.3.Local search heuristigd+ 82
Figure 4.4.The iterative improvement local search approach 85
Figure 4.5.The simulated annealing approach 85
Figure 4.6.The tabu search approach 89
Figure 4.7.The genetic algorithm approach 89
Figure 5.1.The single-solution hybrid metaheuristic 100
Figure 5.2.Space misuse, soft constraints violation and the to@kype------------------ 105
Figure 5.3.The population-based hybrid metaheuristic 107
Figure 5.4.Space misuse, soft constraints violation and the estalty ------------------- 114
Figure 6.1.Tracing one objective while optimising the otbettlie nottl instance ------- 131
Figure 6.2.Tracing one objective while optimising the othetHe trentl instance ------ 131
Figure 6.3.Tracing one objective while optimising the other for the wolverl instancé2-- 1
Figure 6.4.Comparing the single-solution and the two pojpuldtased variants --------- 133
Figure 6.5.Aggregating function, standard dominance angeeldominance ------------ 135
Figure 6.6.0ffline non-dominated sets obtained by PBAA and PAE®t] ------------ 139
Figure 6.7.0ffline non-dominated sets obtained by PBAA and P#&ESottlb ---------- 140
Figure 6.8.0ffline non-dominated sets obtained by PBAA and PAB®tl ----------- 140

Figure 6.9.0ffline performance of PBAA and PAES with relaxed dominance variants -- 145
Figure 6.10.New offline non-dominated sets obtained by PBAA and PAES on trentl --- 146
Figure 6.11.Evolution of objective values in PBAA using agatieg function ---------- 147
Figure 6.12.Evolution of glective values in PBAA usmstandard dominance --------- 147

Table of Contents

Figure 6.13.Evolution of objective values in PBAA usingixed dominance ------------ 148
Figure 7.1.Common strategy for designing memetic algorithms 154
Figure 7.2.The cooperative local search scheme 155
Figure 7.3.Hybrid evolutionary scheme based on cooperative local search ----------------- 158
Figure 7.4.Results obtained by the hybrid atiohary approaches for nottl -------------- 161
Figure 7.5.Results obtained by the hybrid evolutionaryaghes for nottlb ------------ 161
Figure 7.6.Results obtained by the hybrid evolutionary appredohaottlc ------------ 162
Figure 7.7.Results obtained by the hybrid evolutionaryagagtres for trentl ------------- 162
Figure 7.8.Rate of improvement over computation time for rent 165

Table of Contents

LIST OF TABLES

Table 2.1.Calculation of the Population Vari&tp) 31
Table 2.2.Characteristics of the test problems used in this thesi 34
Table 4.1.Performance of the initialisation heuristics ondkeinstance nottl ----------- 91
Table 4.2.Performance of the initialisation heuristics ondbeihstance trentl ---------- 91
Table 4.3.Performance of the initialisation heuristics orte¢beinstance wolverl -------- 92
Table 4.4.Variants of the three approaches using neighbourhood searel---------- 93
Table 4.5.Results for the iterative improvement metaheurigstiania --------------------- 94
Table 4.6.Results for the simulated annealing metaheuristantari 94
Table 4.7.Results for the tabu search metaheuristic variants 94
Table 4.8.The best solutions obtained by the four approaches 95
Table 5.1.Quality of the solutions obtained by the four singjletisn approaches ------- 104
Table 5.2.Comparison of the single-solution and the populatiseddaybrids ----------- 106
Table 5.3.Comparison using fixed execution time as terminatitemion ----------------- 110
Table 5.4.Comparison using idle iterations as terminatioariont 113
Table 6.1.Correlation between objectives for the nottl test oestan 129
Table 6.2.0nline performance of PBAA and PAES with the evaluatiethods --------- 142
Table 6.3.Results on diversity for PBAA and PAES with the etialmanethods -------- 143
Table 7.1.Initial populations of different sixes and diversity values for test problems ---- 160
Table 7.2.Results on final diversity when the initial diversthigh 163
Table 7.3.Results on final diversity when the initial diverstioiv 163
Table 7.4.Comparing all population-based hybrid approacha$tiest instances -------- 168

Abstract

ABSTRACT

This thesis presents an investigation andpplication of metaheuristic techniques to
tackle the space allocation problem in academic institutions. This is a combinatorial
optimisation problem which refers to the distribution of the available room space
among a set of entities (staff, research students, computer rooms, etc.) in such a way
that the space is utilised as efficiently as possible and the additional constraints are
satisfied as much as possible. The literature on the application of optimisation
techniques to approach the problem menticatsal/e is scarce. This thesis provides a
description and formulation of the problelnalso proposes and compares a range of
heuristics for the initialisation of solutions and for neighbourhood exploration. Four
well-known metaheuristicstérative improvement, simulated annealing, tabu search
and genetic algorithms) are adapted and tuned for their application to the problem
investigated here. The performance aésh techniques is assessed and benchmark
results are obtained. Also, hybrid approachesdesigned that produce sets of high
quality and diverse solutions in much shorter time than those required by space
administrators who construct solutions mdhlarhe hybrid approaches are also
adapted to tackle the space allocation prokfiemm a two-objective perspective. It is

also revealed that the use of aggregating functions or relaxed dominance to evaluate
solutions in Pareto optimisation, can berenbeneficial than the standard dominance
relation to enhance the performance of some multiobjective optimisers in some
problem domains. A range of single-sotutimetaheuristics are extended to create
hybrid evolutionary approaches based on the schenweayerative local search

This scheme promotes the cooperation pbpulation of local searchers by means of
mechanisms to share the information gained during the search. This thesis also
reports the best results known so far for taogeest instances of the space allocation

problem in academic institutions.

This thesis pioneers the application ofetaheuristics to solve the space
allocation problem The major contributions are: provides a formulation of the
problem together with tests data sets, reports the best known results for these test
instances, investigates the multiobjective nature of the problem and proposes a new

form of hybridising metaheuristics.

Acknowledgements

ACKNOWLEDGEMENTS

To initiate a venture is relatively easy, it is enough
to invigorate the fire of enthusiasm, to persevere on

the venture until success is a different thing, that

requires continuity and effart

There is a big difference between being educated
and being wise...education corresponds to science,

wisdom corresponds to the conscience.

Thanks god because you gave me the strenght to make the decision to initiate
this venture and the strength to complete it. Along the way, there were many times in
which your love and company were essdribacontinue. Thanks for holding me in

difficult times.

Thanks to my parents Seltias and Teresa, from whom | have received so much
love and guidance. Thanks to my brother Ulises and my sister Vianney, because our
bonds are stronger in the distance and goiport has always been there. Thanks to
Nilo and Rosita, you are an exceptional example to follow and your love and advice
are priceless. Thanks to all my relativewl driends because a part of what | am is

because of you.

Love and friendship are essential teemome difficult times and maintain hope
in the future. Therefore, many thanks to all of you my friends, who have shared with
me, SO many moments of happiness, friendship and love. Among them, Alma Olvera,
Iciar Olvera, Flor Torres, Rosy Loya, Tere Cruz, Lillian Tapia, Pedro Maria, German
Blanco, Ralf Keuthen, Marina Aguilar, Emmanuela Cerfeda, Kirstin Elsner, Emma
Dawson, Eric Soubeiga, Rafael Pulido, Koon Wah Kok and many others that will
always be in my memory. All this time would not had been so enjoyable without
your company. Special thanks to Majito Beltran, you have been light in my life and

the time spent with you is always delightful.

10

Acknowledgements

Thanks to the University of Nottingham for providing me with all the required
resources to successfully carry out thissegsh programme. Thanks to everyone in
the School of Computer Science and Information Technology and particularly, to all
the present and past members of theARSesearch group. Working in such a
friendly and harmonious environment has contributed to make this a gratifying

experience.

| am extremely grateful to Professor Edmund K. Burke, who has been an
exceptional supervisor. His guidance angport along my PhD have helped me to
achieve this important goal in my profemsal career. Also, thanks to Professor Peter
Cowling whom gave me many valuable advises in the early stages of my PhD. My
gratitute goes as well to Dr. Graham Kendall (internal examiner) from the University
of Nottingham and Professor Peter Fleming (external examiner) from the University
of Sheffield. Their valuable comments and suggestions during my PhD examination
have been included in the final version of this thesis.

This PhD programme would have not been possible without the financial support
of PROMEP (“Programa de Mejoramten al Profesorado”) and the UACH
(“Universidad Autdbnoma de Chihuahua”) in México. Thanks to both institutions for
their sponsorship. | would like to thank the assistance received from all staff in
PROMEP and UACH during my PhD. In particular, many thanks to Ing. José Luis
Franco Rodriguez and to Dr. José Enriqei@jeda Herrera, present and previous
vice-chancellors of UACH. Also, thanks to members of the administration at the
“Facultad de Ingenieria” in UACH, Ing. Jesus Valles, Ing. Isela Aguirre, Ing. Jesus
Mendoza and M.C. Martha Canales.

| am also very grateful to the variousiiutions and companies that provided us
with data sets for the research carried out in this thesis. Thanks to the University of
Nottingham, the University of Wolverhampton, the Nottingham Trent University and

Real Time solutions Ltd for theassistance in this aspect.

And finally, as in my master thesis, mathanks to all those that continuously
asked me..how is the thesis going?.because without knowing it, you encouraged

me to persevere.

11

Introduction

Chapter 1. Introduction

1.1. Background and Motivation

Office space allocation and the associatesburce efficiency issues impact (to a
greater or lesser extent) on all institutions from small companies to large multi-
national organisations. In academic instdns, the distribution of the available room
space among staff, research students and m¢heurces such as lecture rooms, labs,
storage rooms, etc., is a process that needs to be carried out on a regular basis
because of the continuous changes that occur in this environment. For example,
people leave the institution or move to another department/faculty, new lecture
rooms or labs are required, offices foew staff or research students should be

available, certain rooms are unavailable for various reasons, etc.

Since the available room space is usually restricted, an efficient functioning of
the academic institution depends on, among other factors, having a good distribution
of this space. A good distribution must ensure that all demanding resources are given
the minimum required space, that the space is utilised as efficiently as possible and
that the additional constraints are satisfied to as great an extent as possible. An
efficient utilisation of the space requires that no resource is given too much room
(space wastage) and no resource is rgikess room than the minimum required
(space overuse). Additional constraintsually require that the allocation of
resources to the available rooms meets specific conditions. For example, professors
must not share offices, research students should be allocated near to their
supervisor’s office, lecture rooms must lbeated away from noisy areas, research

groups should be located together, etc.

Besides achieving an efficient utilisation of the room space and the satisfaction
of additional constraints, producing an adequate allocation requires taking into
account other quality factors that are very difficult to evaluate. Space administrators
need to consider the preferences of peagien assigning offices so that they are
satisfied with their working environmenthey should also address aspects such as

politics and future requirements when distributing the room space. That is, several

12

Introduction

criteria (usually from various decision-Res) are employed to evaluate the quality

of the space distribution.

Space allocation is a difficult task and a recent survey on this issue revealed that
in most of the cases this process is carried out manually and it can take weeks or
even months to be completed in tiway (Burke and Varley, 1998). That survey
showed that only a small proportion of higher education institutions in the UK use
some form of computer aid when dealing with the space allocation problem. Usually,
this aid consists of databases that maingarecord and drawings of all rooms and
how they are being used, but no form of automated space allocation is implemented.
Automating the space allocation process \wopgrmit space administrators to save
time and effort. Moreover, if several solutions are obtained in a short computation
time, this would allow the administrator to spend more time in the decision-making
process to select the most appropriate allocation considering all the quality factors
mentioned above. The application of heucsstio tackle this problem was suggested
in (Burke and Varley, 1998b) as a first stepvards the construction of a computer

system to automate the space allocation process in academic institutions.

Space allocation is a combinatorial optimisation problem that has some
similarities with classical knapsack prebis (Martello and Toth, 1990) and is also
related to scheduling problems such as academic timetabling (Wren, 1996). In the
traditional knapsack problem, a set of objects of given sizes must be accommodated
into a set of containers of given capacity so that the available capacity is utilised as
efficiently as possible, but usually no additional constraints exist. In academic
timetabling the problem is to accommodate a set of events into the set of available
timeslots so that additional constraints are satisfied. In some cases, the construction
of academic timetables also takes into account the allocation of rooms to events
(Burke et al.,, 1996) which is obviously closely related to the space allocation

problem.

The range of techniques that have been applied to tackle combinatorial
optimisation problems can be classifiedtiwwo general groups: exact methods and
approximate (heuristic) methods (Papaittiou and Steiglitz, 1999). Exact methods

seek to solve a problem to guaranteed optimality but their execution on large real

13

Introduction

world problems usually requires too much computation time. For practical use
heuristic methods seek to find high quality solutions (not necessarily optimal) within
reasonable computation times (Poole et #998). Metaheuristics are a class of
heuristic techniques that have been successfully applied to solve a wide range of
combinatorial optimisation problems over the years (Glover and Kochenberger,
2003; Voss et al., 1999; Aarts and Lenstra, 1997; Osman and Kelly, 1996; Osman
and Laporte, 1996; Rayward-Sméhal., 1996; Reeves, 1995).

This thesis describes an investigation into the development of metaheuristic
approaches to automate the space allocation process in academic institutions. This
work has been motivated by an interest in developing modern automated algorithms
that tackle this problem in a more effective way than currently exists. In addition,
given the relation of space allocation to other combinatorial problems such as
knapsack and timetabling problems, this investigation may also benefit the

development of optimisation techniques that can be applied to other such problems.

1.2. Aims and Scope

Since space allocation is a multiple ciieoptimisation and decision process, where
some of the criteria are not easily measlagb.g. preference of people over certain
rooms), it is very difficult to obtain an accurate model of this real-world problem.
Even if the preferences are expressedrirobjective function and optimal or near-
optimal solutions are found, it is very likely that the decision-makers will modify
these solutions before the final distribution of space is decided. These are some of the
arguments in favour for the application of heuristic methods to obtain near-optimal

solutions to the space allocation problem.

As expressed above, the space allocgirocess is very complex and the present
thesis tackles one part of this process, the construction of allocations. That is, given a
set of entities, to allocate them into &t of available rooms. Two main objectives
are pursued when constructing an allocation: minimising the amount of space misuse
(wastage and overuse) and minimising the Ipeinof constraint violations. Initially,

this investigation considers finding one high-quality solution. Then, we address the

14

Introduction

situation in which a set of high-quality allocations is required, so that the space

administrators can select the most adequate.

The main aim of this thesis is to present an investigation on the application of
metaheuristic approaches to solve the space allocation problem in academic
institutions. To the best knowledge of the author, apart of (Burke and Varley, 1998b),
no other work in this area has been putad in the literature. Some reports are
available on the application of some exact optimisation techniques to tackle the
problem of distributing space in academic institutions (Ritzman et al., 1980;
Benjamin et al., 1992; Giannikos et al., 1995). An additional aim here is to present a
description and formulation of this problem that helps to better understand it for

future research on this subject.

This thesis demonstrates the suitabitityapplying metaheuristic techniques for
automating the space allocation processitieumore, several hybrid approaches
have been designed as a result of this research and they are described and tested in
this document. This thesis also describesteaof test instances of the space allocation
problem and reports the best known results.

1.3. Overview of this Thesis

The remainder of this thesis is organised as follows. In the second chapter, a
description and formulation of the spackehtion process and the specific problem
investigated here (the construction of allocations) is presented together with an

insight into its relationship with other combinatorial optimisation problems.

Chapter three reviews the literature from two perspectives: the problem and the
solution techniques. That is, a review of the published research on the subject of
space allocation is presented together with an account and brief description of a
range of metaheuristic approaches proposedeniterature. Chapter three also gives
an introduction to the theory of algorithms complexity and the No Free Lunch
theorem (NFL) of Wolpert and MacreadWolpert and Macready, 1995; Wolpert
and Macready, 1997).

15

Introduction

An investigation into the application of a range of metaheuristics to the space
allocation problem is presented in chapter four. This initial study aims to identify the
strengths and weaknesses of various Wwediwn techniques when used to solve this
problem. Four approaches are investgat iterative improvement, simulated
annealing, tabu search and genetic algoritfdmistructive heuristics for initialising
solutions and neighbourhood exploration hdingsare also designed, presented and
tested in chapter four. Various recombination and mutation operators are also

designed and evaluated for this problem.

In chapter five, hybrid metaheuristics for the space allocation problem are
developed and tested. First, a single-solution hybrid approach is designed by
combining some of the features of the algorithms studied in chapter four. Then, this
algorithm is modified to produce two population-based variants in which a common

annealing schedule is used to contha evolution of the whole population.

In chapter six, an investigation of the space allocation problem as a two-
objective optimisation problem is carried out. That is, instead of using an aggregating
function to assign fitness to solutions, the concepts of Pareto optimisation are used in
order to produce a set of compromiselutions (Steuer, 1986). First, the
multiobjective nature of the space allocation problem is investigated. Then, the
suitability of the hybrid algorithms of chapter five to produce a set of compromise
solutions is assessed. Finally, it is simotat the fitness evaluation method used to
discriminate against solutions during the search, has an impact on the performance of
some multiobjective optimisers. As a coggence, we suggest the use of relaxed
dominance relations as alternative methdds assign fitness to solutions in

multiobjective optimisation.

A scheme for extending single-solutiorcéd search algorithms towards hybrid
evolutionary approaches is proposed iamier seven. This scheme is based on the
concept ofcooperative local searclwhich promotes the idea that an evolving
population of local searchers share the infaion gained during the search. In this
way, explorative capabilities from population-based methods can be combined with
the intensification features of local search techniques without the need to design

specialised recombination operators or repgiheuristics to maintain the feasibility

16

Introduction

of solutions. This approach appearshtidd significant promise for other problems

particularly where recombination and reparesent serious difficulties. Finally,

conclusions and some directions for future work on this area are given in chapter

eight.

1.4. Contributions of this Thesis

The contributions of this thesis are summarised as follows:

A description and formulation of thspace allocation problem in British
universities is presented. From real data provided by some universities, six data
sets have been prepared in a propdseshat and these test instances have

been made publicly available.

For the first time, an investigation on thgitablilty of applying metaheuristics

to solve the space allocation problem is presented. It is shown that these
approaches can produce solutions ottdsequality than those generated
manually by space officers and in a much shorter time.

Two hybrid algorithms are presented, one point-based and one population-
based, which produce the best known solutions for the test instances used in

this thesis.

For the first time, an investigation on the multiobjective nature of the space
allocation problem is provided. A form of relaxed dominance is proposed and
it is shown that using this form of evaluating solutions is beneficial in the

multiobjective optimisation of this problem.

A new form of hybridisation is proposed in which single-solution local search
methods are extended to population-basathnts. The result is a cooperative
scheme in which a population of local searchers help each other to find better

solutions.

17

The Space Allocation Problem

Chapter 2. The Space Allocation Problem

2.1. Introduction

In combinatorial optimisation problems the aim is to find an optimal setting of a
finite or countable infinite number of discrete entities (Papadimitriou and Steiglitz,
1999). The desired setting can be an arrangement, ordering, grouping, selection or
distribution of the entities such that a number of requirements and perhaps
constraints are satisfied. The complexity of many combinatorial problems is
described by exponential functions and they are considered to be intractable or NP-
complete (Garey and Johnson, 1979). Since there are no known polynomial bounded
exact algorithms for solving this class of problems, heuristic algorithms are
frequently applied with the aim of producing high-quality solutions in a reasonable
amount of time (Baase, 1998). Chapter tlpezsents a more detailed discussion of
the theory of algorithms complexity inclundj the P and NP classes. Among the class

of important and difficult to solveombinatorial problems there are tbapacity
allocation problemsThis refers to those problems in which the available capacity or
amount of resources has to be distributed among a set of demanding entities.
Examples of this type of problemsearthe bin-packing problem, the knapsack
problem and the generalised assignment problem (Martello and Toth, 1990; Kallarath
and Wilson, 1997 chapter 7).

The particularcapacity allocation problenthat motivated the research for this
thesis is the distribution of the availaliffice space among staff, research students
and other resources in academic institutions. When solving this problem, the goal is
to find an allocation that optimises the space utilisation and satisfies (as far as
possible) the additional requirements and constraints that may exist. To the best
knowledge of the author, there are few jediions in the literature reporting
research on this problem. For example, (Giannikos et al., 1995) applied goal
programming to automate the distribution of offices among staff in an academic
institution. The management of space in academic institutions has also been subject
of study from a different perspective: plangithe layout of offices (Benjamin et al.,
1992; Ritzman et al., 1980). The applicationsofme heuristic algorithms to tackle

the space allocation problem was expt in (Burke and Varley, 1998b).

18

The Space Allocation Problem

In principle, the problem of distributing office space in academic institutions is very
similar to two other capacity allocation problems: the multiple knapsack problem and
the generalised assignment problemedé two capacity allocation problems are
briefly described below in order to provide a background for a better understanding
of the space allocation problem in academic institutions. Then, a detailed description
and formulation of the space allocation problem is presented. Finally, the test data
sets used in the experiments of this thasesalso described. The material presented

in this chapter is included in the papers [Bur2000] and [Bur2003b] (see the appendix
on page 199).

2.2. Related Problems

2.2.1. Multiple Knapsack Problem

In the multiple knapsack problem there are a number of items of given sizes and a
number of knapsacks of given capacities. Eémm has an associated profit and an
associated weight. The goal is to fill each of the knapsacks with a subset of the items
without exceeding the capacity of the knapsack and maximising the total profit. If an
item is selected it can only be assigned to one knapsack. This problem is formulated
as follows (Martello and Toth, 1990):

m = number of knapsacks

n = number of items

c(i) = capacity of the knapsack
p(j) = profit associated to iten
w(j) = weight associated to item

x(i,J)) = 1 if itemj is selected for knapsackO otherwise

m n

maximize f(x) =ZZp(j XG,) (2.1)
subject to Zn:w(j)xa, j)<c() i=1,2,..m (2.2)
Zm:xd, <1 ji=1,2,..n (2.3)

19

The Space Allocation Problem

Because of the binary variabté,j), this problem is also known as the 0-1 multiple

knapsack problem (Hanafi et al., 1996).

2.2.2. Generalised Assignment Problem

Another type of capacity allocation problem is the generalised assignment problem,
which is very similar to the multiple knapsack problem described above. However, in
the generalised assignment problem, the profit and weight associated with each of the
items vary according to the knapsack for which it is selected. It is common that this
problem be described in terms of assigning tasks to agents, assigning jobs to
machines or any similar situation. Each agent has a given capacity and each task has
a profit and a weight (capacity request) associated to each of the agents. The goal is
to distribute all the tasks among the agensugng that the sum of weights of all the

jobs assigned to each agent does not exceed the agent’s capacity and the total profit
is maximised. A formulation of the generalised assignment problem can be

represented as follows (Martello and Toth, 1990):

m = number of agents

n = number of tasks

c(i) = capacity of the agent

p(i,j) = profit associated to tagkvhen assigned to agent
w(i,J)) = weight associated to tagkvhen assigned to agent

x(i,j)) = 1 if taskj is assigned to agentO otherwise

maximize f(x) =Zm:_zn:p6 XA,) (2.4)
subject to Zn:WG XA,) =c(i) i=1,2,..n (2.5)
Zxo,j):l i=12,..n (2.6)

Note that, in this formulation, all the tasks have to be assigned to exactly one agent
(constraint 2.6). However, in some variations of this problem, it may be permitted
that some of the tasks are not assigned to any agent. In this case, equation 2.6 is

replaced by equation 2.3 as in the multiple knapsack problem.

20

The Space Allocation Problem

2.3. Space Allocation in Academic Institutions

In academic institutions, the distributiaf the available room space among staff,
research students, laboratories, teaching sp@tc. is a difficult task because space

is a demanded commodity and a variety of conflicting interests are present.
Therefore, it is often crucial that the availroom space be utilised as efficiently as
possible. The available room space in bodd has to be distributed among a set of
demanding entities. Each room is assigned with a functionality. For example, some
offices are assigned to staff, researsbims for postgraduate students, laboratories,
meeting rooms, lecture rooms, seminar roarosamon rooms, etc. In this thesis, the
functionality assigned to each room is calledestity and each entity requires a
certain amount of room space. The amount of room space demanded by each entity is
measured (not surprisingly) by the floor area. For example, staff offices may require
12 nf, computer rooms may need 3 per workstation, etc. In this problem, it is
often the case that it is not possible to assign exactly the required space room to each
demanding entity, i.e. space in rooms igenfwasted or overused. In this problem
there are also additional constraints that restrict the location of certain entities with
respect to some rooms or with respect to other entities. For example, a laboratory
might need to be allocated next to aleetroom, a professor should not be allocated

in a shared room or postgraduate studantsstaff in a given research group should

be allocated in nearby rooms.

Then, the space allocation problem da@ seen as the distribution of the
available room space among the demanding entities in such a way that the space
utilisation is optimised and the additionainstraints are satisfied. Constraints can be
any of the two following typessoft constraintsare rules that can be broken but

penalised, whildnard constraintannot be violated at all.

In (Burke and Varley, 1998) a descripti of this problem was provided as a
result of a questionnaire on the space allocation process that was sent to space
administrators in ninety-six British Universities. Thirty-eight of the ninety-six
universities replied and ¢h paper describes and analyses the results of the
guestionnaire. In that paper, the authors stated that (in most of the surveyed
universities) this process is carried eyta manual process and only a few British

21

The Space Allocation Problem

universities use some kind of automated tdbley also showed that this problem as

it actually appears in a wide range of British universities is very complex, highly
constrained, contains multiple objectives, varies greatly among different institutions,
requires frequent modifications due to the addition or removal of entities and/or

rooms and has a direct impact on the functionality of the university.

2.3.1. Space Allocation in UK Universities

This section gives a brief description tife space allocation process in British
universities. The paper by (Be and Varley, 1998) gives more details about this
process. In their work, Burke and Varley expressed that, allocating rooms to entities

in UK universities is a multi-stage process that can be performed in three phases:

§ The estates department or central committee allocates space to faculties and

assigns common areas.
§ Faculties assign areas to schools and departments.

§ Departments allocate specific rooms to staff, research groups, research students

and other entities.

However, in practice there is a lower phase when assigning rooms to entities. This is
when the head of a research group distributes the office space among the members of

the group. During any of these phases, the problem can be solved in different ways:

§ Fitting all entities into a limited amount of room space. For example, when all the
research student members of the sameares group have to be allocated into a

number of available rooms.

§ Minimising the amount of room space required to allocate a set of entities. For
example, when a department has to allocate all the needed teaching rooms in the

most efficient way possible.

§ Reorganising the existing allocation due to the variation of requirements and/or
constraints. For example, a lecturer tlsapromoted to professor will require a

bigger office and the students that he suviges may also need to be relocated.

22

The Space Allocation Problem

§ Reorganising the existing allocation besawf the addition/removal of entities.
For example, new staff and additional teaching rooms have to be allocated.

§ Reorganising the existing allocation because of a change in available room space.
For example, if new rooms are constag; rooms are resized or rooms are

assigned to a different authority (department/school/faculty).

The need for reorganising the distribution of room space is a situation that
academic institutions face more frequently that many large organisations due to the
dynamic nature of the space distributiaruniversities (e.g. PhD students and post-
doctoral research assistants usually only reggpace for a three year period). In this
case, the economic cost and disturbaneesed due to the changes made are very
important additional objectives that shdude minimised. This often impedes our
ability to find very high quality utilisation of the space due to the fact that it is far too
costly to completely move everyone around every year or so. The quality of the
initial allocation usually has an impact on how much reorganisation is required at a
later date when the conditions of the ediion change. Continual reorganisations on
a small scale usually result in a bad overall utilisation of space. However, large
reorganisations are time consuming andlgosthe amount of disruption that should
be allowed must be controlled to balance the quality of the new allocation and the

difficulty in implementing it.

Although some variations may exist, the various entities that need to be allocated
to rooms are usually common in academastitutions. There are approximately 30
different types of entities and among them there are: staff offices, research offices,
storage/equipment/administrative rooms, library space, recreational/amenity rooms,

lecture rooms, meeting ro@nlaboratories and others.

All institutions prefer (and usually insist) that rooms allocated to the same
department/faculty/school are located clos@rie another but afourse this is not
always possible. The level of closeness depends on the size of the group but
complete buildings are often allocated togée or related groups. Where space is not
too limited or groups are small, different groups may be allocated to different floors
within shared buildings, but sometimes even floors have to be shared between

groups. Some institutions have very difet views as to what constitutes a good

23

The Space Allocation Problem

allocation. An example presented in (Baerand Varley, 1998) is that most new
universities (former polytechnics) in the UKegverfectly happy for lecturing staff to

share offices. In most old universities, this is unlikely to be accepted.

Some academic institutions express a requirement to ensure that certain entities
are allocated near to other entities. For example, departmental secretaries near to
heads of departments, group leaders near to their research groups, etc. Departments
may also require that all the lecture améeting rooms are located close to each
other or that all staff offices are on the same floor. The grouping conditions may be
different according to the problem. For example, entities can be required to be

together (same room), adjacent (next demms) or nearby (neighbouring rooms).

Sometimes, when allocating a specific entity to a room, additional requirements
must be met. For example, lecture/examination rooms may need to have disabled
access or audio visual aid facilities; library space may need to be located in a quiet
area away from busy rooms and noisy eq@pinetc. Such information must be
available to judge whether additional costs or work must be committed before

implementing the allocation (Diminnie and Kwak, 1986).

2.3.2. Manual Approach to Space Allocation

The manual process for allocating spacea@ademic institutions varies from one

case to another but it can be briefly described as follows (Burke and Varley, 1998):

In most UK academic institutions there is a centralised office that regulates the
space distribution and assigns areas of space to faculties, schools, departments, etc.
Space officers and administrators (heads of departments, group leaders, etc.) at
different levels are in charge of the construction of an allocation. Then, the space
necessary for each entity, the available spageoms, the constraints that must be
satisfied (hard constraints), those that desirable to satisfy ¢t constraints) and
additional requirements are determined. With the aid of floor plans and room
databases, information about the available areas of space is obtained (size, location,
proximity, etc.). Entities are allocated to rooms in order of importance according to
the specific situation. The satisfaction of space requirements and constraints is

verified each time an entity is allocated. During this iterative process changes might

24

The Space Allocation Problem

be necessary in order to produce a solution that satisfies as many requirements and
constraints as possible. The evaluation of a solution involves multiple criteria and in
some cases this criteria may come from different decision-makers. Due to the nature
of this manual process, it is common thegeks or months are necessary to obtain a

final solution.

2.3.3. The Multiobjective Nature of the Problem

The objectives pursued during the process of space allocation and the criteria used to
evaluate the quality of an allocation depend on the problem instance. For example,
while some academic institutions have a preference for optimising space utilisation,
others have a preference for achieving a better functionality in the distribution of
rooms. The satisfaction of preferences is another objective that is very difficult to
measure and that is also important to aerswhen deciding how to assign room
space. Of course, it is commonly the c#isat several conflicting objectives are
present and then a compromise must be found. Moreover, the conditions for
considering a solution as feasible also depend on the problem instance. In some cases
it may be required to accommodate all the entities to the available space even if all
the requirements/constraints cannot be fahyisfied. In other cases it may be that
these requirements/constraints must be mptished at the expense of some entities

being left unallocated.

The constraints that limit the ways in which the room space can be distributed
are also very problem-specific. For example, entities that must be allocated nearby
each other or to the same room, preferences for allocating certain entities to specific
rooms, entities that need to be allocateda non-sharing basis, etc. Some of the
constraints may be in conflict with each other or in conflict with the objectives. For
example, it may be that a professor habdallocated near to a laboratory and also
near to their research students but theeenarrooms that satisfy both constraints and
space utilisation may also be affected. Considering the situation in which the
available room space cannot be modified (i.e. construction work is not considered),
the quality of an allocation can be measured in terms of the following aspects (not

necessarily in this order of importance):

§ Number of allocated entities.

25

The Space Allocation Problem

§ Space utilisation, measured in terms of the amount of space wasted (areas of space
not used) and the amount of space overused (entities with less space allocated to

them than needed).
§ Degree of satisfaction of additional requirements.
§ Degree of satisfaction of the constraints.

Even when the evaluation function is carefully designed and takes into account
all the different criteria, their relative importance and the way in which the space
officers use these criteria to measure thuality of the allocation, a crucial

observation can be made:

The best evaluated solutions produced by an automated system in the space
allocation problem are not always the ones that would be finally selected by the

space officers to be implemented in the real world.

The expert administrator often knows certain “constraints” which are not (or
cannot, for political reasons) be built into the objectives. An example (which does
occur) might be that two members offEtaave a personality clash and cannot be
located together. It might be politically sensitive to have this as a stated constraint.
The administrator juskeeps it in his mindvhen making the allocation. This
observation leads us to the view tlveliile automated space allocation methods
certainly have huge potential for exploitation in higher education they are being

developed t@id the administrators rather thanrgplacethem.

It can be seen that due to the existence of a variety of conflicting objectives and
constraints, requirements, feasibility cammhis and evaluation criteria, the problem
of distributing the room space in academic institutions is a complex multiobjective
combinatorial optimisation problem. In the next section a formulation of the space

allocation problem as approached in this thesis is presented.

2.4. Problem Formulation

As mentioned in section 2.3.1, the space allocation process is commonly carried out

in three stages. In this thesis only the last stage is considered, that is, the allocation of

26

The Space Allocation Problem

specific entities to rooms. This process is carried out with the aim of maximising the
space utilisation and the satisfactionspiecific requirements and constraints. The

data required in this case includes:

§ Space requirements, i.e. the amount of space (floor area) that should be assigned

to each entity.

§ Room size, i.e. the amount of space (floor area) that is available in each room for

allocating entities.

§ Proximity relations between rooms, i.e. information that specifies, for each room,

the list of rooms that are adjacent, near and distant.

§ Additional requirements and constraints, specific requirements and constraints

(hard and soft) that impose limitations on how the entities can be allocated.

2.4.1. Types of Constraints

It is assumed here that all the entities for a given problem instance must be allocated
using the available room space only. That is, feasible solutions must have, besides all
hard constraints satisfied, all entities allocated. Since no additional space is available,
some of the room space will be misused (wasted or overused). The types of
constraints that exist in the test data sets used in this investigation are listed below.
These data sets were prepared using dash from British universities and are
described in detail in the next section. However, as explained above, different

requirements and constraints may be applicable to different problem instances.

§ Not sharing This is a unary constraint indicating that the entity should not share
the room with other entities. For examplehen senior or lecturing staff should

have private offices. This may be handsome cases and soft in others.

§ Be located inThis is a binary constraint indicating that there is a preference for
allocating a specific entity to a specifisom. For example, the situation in which
it would be convenient that a computesom be allocated in a room with
appropriate layout. This is considered a softstraint in this thesis because when

it must be satisfied, the entity is pre-allocated to the indicated room.

27

The Space Allocation Problem

§ Be adjacent toThis is a binary constraint indicating that one specific entity
should be allocated adjacent to another. For example, when secretarial staff should
be allocated in a room neta senior staff. When it is used, this is often a hard

constraint but it can also be considered a soft one.

§ Be away fromThis is a binary constraint indimag that one specific entity should
be allocated away from another entity or from a certain room. For example, when
is preferred to allocate a lecture ro@way of noisy areas or communal rooms.

This may be hard or soft.

§ Be together withThis is a binary constraint indicating that two specific entities
should be allocated in the same room. For example, this applies to the case when
two researchers working on the same project should be in the same room. This is

often soft.

§ Be grouped withThis is ag-ary constraint indicating that a group of people
should be allocated in the proximity of each other. For example, when all the
members in the same research group should be allocated in a set of rooms that are

close together. This is often as soft constraint.

Most of the constraint types listed above can be set as hard or soft depending on
the particular problem instance. The exception is the condb&iontated irwhich is
always set as a soft constraint in the tests data sets used in this thesis. The reason for
this is that in the cases where this caistris set as hard, it is enough to fix the

allocation of the given entity to the specified room.

2.4.2. Evaluation of an Allocation

Given the diversity in the criteria that space administrators use when evaluating the
quality of the room space distribution in each particular case, it is very difficult to
design an evaluation function that incorporates all the criteria with the adequate
weighting. Besides, as explained in the pyas sections, it is frequently the case
that the final decision on which allocation will be implemented is affected by
subjective criteria (and sometimes politics). Two overall (and often conflicting)

objectives are aimed at in the space allocation problems considered in this thesis:

28

The Space Allocation Problem

Minimise the space misuseThis objective is measured in terms of the space wasted
and the space overused and it is equivalent to maximising the space utilisation. Here,
wasting space is considered less serioas thverusing space, therefore the weight

for each unit of wasted space is one while the weight for each unit of space overused

is two.

Minimise the violation of soft constraints This objective is measured as
minimising the penalty for violating the soft constraints. The penalties applied for the
violation of each type of soft constraeate shown below. These penalty values were
adjusted by experimentation following galthes from space officers regarding the

usual relative importance between these constraints in real world problems.

Soft Constraint

Penalties

not shariig 50
be located in 20
be adjacent to 10
be away of 10
be together with 10
be grouped with 5

The space allocation problem as described above can be formulated as follows:

m = number of available rooms

n = number of entities to allocate

h = number of hard constraints of the forafk) = true
s = number of soft constraind(r)=true

c(i) = capacity or size of room

w(j) = space requirement of entjty

x(i,j) = 1 if entityj is assigned to room O otherwise

minimise F(X) = (F1(x) + F2(x)) (2.7)
subject to Zm:x(i, D=1 j=12,..n (2.8)
Z(k) =true k=1,2,...h (2.9

29

The Space Allocation Problem

where FI(x) = 3" (WP(i) + OP()) (2.10)

i=1

F2(x) = 3 SCR(r) (2.11)

r=1

Equations (2.10) and (2.11) measure space misuse and violation of soft constraints
respectively WP(i) expresses the penalty if the room capacity is wasted W@

expresses the penalty if the room capacity is overused.

For thei™ room, there is space wastage if

o) > LW KC.) (2.12)
and then the penalty is given by

WH() =C(i)—JZ:,W(i x(@, j) (2.13)
For thei™ room, there is space overused if

o) < LW XC.) 2.14)

and then the penalty is given by
OP(i)=2 (Zn: w(jx(, j)—c(i)] (2.15)

SCP(r) is the penalty applied if the" soft constraint is violated. A solution or
allocation is represented by a vector= [7(1),7/42),...,7])] where each element
7j)0{1,2,....m} for j = 1,2,...n indicates the room to which thi8 entity has been

allocated.

It can be noted from the formulation given above, that when only the space
utilisation is considered, this problem is very similar to the multiple knapsack
problem and the generalised assignment problem. What makes the academic space
allocation more complicated to formulate and to solve is the existence of additional

constraints that are also very problem-specific.

30

The Space Allocation Problem
2.4.3. A Metric for Population Diversity

It was noted above that in the process of allocating room space in academic
institutions it might be required to provide several solutions so that one allocation
can be selected. Therefore, it is important to measure the degree of similarity
between solutions in this problem. The metric used in this thesis to measure the
degree of difference between two vectors representing allocations is described next.
Space administrators suggested this metric as a meaningful way to express the
variety of a set of allocations. From the perspective of space administrators, it is
important to distinguish the number of positions in which two vectors representing
allocations are different, i.e. the number of entities that are allocated to different
rooms. For example, the following three vectors represent allocations that are
completely different from each othem={c,a,b,a}, e={b,b,a,c} andme={a,c,c,b}.

Then, for a population of solutions, the percentage of non-similarity or variety used
here as a diversity measure is given by eq. 2.16.

Z": D(j)-1
V(p) :$DOO (2.16)

whereD(j) is the number of different values in tffeposition for all vectors anplis

the population size. This metric measures the diversity of a set of allocations with
respect to the solution space. Diversity in the solution space is the diversity that
matters in this context so that the decision-makers can be provided with a set of
competitive solutions and compare them in terms of their structure before selecting

the final allocation (maybe after making some manual changes).

Five strings representimg allocations

A A A A A A A
A A B B A B B
A B B C B C C
A B B C B D D
A B B C C D E
D(j) 1 2 2 3 3 4 5
DG -)/(pP-12 0 025 025 050 050 0.75 1

V(p)=(3.25/7) x 100 = 46.42 %

Table 2.1. Calculation of the population varigiyp).

31

The Space Allocation Problem

The non-similarity metric described above is an indication of the diversity in the
allocation of entities to different rooms within a population of solutions. The way in
which the population variety is calculated using the string representations of
solutions is illustrated in figure 2.2. Consider the population of five strimgsH)
representing allocations for a problem where seven entities have to be allocated (
7) and there are five available roorm € 5). The way in which the number of
different roomsD(j) used within the population to allocate each of the entities and
the population variety/(p) are calculated is illustrated below. Other population

diversity metrics are described in (Morrison and De Jong, 2001).

2.5. Test Data Sets From UK Universities

Real data corresponding to the administration of academic space allocation in some
of their schools/departments was available from the following universities:
University of Nottingham, Nottingham Trent University and University of
Wolverhampton. Using these data sets and following suggestions from space
administrators, several test data sets were prepared for this investigation. These test
data sets were designed to reflect different degrees of difficulty so that the
performance of the algorithms proposed here could be assessed under different
conditions. A brief description of the original data sets provided by the universities

mentioned above and the test data sets prepared is given below.

University of Nottingham

This data corresponds to the distribution of offices in the School of Computer
Science and Information Technology gy the 1999-2000 academic year. There are

131 rooms with sizes ranging from 4.Z mo 437.4 r and distributed over one
building with three floors. The total of 158 entities to be allocated are distributed as
follows: 15 research rooms, 11 laboratories, 12 meeting rooms, 16 storage rooms, 6
professors, 1 reader, 5 senior lecturers, 2tuters, 16 research staff, 10 secretaries,

1 teaching assistant, 8 technicians and 32 research students. The space requirements
of these entities range from # o 437 M. There are 263 constraints of which 111

are hard constraints and 152 are soft constraints. This is the most complete data set
because all the information about the proximity between rooms is available and this

permits us to make an accurate evaluation of the satisfaction of proximity constraints

32

The Space Allocation Problem

(be adjacent tpbe away fronandbe grouped with This data set is calleabttl in

this thesis.

Nottingham Trent University

This data corresponds to a subset of the real distribution of space in the Chaucer
Building during the 2000-2001 academic year. There are 73 rooms with sizes ranging
from 9.94 nf to 132.43 rhand distributed over four floors. There is no information
available on the physical proximity between rooms within each floor. Rooms are
considered to be close to each other if they are located in the same floor and only this
is considered to evaluate the satisfaction of proximity constraints. The total of 151
entities to be allocated are distributed as follows: 9 co-ordinators, 6 professors, 7
managers, 81 lecturers, 7 senior administrators, 32 administrative assistants and 9
technicians. The space requirements of these entities range fromtc8 18 nf.

There are 211 constraints, 80 hard constraints and 131 soft constraints. This data set

is calledtrentl in this thesis.

University of Wolverhampton

This data corresponds to the distribution of offices in the SC Building in the Telford
campus during the 1999-2000 academiaryelhere are 115 rooms with sizes
ranging from 0.79 Mmto 185.26 M There is no information available about the
physical proximity between rooms. There are 115 entities to be allocated including
laboratories, staff rooms, computer ragrteaching rooms, store rooms and common
rooms but there is not a clear classification of this group of entities. There are 115
additional constraints, all of them sharing hard constraints. This data set is
considered to be the least constrained and, in a sense, the easiest problem to solve.
The reason for this is that the number of rooms and entities is the same and all the
hard constraints forbid entities to shamam. Obviously this implies that a feasible
solution is a one-to-one mapping betweesmndm and the goal is then to achieve an
optimal utilisation of the available space. This data set is caltdderl in this

thesis.

33

The Space Allocation Problem

Summary of Test Data Sets

In addition to the three data sets described above, three more were prepared for the
experiments carried out in this investigation. These three additional test data sets are
subproblems of theottl instance and were prepared to investigate various aspects
on the performance of the metaheuristic approaches studied in this thesisttThe

test instance was selected because it contains all information about proximity of
rooms and it also includes a great variety of soft and hard constraints that permitted
us to design tests problems with different degrees of difficulty. Some of the specific
features of the three additional data sets are as follows. The test instétriceis

highly constrained but the size of the problenmj was reduced with respect to the
original data semottl. In the test instanagottlb, the number of hard constraints has
been reduced considerably with respect to the number of soft constraints. Finally, the
test instancenottlc is a smaller problem in which also the number of entities to
allocate equals the number of available rooms k). Table 2.2 below summarises

the features of all the six test data sets. For more details retfe following web

site: http://www.cs.nott.ac.ukjds/research/spacedata.html.

nottl nottla nottlb nottlc trentl | wolverl
n 158 142 104 94 151 115
m 131 115 77 94 73 115
constraints h S h S h S h S h S h S
not sharing 100 58 100 58| 46 58 84 1(80 11 115 --
be allocated in| -- 35 -- 3| - 9 - 35| -- 19 - -
be adjacentto| 5 15 5 15| 4 10| 5 15 - 5 - -
be away from | 6 14 5 12| 1 2 5 i --
be together with - 20 - 20 | - 20| -- -- - 36 - -
be grouped with - 10 - 10 - 9 -- 10| - - - -
total 111 152 110 150 51 108 94 8 80 131 115 --

Table 2.2. Characteristics of the test problems used in this thesis.

34

Literature Review

Chapter 3. Literature Review

3.1. Introduction

This chapter discusses previous work on applying computer optimisation techniques
for the problem of allocating and/or planning space in academic institutions and it
also looks at some applications for the optimisation of space in other scenarios such
as industrial facilities and supermarkets. This chapter provides more evidence of the
importance, complexity and diversity of this problem. Also, in this chapter the
relation between the academic space allocation problem and other combinatorial
problems is considered because previous research on similar problems has
underpinned some of the ideas for the investigation presented in this thesis. In
addition, an overview of complexity theory, the No Free Lunch theorem and
metaheuristics is also presented in this tdragfsome of the sections in this chapter
have been included in papers already published or submitted as follows. Sections 3.2
and 3.3 can be found in [Bur2001] while section 3.5.14 can be found in [Bur2003b]
(see the appendix on page 199).

3.2. Previous Research on Space Optimisation

There are only a few reported applications in the literature on the optimisation of
space usage in academic institutions. iRér et al. presented one of the earliest
studies on the automated planning of academic facilities (Ritzman et al., 1980). Their
application concentrated on the reassignment of 144 offices to 289 members in 6
academic departments of staff within the Ohio State University. Although the overall
goal was to make the reassignment of offices as fair as possible, six conflicting

objectives were identified:

§ Assign enough offices to each departmenths there is enough room space for
all its members.

§ Minimise the deviation of the assigned space to each department from the given
space requirements.

§ Equally distribute the offices equipped with air conditioning among the various

departments.

35

Literature Review

§ Minimise the physical distances between the rooms assigned to each department
and its administrative office.

§ Ensure that each department obtains a fair share of the high quality offices
available.

§ Minimise the number of reassignments, i.e. the number of offices assigned to a

department which were not previously occupied by its staff members.

Ritzman et al. decided not to establish a-priory the preferences for each of the
above objectives. In order to deal with the multiple objectives, they used a mixed-
integer goal programming model to formulate the problem and linear programming
as the solution method. An interactive program was implemented which permitted
the decision-makers to obtain and compare different alternative layouts before
producing a final compromise solution. The authors highlighted the importance of
producing the various layouts in an interactive process because it permitted the
administrators to be in command of the solution process and to have a set of

alternative solutions from which to chose the most appropriate one.

Benjamin et al. also applied a linear programming approach but in their case the
problem was not the distribution of rooms but the planning of a computer integrated
manufacturing laboratory (Benjamin et al.,, 1992). The new laboratory was
constructed due to the expansion of the department of engineering manufacturing at
the University of Missouri-Rolla. The overall goal of this new lab was to stimulate
the interest for teaching and researcld after some debate and discussion it was
decided that 15 sections would be located in the new laboratory. In addition to the
desired space to be allocated to each of the sections, the following five goals (some

of them conflicting) were previously specified:

§ Increase the student use of the laboratory facilities.

§ Develop new courses relying on the laboratory facilities.

§ Stimulate the graduate-level and funded research.

§ Increase the awareness of industry ef¢bncepts developed in the laboratory.

36

Literature Review

§ Enhance the university’s public image.

Before applying a linear goal programming algorithm to solve this planning
problem, the goals listed above were prioritised and the authors highlighted that this
required a substantial amount of time and knowledge from the decision-makers. In
particular, they noted that the preference leassigned to each goal by the different
decision-makers revealed some inconsistencies in the subjective comparison between
the goals. Therefore, extra work was required in order to review and adjust these

preferences before setting the final values.

Another application of integer goal programming to the optimisation of
academic space was reported in (Giannikos et al., 1995). The problem in this case
consisted of reorganising the distribution of the academic space at the University of
Westminster in the UK. Five objectives were identified and prioritised according to
the preferences established by the denisnakers. The objectives are listed below

in non-increasing order of their importance:

§ Assign enough offices to each school according to the standards in order to
allocate lecturers, researchers and heads of school.

§ Allocate the adequate type of offices to schools according the standards.

§ Assign each office to only one school, i.e. only members of the same school can

share a room.

§ Minimise the number of people that have to be relocated to reduce the disturbance

during the transition period.

§ Minimise the distances from the rooms assigned to each school to its

administrative centre.

In addition to these objectives, two additional hard constraints were imposed:

§ All heads of school must be allocated to an office with the exact requirements

specified in the standards.

37

Literature Review

§ Each office can be used by members of staff in the same level or category. The
three levels are: i) heads of school and similar, ii) heads of division and iii)

lecturers, researchers and similar.

One of the observations that the authors made was that after comparing the
actual distribution of offices with the one produced with the automated method it was
clear that the space was being used in an inefficient way (at least according to the
objectives and preferences defined). Although the authors did not indicate that the
proposed solution was implemented, they highlighted that their ultimate goal was to
provide the managers with a decision support tool to evaluate the current distribution

of space and explore alternative allocations.

In all the studies mentioned above it is recognised that it is virtually impossible
to allocate space in a way that conflicts of interest are completely eliminated due to
the complex multiobjective nature of the problems. This reinforces the necessity for
presenting to the decision-makers, a set of good solutions that can be used to

negotiate and design the final space distribution.

3.3. Other Space Optimisation and Related Problems

3.3.1. Space Planning

The optimal utilisation of physical space is a goal not only in academic institutions
but also in many other scenarios that range from industrial and commercial
environments (Francis et al.,, 1992) to computer systems (Romero and Sanchez-
Flores, 1990). Of course, the actual conditions, requirements and constraints may be
very different from those present in the academic context. For example, in the
facilities layout problem it is required to assign objects to locations considering
distances and interactions between the objects. The objects can be physical facilities
or activities such as administrative functions or personnel. Examples of the
application of metaheuristics to facility layout problems can be found in (Bland,
1999; Bland, 1999b).

38

Literature Review

Sometimes, facility layout problems involve not only assigning the objects to
locations but also designing the physical layout of the space, i.e. to partition the
available space before assigning each partition (Kim and Kim, 1998). Most of the
facility layout problems refer to the industrial and commercial scenarios where the
main goals are to minimise the operation costs and to maximise the operational
efficiency. An example is the planning and allocation of storage space to inventory in
factories in order to minimise the costs of handling material, see (Larson and Kusiak,
1995; Kusiak, 2000). A review of heuristic approaches including constructive
heuristics, iterative improvement strategies, simulated annealing, genetic algorithms
and some other hybrid heuristics for solving facility layout problems is available in
(Liggett, 2000).

3.3.2. Shelf Space Allocation

Among the applications of space management in commercial scenarios, the
automated allocation of shelf space to products in supermarkets is an area that has
received particular attention. The problem in this context is to select the products
(and their quantities) to be placed on the shelves and then to determine where each
product will be located taking into consideration retailing and operational
requirements. A detailed description and elaborated model of the shelf space
allocation problem are presented in (Yang and Chen, 1999) and examples of
automated approaches to tackle this problem can be found in (Zufryden, 1986) and
(Yang, 2001).

3.3.3. Constrained Variants of Knapsack Problems

There are some variants of capacity allocation problems that include other constraints
apart from those related to the capacity of the container. These variants are
mentioned here because the approaches investigated in this thesis can eventually be
considered for capacity allocation problems with additional constraints. For example,

a variant of the bin-packing problem in which there is a limit on the number of items
that can be assigned to each bin is presented in (Kellerer and Pferschy, 1999) and
some heuristics with guaranteed performance to solve that problem are analysed too.
In the knapsack sharing problem, each item belongs to one or more owners therefore

the objective function needs to be modified accordingly since each owner aims to

39

Literature Review

maximise the profit of his items (Yamada and Futakawa, 1997). In (Dawande et al.,
2000) an analysis of the complexity and performance of approximation algorithms
for the multiple knapsack problem with assignment restrictions is presented. In that
variant each item can only be assigned to a subset of the available knapsacks.
Another constrained variant of knapsack problems is the daily photograph scheduling
problem (Vasquez and Hao, 2001). That problem consists of scheduling a subset of
photographs from a set of candidate photographs to be taken by cameras in an earth
observation satellite. The problem is modelled as a variant knapsack problem where
in addition to the capacity constraints (memory available in the system) there are

logic constraints that prevent certain combinations of photographs to be taken.

3.3.4. Related Scheduling Problems

Scheduling problems include a wide range of combinatorial optimisation problems
and to some extent the academic spdloeation problem can be considered within

this group of problems. Scheduling can be described as the arrangement of objects
(people, tasks, vehicles, lectures, examsetings, etc.) into a pattern in space-time

in such a way that constraints are satisfied and certain goals are achieved (Wren,
1996). In most scheduling problems the goals include the creation of feasible
schedules, efficient utilisation of available resources and the maximisation of
schedule quality according to some predefined criteria. A schedule can be a sequence
of processing jobs in production machines, an events timetable, an employee roster, a
transport services routing or timetable, the assignment of events to places, etc.

Among scheduling problems there are the following well-studied classes:

§ Production scheduling: job shop, flow shop, open shop, etc.

§ Transport scheduling or vehicle routing such as railway scheduling and bus

timetabling.
§ Personnel scheduling or timetabling such as nurse rostering, crew scheduling, etc.

§ Maintenance scheduling such as electricity line maintenance and generator

maintenance.

40

Literature Review

§ Events scheduling or timetabling such aaraiations, courses, sport events, etc.

Some timetabling problems also involve assigning space resources to events. For
example, room assignment is sometimes considered to be part and parcel of
academic timetabling problems such as examination and course timetabling (Schaerf,
1999). Since the academic space allocation problem refers to efficiently assigning
entities to rooms subject to additional constraints it can certainly be seen as related to
some of the scheduling problems described above.

Considerable research has been carried out over the years in the area of
automated scheduling and timetabling particularly in the application of metaheuristic
techniques to solve these types of problems (e.g. Nagar et al., 1995; Burke et al.,
1996; Dowsland, 1998; Colorni et al., 1998; Bagchi, 1999; Di Caspero and Schaerf,
2001; Varela et al., 2001; T’kindt and Billaut, 2002). Therefore it is important to
consider the similarities that some of these problems have with the academic space
allocation problem since some of the ideas and experiences can prove to be useful in
this research area. It is not within the scope of this thesis to provide a survey or
classification of scheduling problems or scheduling techniques investigated by other
researchers. Instead, brief descriptions and references are provided whenever ideas

and previous results that have been published in the literature are used in this thesis.

3.4. Complexity Theory and the No Free Lunch Theorem

3.4.1. Algorithms Complexity

The theory of algorithm complexity is concerned with the identification of problems
that are computationally easy to solve and problems that are computationally hard to
solve (Garey and Johnson, 1979; Rayward-Smith, 1986). This theory is also
concerned with identifying those algorithms that are efficient and those that are
inefficient from a computational point of view. From a broad perspective, the
efficiency of an algorithm is assessed in terms of the computing resources that are
needed to execute the algorithm and this includes execution time and space. The
execution time is the number of steps that the algorithm takes to process the input

and give an answer. The space is an indication of the amount of memory that is

41

Literature Review

needed to run the algorithm. However, in the theory of algorithms complexity the
efficiency of algorithms is usually expressed in terms of its time complexity.

The time complexity is described by a function of the size of the input, which
relates to the size of the problem instance. More specifically, the time complexity for
an algorithm is described by its worst-case behaviour, which is the maximum number
of basic operations that the algorithm is expected to perform for an input of. size
The time complexity of an algorithm is expressed using the notéfm(m)) which is
defined as follows. A functiof(n) is said to beXXg(n)) if there is a constark such
that f(n)| < kg(n)| for n = 0. In other wordsXg(n)) refers to functions that do not
grow faster thamg(n) and the(Xg(n)) notation indicates that the algorithm’s worst-

case time complexity is bounded ¢n).

Algorithms that have a time complexity described by a polynomial function (e.g.
a4n), An’), etc.) are considered efficient because they can be run in reasonable
amount of time for inputs of considerable size. However, if the time complexity of
the algorithm is described by an exponential function @g"), AN°®"), etc.) then
the algorithm is considered inefficient because it can be run in a reasonable amount
of time only for inputs of small length, but for larger inputs running the algorithm
becomes impractical. The difference between polynomial time algorithms and
exponential time algorithms is the rate at which their computational time complexity
grows given an increase in the size of the inpyt Remember, that the time
complexity of an algorithm refers to the worst-case perfaceaThere are some
polynomial time algorithms that are not very useful in practice becuaissgpically
large in practical instances. Also, there are exponential time algorithms regarded as
useful because they can run quickly in practice due to small valuesnaountered

in practical instances.

3.4.2. Problem Complexity — The P and NP Classes

The computational complexity of a problem is determined by the best algorithm that
can be found to solve the problem (Garey and Johnson, 1979). At a high level of
abstraction, if a polynomial time algorithm can be found for a given problem, then

the problem is considered tractable or not so hard. But if no such algorithm can be

42

Literature Review

found for the problem, i.e. only exponential time algorithms can be constructed, the
problem is considered intractable or very hard even if the problem is solvable. The
theory of computational complexity has been developed considering mainly decision
problems. Most optimisation problems can be expressed as a decision problem. A
decision problem is a problem for which the answer is ‘yes’ or ‘no’ according to

whether the input satisfies the given conditions in the problem. Some examples of

decision problems are given below.

EVEN. Given a natural number isn an even number? The answer is ‘yesi is

even or ‘no’ ifnis odd.

PRIME. Given a natural numbaer is n a prime number? The answer is ‘yeshiis

prime or ‘no’ if n is composite.

SATISFIABILITY. Given a Boolean expressidr(xi, Xo,...Xn), can the variables,
X2,...%, be fixed to values that make the valud wiie? The answer is ‘yes’ if there is

a setting of the variables that makesie and ‘no’ otherwise.

HAMILTONIAN CYCLE. Given a graphG(V,E)with N nodes, is there a cycle of
edges inG that includes each of tidnodes? The answer is ‘yes’ if such cycle exists

and ‘no’ otherwise.

The space allocation problem describedcirapter 2 can also be stated as a

decision problem:

SPACE ALLOCATION. Givenn entities andm available rooms, is it possible to
construct an allocation of theentities to then rooms in such a way that all existing
constraints (hard and soft) are satisfied and the space misuse is avVmdste

answer is ‘yes’ is such an allocation exists and ‘no’ otherwise.

In the rest of this section, we refer to decision problems simply as problems.
There are two classes in which problems are classified, the P and NP classes (Garey
and Johnson, 1979, Rayward-Smith, 1986). The class P includes all those problems
for which an efficient (polynomial time) deterministic algorithm has been found. The
class NP includes all those problems for whiaoa-deterministigpolynomial time

algorithm is known to solve the problem (NP stands for non-deterministic

43

Literature Review

polynomial). A non-deterministic algorithm can be described as consisting of two
stages. The first stage guesses a structure for the problem and the second stage
verifies if the given structure is or is not a solution to the problem. Then, the
algorithm is said to be a non-deterministic polynomial time algorithm if for each
instance of the problem there is a guess that can be verified by the deterministic

phase for answer ‘yes’ in a polynomial time.

Then, if P are problems solved in polynomial time by deterministic algorithms
and NP are problems solved in polynomial time by non-deterministic algorithms, the
question is whether P = NP or#NP. In fact, this is the most important open
guestion in computational complexity theory. It is clear that RP, which means
that non-deterministic algorithms are more powerful that deterministic algorithms. If
there is a deterministic algorithm for a problem, a non-deterministic one can be

constructed by simply not using the guessing stage.

For many problems proved to be in the class NP no efficient algorithm has been
found. This strengthens the belief that RIP but this conjecture is still not proven.
There are many problems known to be in NP for which no efficient algorithm has
been found and these problems are considered NP-hard in the strong sense. Examples
of these problems are the multiple knapsack problem and the generalised assignment
problems described in chapter 2 and it is generally believed that no efficient
algorithm exists for these (and all other NP-hard) combinatorial problems, i.e. they

are intractable.

If it is true that PZ NP, then the problems in the set NFP are intractable.
Therefore, when tackling a particular prei, it is important to know if the problem
belongs to the class of tractable or intractable problems. One way of doing this is to
determine whether the problem of interest in or not related to another problem that is
already known to be tractable or intractable. Reducing one problem to another is the
technique used to demonstrate if the two problems are related or not. Reduction is to
provide a transformation that permits to map one instance of the first problem into
one instance of the second problem. This transformation permits to convert one

algorithm that solves one problem into an algorithm that solves the other problem.

44

Literature Review

There is an important class of problems in NP, this is the class NP-complete. The
first work towards the theory of NP-completeness was reported by Cook in 1971
(Cook, 1971). Among other results, Cook proved that any problem in NP can be
reduced to the satisfiability problem. This medmat if there is an efficient algorithm
to solve the satisfiability problem, then gorpblem in NP can also be solved by an
efficient algorithm. These problems are stidbe NP-complete and are considered
the hardest in NP in a sense. This is because if no single NP-complete problem has
an efficient algorithm to solve it, then none of them has an efficient algorithm and
they are all intractable. Many problems have been proven to be NP-complete (or
reduced to the satisfiability problem) but it is still not proved that these problems are
intractable. However, it is generally assumed that finding an efficient algorithm for

any problem in NP-complete is unlikely.

Then, if a problem is NP-complete andMNP then the problem belongs to the
set NP- P. In other words, the problem (and all in NP-complete) could belong to P
only if P = NP. Then, if it is assumed that NP-complete problems are intractable, i.e.
P # NP, then when a problem is known to be NP-complete the focus should not be on
finding efficient algorithms. Instead one should aim to design algorithms that
produce high-quality solutions with no guaranteed optimality, i.e. design useful
algorithms to tackle the problem in practice.

3.4.3. Approaches to Solve Optimisation Problems

As discussed above, the complexity of a problem and the complexity of an algorithm
to solve the problem gives an indication of how hard it is to solve the problem from a
computational view point. An exact algorithm is capable of solving a given instance
of a combinatorial optimisation problem to optimality. However, the time complexity

of some exact algorithms is bounded by an exponential function, which makes these
algorithms inefficient. The interest and practical significance of the concept of NP-
complete problems lies in the widespread belief that an efficient algorithm for
solving such problems does not exist and that algorithms that produce high quality
(or near-optimal) solutions in a reasonable amount of time are then needed. Such

algorithms are known as heuristic methods (as well as a number of similar names).

45

Literature Review

A heuristic is defined in (Reeves, 1995) agechnique which seeks good (i.e.
near-optimal) solutions at a reasonable computational cost without being able to
guarantee either feasibility or optimality, or even in many cases to state how close to
optimality a particular feasible solution”isExamples of heuristics are constructive
algorithms (also known as greedy methods). These are very simple heuristics that
construct the solution in a series of steps based on the strategy of making the best
decision (based on a certain criterion) at each step. Another example of heuristic
methodology is local search (also known as neighbourhood search) where
neighbouring solutions are explored in an attempt to improve the solution (although
worse solutions can be accepted as an interim step — see below for more details). A
gentle introduction to heuristic approache$provided in (Michalewicz and Fogel,
2000).

More advanced heuristic approachedeca metaheuristics have been widely
developed and applied to a variety of optimisation problems over the last two
decades or so (e.g. Glover and Kochenberger, 2003; Voss et al., 1999; Aarts and
Lenstra, 1997; Osman and Kelly, 1996; Osman and Laporte, 1996; Rayward-Smith
et al., 1996; Reeves, 1995). A metaheuristic is described in (Voss et al., 1999 page
iX) as “an iterative master process that guides and modifies the operations of
subordinate heuristics to efficiently produce high-quality solutions. It may
manipulate a complete (or incomplete) single solution or a collection of solutions at
each iteration. The subordinate heuristics may be high (or low) level procedures, or

a simple local search, or just a construction method”

When solving combinatorial optimisation problems, there are exact algorithms
that, given enough time, can guarantee to find an optimal solution. There are also
very specialised heuristics that exploit knowledge of the problem domain and
produce solutions of good quality. There are also metaheuristics that are not designed
specifically for a particular problem but are considered general approaches that can
be tuned for any problem. Some metaheuristics may need tuning while others act as a
black box because they can be implemented with none or very little information
about the problem being solved. An example of such black-box approach is random

search, which can be used to compare the performance of other algorithms.

46

Literature Review

3.4.4. The No Free Lunch Theorem

The interest on developing metaheuristic approaches for difficult combinatorial
optimisation problems such as the one tackled in this thesis is because of the time
complexity of these problems and because of the implications of the No Free Lunch
Theorem (NFL) of Wolpert and Macready (Wolpert and Macready, 1995; Wolpert
and Macready, 1997). The NFL theorem st#hes the averaged performance across

all possible problems is the same for all algorithms. In other words, considering all
possible problems, all algorithms perform equally and therefore, no distinction can
be made between two algorithms because there are as many problems for which one
algorithm performs better than the second one as for which the reverse is true.
However, in some circumstances the comparison of two algorithraad®\A can be

made. If there are some problems for which the solutions obtained aseAnuch

better than those obtained by, Ahen if the NFL theorem holds, it may be the case
that there are many problems for which gerforms better than ;Abut only for a

small amount. Hence, if the problems in our interest are those for whishb&tter

than A, then it is possible to make a distinction between the two algorithms.

The above implies that it is essential to incorporate knowledge of the problem
domain into the algorithm. Otherwise, the algorithm is as likely to perform better
than random search as it is likely to perform worse. One conclusion that can be
obtained from the NFL theorem is that to solve any problem, the algorithm needs to
be adapted by taking into consideration the specific characteristics of the problem.
This motivates the interest in the investigation of applying and adapting

metaheuristics approaches to the space allocation problem in this thesis.

3.5. Review of Metaheuristic Approaches

3.5.1. Introduction

This section presents a brief overview of some of the most well known and
successful metaheuristic approaches presented in the literature. The aim is to provide
a consistent theoretical background on the field of metaheuristics for combinatorial

optimisation to underpin the rest of this thesis. A review on the main concepts,

47

Literature Review

terminology, classifications, algorithms description and relevant applications is
presented.

3.5.2. Classification of Metaheuristics

There are several possible classifications of heuristics and metaheuristics but one that
is commonly used and that certainly allows us to embrace most metaheuristics
including their hybrids is:single-solution approachesand population-based
approachesalso calledsingle-pointandmultiple-pointrespectively (Blum and Roli,
2001). Examples of single-solution methods are: basic local search (deterministic
iterative improvement), simulated annealing, tabu search, greedy randomised
adaptive search procedure, variable neighbourhood search, guided local search,
iterated local search and others. Population-based methods include: genetic
algorithms, scatter search, ant colony systems, memetic algorithms, evolutionary
strategies (although some of them are single-solution), particle swarm systems,
cultural algorithms, etc. If a single-solution approach is hybridised with a population-
based approach (e.g. a memetic algorithm can be defined to be a genetic algorithm

incorporating local search) then the ressiliof course, a population-based approach.

Sometimes, researchers classify heuristic and metaheuristic approaches into
nature-inspired and non-nature inspiredand many refer to the first group as
evolutionary algorithms. While these algorithms are commonly conceptualised as
those approaches that simulate various aspects of natural evolution (Back et al.,
1997), some researchers argue that a fundamental characteristic of evolutionary
algorithms is that they handle a population of individuals (Calegari et al., 1999; Hertz
and Klober, 2000). As noted in (Blum and Roli, 2001), sometimes it is difficult to
clearly identify the genesis of an algorithm. In addition, many hybrid metaheuristics
do not fit well into the above classification.

An alternative classification of heuristic approaches is based on whether the
algorithms use memory during the search (Taillard et.al, 2001). In that classification,
memory is considered to be any mechanism that is explicitly used to store a set of
solutions or parts of solutions. Taillard et al. sketch adaptive memory programming
approaches as those algorithms that perform the following steps. First, the algorithm

initialises the memory. Then, in an iterative process, the algorithm generates new

48

Literature Review

provisional solutions using the data stored in the memory, improves these generated
solutions using local search and updates the memory using the pieces of knowledge

brought by the new generated solutions.

3.5.3. Constructive Heuristics

Constructive (greedy) heuristics exist for many combinatorial optimisation problems
and some of these methods can produce an acceptable or acceptably good solution in
a reasonable computation time, depending upon the problem solving situation in
hand. Although in most cases the solutions produced are not considered to be near-
to-optimal, they can be improved in a subsequent more intensive search if the initial
solutions are constructed using a greedy heuristic (Burke et al., 1998; Corne and
Ross, 1996). A constructive heuristic builds a solution progressively in a number of
iterations. It is commonly the case that the number of iterations equals the number of
variables in the combinatorial optimisation problem. Then, in each iteration, the
heuristic assigns a value to one of the variables until a complete solution is
constructed. The heuristic selects the value that maintains the solution’s feasibility
and produces the best result based on a predefined criterion. The suitability of
initialising each variable is calculated using the predefined criterion at the beginning
of the process and the order is maintained static during the construction. This means
that for the same problem instance and the same predefined criterion, a greedy

heuristic generates the same solution every time it is executed.

3.5.4. Simple Local Search

Once a solution is initialised either randomly or with a constructive heuristic, it can
be iteratively improved using local search heuristics that explore the neighbourhood
of the present solution (e.g. Aarts and Lenstra, 1997). The neighbourhood of a
solution is the set of solutions that are close to #ome sensélhe local optima is

the best solution(s) in the defined neighbourhood. Then, local search is also known
as neighbourhood search. The global optima is a term used to describe the best
solution(s) with respect to the whole solution space. Plateaus are regions of the
solutions space where no neighbourhood isbéiiit a number of them are as good

as the present solution.

49

Literature Review

A neighbourhood function or neighbourhood structure maps each sotufich
into a set of solutionsMx) [0 S where S is the solution spaceMXx) is the
neighbourhood ok and each solution inMx) is a neighbour at. For example, many
combinatorial optimisation problem solutions can be represented as sequences or
partitions. These solution representations permit the use k-ekchange
neighbourhood structures, i.e. by exchanginglements in a given sequence or
partition a neighbour solution is produced. A move in local search is the change
defined by the neighbourhood structure that is made to the current solution in order
to produce a neighbouring solution. Given a solutiosach neighbourhood structure
specifies a set of solutions that are “closeX.tdhe neighbourhood sizé{x)| is the

number of neighbouring solutions that can be reached from the sotution

Then, local search heuristics attempt to improve the current solution by
exploring neighbourhoods. The first important choice is the neighbourhood
structure(s). A given neighbourhood with a manageable size has a segagth A
strong neighbourhood produces local optima that are largely independent of the
quality of the initial solution while a weak neighbourhood produces local optima that
is highly correlated to the initial solution (Papadimitriou and Steiglitz, 1982). The
next choice is how to explore solutions in the neighbourhood(s) and some of the

possible ways are described below.

Deterministic Iterative Improvement

The basic local search strategy or deterministic iterative improvement assumes a
given neighbourhood and an initial solution. One neighbour is generated in each
iteration and it replaces the current solution only if it is better. The search finishes

when no better neighbouring solution is found.

First and Best lterative Improvement

Exploring only one neighbouring solution often leads to poor local optima. An option
is to generate a subset of the neighbouring solutions or all of them depending on the
size of the neighbourhood. If the first neighbouring solution that is better than the

current one is accepted, one obtaings iterative improvemenalgorithm. When

50

Literature Review

the best of all the neighbours is selected, the approach is ¢tmkditerative
improvemengalgorithm.

Iterative improvement algorithms are also referred to as hill-climbing methods in
maximisation problems or as descent methods in minimisation problems. Iterative

improvement algorithms can be described using the pseudocode shown in figure 3.1.

Step 1. Generate initial current solution

Step 2. Explore neighbourhood of current soluk@md generate candidate solution
Step 3. If fitness() > fitnessk) thenx =x'.

Step 4. If stopping condition met finish, otherwise go to Step 2.

Figure 3.1. lterative improvement algorithm. Deterministic improvemepibess only one neighbour
in step 2 while first improvement and best improvement explore a set of them.

Other Extensions to Local Search

Local search heuristics that accept only improving solutions are simple and easy to
implement but they often produce local optima of low quality. Various strategies to
avoid getting stuck in poor local optima have been incorporated into local search
producing a number of metaheuristic approaches. These strategies aim to establish an
adequate compromise between intensification and diversification. Intensification
refers tofocusing the search into certain regions of the solution spalie
diversification refers t@xpanding the search by exploring unvisited regions of the
solution space The intensification and diversification mechanisms can be
fundamental components of the searching method or additional strategies
incorporated by the designer with without knowledge of the problem domain. A
dynamic and adaptive compromise between the intensification and diversification
phases is commonly regarded as desirable to achieve good results, but very few
metaheuristics actually incorporate such a mechanism. Strong diversification
strategies are good for sampling the solution space and identifying promising areas
while strong intensification strategies are good for focusing and exploring these

promising areas in search of elite solutions.

In (Vaessens et al., 1998) a local search template that attempts to capture most of
the variants of local search algorithms was proposed. In that template the authors
identified the following strategies that contribute to the design of more elaborate
local search procedures:

51

Literature Review

§ Generate all or a subset of the solutions in the given neighbourhood structure.
§ Restart the search from different generated initial solutions.

§ Use more elaborate criteria to even accept non-improving solutions.

§ Replace the current solution by a population of current solutions.

§ Design more than one neighbourhood structure to be used during the search.

The local search template mentioned above classifies algorithm variations based
on two aspects: the number of current solutions (point-based and population-based)
and the number of search strategies or neighbourhood structures used (single-level
and multi-level). More elaborate methods such as genetic algorithms (see section
3.5.12) are described in the template as an instance of single-level population-based

algorithms.

3.5.5. Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is an iterative process that combines a randomised constructive heuristic and
local search and is based on the strategy of restarting the search from different initial
solutions (Glover and Kochenberger, 2003). In each iteration, a solution is generated
with the randomised constructive heuristic and then the solution is improved by
means of local search. The best solution over all iterations is kept and reported as the
result at the end of the search. At each constructive step the suitability of each
remaining non-initialised variable is calculated according to the status of the partial
solution. Then, the variables are sorted according to their suitability and a sublist is
formed. From this restricted candidate list the next variable to be initialised is chosen

at random instead of selecting the most suitable one as in a greedy heuristic.

Step 1. Start with an empty solutign

Step 2. Calculate suitability of each non-initialised variable.

Step 3. Sort the non-initialised variables and generate the restricted candidate list.
Step 4. Select and initialise one element at random from the restricted candidate list.
Step 5. If the solutiow is still incomplete go to Step 2.

Step 6. ApplyLocal Searcho solution current solutioxnto generate’.

Step 7. Memorise the best solution found so far.

Step 8. If stopping condition met then finish, otherwise go to Step 1.

52

Literature Review

Figure 3.2. Greedy randomised adaptive search procedure.

Figure 3.2 shows the pseudocode of the GRASP metaheuristic. The local search
phase in the greedy randomised adaptive search procedure (step 6) can be any simple
or more elaborated improvement method. Important conditions that should be met
for GRASP to be successful are that the constructive and the local search phases
must complement each other well and the latter should generate solutions that lie in

promising areas of the solution space.

3.5.6. Guided Local Search (GLS)

Guided local search (see pseudocode in figure 3.3) is a metaheuristic that employs
the strategy of modifying the search landscape by changing the objective function
(Glover and Kochenberger, 2002). The purpose of using modified objective
functions in guided local search is éscape from the local optimal by gradually
reducing its attractiveness. The algorithm starts with an initial solution that is
improved by local search until a local optima is found. Then, in each iteration the
original objective functiori(x) is adapted to obtain the modified objective function

f'(x) and the local search is restarted.

Step 1. Generate initial current solution

Step 2. ApplyLocal Searcho solutionx to generate local optima and using’(x).
Step 3. Modify the objective functidi{x) according to the search history.

Step 4. If stopping condition met then finish, otherwise go to Step 2.

Figure 3.3. Guided local search metaheuristic.

The guided local search method is very simple and the critical component is the
tactical change induced in the objective function, which is now explained in more
detail. First, it is necessary to identify a seggiroperties or features that may (or
may not) be present in a solution and which serve to discriminate between solutions.
Then, weights are associated to theolution features to establish their relative

importance. The modified functidt{x) is given by:
g
fr)=fO)+A2 pili (%) (3.2)
i=1

wherep; is the weight or penalty parameter associated to fegtlife) is a Boolean

indicator of whether the featutieis present or not in the solutionand A is the

53

Literature Review

regularisation parameter that established a balance between the importance of
solution features with respect to the original objective funcifep To adapt the
objective function, some of thegpenalty parameters are increased in each iteration.
The penalties changed are those corresponding to the solution features that have a
maximum utility. This utility is given by,

o C
utility (i) =1, (x) E—Il+—p (3.2)

wherec; is the cost assigned to each feaiumeeasuring its relative importance with

respect to the other solution features.

Adapting the penalty parameters is a critical design decision when implementing
guided local search because this will affect how the objective function and hence the
search landscape is adapted during the search. The strategy for changing the penalty
parameters is normally very dependent on the problem domain but it should
encourage the use of the search history and avoid making the search landscape too

rugged.

3.5.7. Iterated Local Search (ILS)

Iterated local search is a metaheuristic that combines local search with a perturbation
operator (Glover and Kochenberger, 2003) The algorithm starts with an initial
solution and performs local search until a local optimum is found. Then, the current
solution is perturbed and a different local optimum is obtained by performing local
search. Finally, acceptance criteria based on the search history are used to decide
whether the perturbed solution or the new local optimum becomes the current

solution in the next iteration. Figure 3.4 shows the pseudocode of this metaheuristic.

Step 1. Generate initial current solution

Step 2. ApplyLocal Searctto solutionx to generate local optima.

Step 3. Perturb solution to producex’.

Step 4. ApplyLocal Searchox’ to generate new local optima.

Step 5. If the acceptance criteria is satisfied thenx’".

Step 4. If stopping condition met then finish, otherwise go to Step 3.

Figure 3.4. lterated local search metaheuristic.

The way in which the perturbation operator, acceptance criteria and search

history are designed and implemented permits a high degree of flexibility for tuning

54

Literature Review

iterated local search according to f@blem domain. The perturbation operation
must be designed in such a way that escaping from the local optima to explore other
areas of the solution space is possible without turning into a completely random
restart. The acceptance criterion can simply be to accept the new local optimum if it
is better than the best solution so far or it can be a more elaborate criterion based on

threshold acceptance (see section 3.5.9 below).

3.5.8. Variable Neighbourhood Search (VNS)

The variable neighbourhood search metaheuristic is based on the strategy of using
more than one neighbourhood structure during the search (Mladenovic and Hansen,
1997). The main idea is to change the neighbourhood structure in a systematic way
as the search progresses. Fiksheighbourhood structures need to be defined. The
algorithm is made of three phassbhaking local searchandmove(see pseudocode

in figure 3.5).

During shaking a random solution is generated from the current solution using
the K" neighbourhood structure. In the local search phase this randomly generated
solution is improved and if it is better than the current solution it replaces it. In the
move phase the next neighbourhood to be used is chosen based on whether or not the
previous local search phase was successful or not. Intensification is achieved by the
local search while the systematic change of the neighbourhood structure acts as a
diversification mechanism. It is important to design good neighbourhood structures
of increasing cardinality that present different views of the search landscape and
allow the shaking phase to generate new starting solutions that lie near new local
optima. There exist other variants of variable neighbourhood search such as variable
neighbourhood decomposition search (VNDS), skewed variable neighbourhood
search (SVNS) and given the flexibility of the technique, other variants of this

algorithm can be employed (Hansen and Mlandenovic, 2001).

Step 1. Generate initial current solution

Step 2. Select neighborhood structiiei.e.k = 1.

Step 3. Generate candidate solutibfrom x using the neighborhood structuyg
Step 4. ApplyLocal Searcho solutionx’ to generats’.

Step 5. If fitness() > fitnessk’) thenx = X" andk = 1.

Step 6. If fitness() < fitnessk’) thenk =k + 1.

Step 7. Ik < knax then go to Step 3.

Step 8. If stopping condition met finish, otherwise go to Step 2.

55

Literature Review

Figure 3.5. Variable neighbourhood search metaheuristic.

3.5.9. Threshold Acceptance Algorithms

Threshold acceptance algorithms are modified versions of improving heuristics
where non-improving solutions are also accepted if a given condition is met. Figure
3.6 shows the pseudocode for this technique. The condition is that the fitness
difference between the current and the non-improving candidate solution be smaller

that a given threshold. The threshold can be fixed during the whole search:
threshold {+ 1) = thresholdt]
or it can be varied as the searches progresses:

threshold {) = threshold ¢ + 1) and lim {— o) threshold f) = O for the iteratior.

Step 1. Generate initial current solution

Step 2t =0.

Step 3. threshold) = f(t).

Step 4. Generate candidate solutibfrom current solutiorx.

Step 5. If fitness() — fithessk) < threshold)) thenx = x'.

Step 6t =t +1.

Step 5. If stopping condition met finish, otherwise go to Step 3.

Figure 3.6. Threshold acceptance metaheuristic. In sfép) Gives the threshold for the iteratibn

3.5.10. Simulated Annealing (SA)

Simulated annealing is an optimisation method that was inspired from the Metropolis
algorithm for statistical mechanics (Metropolis et al., 1953). Simulated annealing is a
metaheuristic that attempts to avoid getting stuck in poor local optima by exploring
other areas of the solution space (Kirkpatrick et al., 1983, Aarts and Korst, 1998) and
it is a probabilistic version of threshold acceptance. The main idea is that improving
candidate solutions are always accepted while non-improving candidate solutions are
accepted with a certain probability. i$hprobability of accepting non-improving

solutions is calculated according to the curtentperatureof the algorithm.

Step 1. Generate initial current solution

Step 2. Temperature = Initial Temperature.

Step 3. Generate candidate solutidifrom current solutiorx.

Step 4. If fithess() > fitnessk) thenx =x'.

Step 5. If fitness() < fitnessk) then calculate Acceptance Probability.

56

Literature Review

step 6. Gt T ASSARIFRSELPAAG Y ST SLIRaLEs™

Step 7. If stopping condition met finish, otherwise go to Step 3.

Figure 3.7. Simulated annealing metaheuristic. In step 5 the acceptance probabiligulisteshl
according to the current temperature while in §dape current temperature is updated according to
the cooling schedule.

The algorithm starts with a high initial temperature, which corresponds to a high
probability of accepting non-improving solutions. The temperature is gradually
decreased as the search progresses sthéhptobability of accepting non-improving
solutions is also reduced. At temperature zero the algorithm operates like an
improving heuristic, i.e. only improving solutions are accepted. The search process
can remain at temperature zero until the stopping condition or it can be reheated, i.e.
the temperature is increased and reduced periodically. Two specific decisions have to
be made for this algorithm: a) the choice of cooling schedule, i.e. the initial
temperature and rules for varying it during the search and b) the choice of acceptance
probability function, i.e. how to determine, according to the current temperature, the
probability of accepting non-improving stilens. Figure 3.7. shows the pseudocode

for the simulated annealing metaheuristic.

The Cooling Schedule

In general, the cooling schedule is determined by:

a) Initial temperature.

b) Decrement step, i.e. number of #éons between temperature decrements.

C) Cooling factor, i.e. the proportion of the temperature reduction.

d) Reheating step, i.e. number of iterations after which the temperature is

increased to the initial temperature or to another value.

Some cooling schedules reduce the temperature in a monotonic fashion and it
has been suggested that optimal cooling schedules may not be monotonic (Reeves,
1995). The selection of an adequate cooling schedule and all its associated
parameters has been extensively stu@ied has been found to be dependant upon
the problem domain. An analysis and comparison of various cooling schedules
(when the computing time is limited) is provided in (Strenski and Kirkpatrick, 1991).

The performance of a simulated annealing algorithm with different cooling schedules

57

Literature Review

on the course timetabling problem is investigated in (EImohamed et al., 1998) while
(Thompson and Dowsland, 1996; Thompson and Dowsland, 1996b) carried out a
similar comparison on the examination timetabling problem. Some examples of
cooling schedules that have been proposed and investigated in the literature are

described as follows.
Arithmetic Cooling Schedule.

Ti = (Tia) =4T (3.3)
Ti is the new temperature valuk; is the previous temperature value afidis the
amount of temperature reduction, which is usually kept constant.

Geometric Cooling Schedule.

T, = allin where 0 <a< 1, witha = 1. (3.4)
or
Ti = (@¥i1) | (1 + al¥i1) where 0 <a < 1, witha = 0. (3.5)

T, is the new temperature valu&;,, is the previous temperature value aad

determines the cooling factor.
Quadratic Cooling Schedule.

T,T T -T
Ti = af? + b+ c wherea = Ll ,b=2 f 1,c:Tl (3.6)

I total I total

T, andT; are the initial and final temperature values respectively whileis the

total number of iterations of the algorithm.
Heuristic Cooling Schedules.

Heuristic cooling schedules reduce the temperature by taking into account the history
of the search. One example of a heuristic temperature control is reheating as a
function of the cost as described in (EImohamed et al., 1998). In that cooling

schedule, the temperature is raised according to the specific heat. The specific heat is
a measure of the variance of the fitness values of the solutions visited at a given

temperature level. At each temperature |eliethe average fitness of the visited

58

Literature Review

solutions is denoted biy(T)) and o %(T;) denotes the variance of the fithess at that

temperature level. Then, the specific heat at the temperaturdiéveiiven by

o,
T 2

Cy(Ti) = (3.7)

The temperature at which the specific heat is maximum can then be found and it
is denoted byT(C4™). The cooling schedule reheats the temperature after a
predefined number of iterations without improvement (reheating step) according to

the following equation:

Ti+1 =k |:I:best +T(CH max) (38)

wherek is a tuneable parameter afRgls is the best fitness so far. The temperature

can be decreased using an arithmetic or geometric cooling schedule.

Another example of a heuristic cooling schedule is the adaptive cooling
described also in (Elmohamed et al., 1998). Here, the temperature reduction is
controlled based on the specific heat as given by equation 3.9 and then reheating may

or may not be used.

aT

T =T, exp °) (3.9)

wherea is a tuneable parameter aodT;) is the standard deviation of the fitness at

temperature level,.

(Aarts and Korst, 1998) proposed a cooling schedule that reduces the
temperature very quickly during the first iterations and then, as the temperature
decreases, the reduction rate is also slowed down. The temperature is reduced

according to the following formula:

Ti
PRAIET)

Tin = (3.10)

whered is the maximum difference between the global optimum (if known) and any
feasible solution andis theoretically the maximum proportional change allowed for

any temperature level. Suggested values @re 30, where ¢ is the standard

59

Literature Review

deviation of the current solution fitness value while using the temperatureTlevel
ando=0.1.

Other heuristic cooling schedules are those described in (Osman, 1995) and

given below by equations 3.11 and 3.12.

T
Ti +1 = Treset and Treset = ma){ rezset ’Tfoundj (3-11)

TresetiS @ higher temperature than the current v@laadToungiS the temperature
value at which the best solution so far was found. The temperature is incremented
using the above relation only after the whole neighbourhood (assuming this can be
done) has been explored and no better solution has been found. Increasing the
temperature permits us to escape from the current neighbourhood but without too
much deviation from the best solution visited so far.
T, T, -T,

Ty=—————andpg. =
A+ BT A (a +yAJi) O, ™,

(3.12)

T, andT; are the initial and final temperature values respectively and suggested
values fora andy are:a = N(X)|M(X)easible @aNdy = N(X)|, whereN(X)easible iS the

total number of feasible moves in the neighbourhgqg of the current solution.

Acceptance Probability Function

As with the cooling schedule, several functions to calculate the acceptance
probability have been proposed, but the most widely used is the Boltzmann-like
distribution (Aarts and Korst, 1998):

Acceptance probability = exp AF/T;) wheredF = fithessK’) — fitnessk) andT,; is

the current temperature.

Remarks

Broadly speaking, simulated annealing can find good solutions for a wide variety of
problems, it is easy to implement and is capable of handling almost any optimisation

problem and any constraint. On the other hand, some of the difficulties reported with

60

Literature Review

this method are long run times, the need for fine-tuning and the necessity for good
neighbourhood structures design. An interesting research avenue is the challenge to
design parallel versions of the simulated annealing algorithm. This is a task that,
although promising, is not trivial because of the intrinsic sequential nature of the
algorithm (Abramson, 1991).

3.5.11. Tabu Search (TS)

Tabu search is a metaheuristic that attempts to guide the search in a systematic and
intelligent way by using flexible and adaptive memory structures and some
intensification and exploration strategies (Glover 1986; Glover et al., 1993; Glover
and Laguna, 1997; Hansen 1986). The main components of tabu searsiodre:

term memorylong-term memonandintensification and diversification strategies
Short-term memory is used to forbid revisiting solutions and then avoid cycling and
being trapped in poor local optima. Long-term memory is used as a kind of learning
process to generate intensification and diversification strategies. Long-term memory
is used to collect information during the overall search process that permits the
identification of common properties in good visited solutions and also to attempt to
visit solutions with varying properties from those already visited. The
implementation of both short-term and long-term memorybased on four
principles:recency frequency quality andinfluence While the recency principle is

an indication of how recent it was that certain solutions were visited, the frequency
principle is an indication of how often those solutions were visited. The quality
principle refers to keeping information about visited solutions with good fithess
values to identify good solution components and stimulate more intensive search in
promising areas of the solution space. Finally, influence is used to identify those
changes induced in the solutions structure that have proven to be more beneficial.
Figure 3.8 shows the pseudocde for the tabu search metaheuristic.

Step 1. Generate initial current solution

Step 2. Initialize th&abu List

Step 3. While set of candidate solutiofiss not complete.
Step 3.1. Generate candidate solutionfrom current solutionx using thestrategies for
intensification and diversification
Step 3.2. Addx’ to X' only if X' (or associated attributes) is not tabu or if at least one
Aspiration Criterionis satisfied.

Step 4. Select the best candidate solutidn X'

Step 5. If fitness() > fitnessK) thenx =X .

61

Literature Review

Step 6. Updatd@abu List Aspiration CriteriaandIntensification and Diversification Strategies
Step 7. If stopping condition met finish, otherwise go to Step 3.

Figure 3.8. Tabu search metaheuristic.

Short-term Memory

This component is usually implemented by maintaining a list that contains the most
recently visited solutions. In most combinatorial optimisation problems, managing a
list of visited solutions is not very efficient. Therefore, instead of the solution only
some of its attributes (moves, components, etc.) are stored. This list is catkdalithe

list and the information stored there is used to forbid revisiting solutions for a certain
number of iterations. Th&bu list sizedefines how many recently visited solutions

or their attributes are classified as tabu andtabe tenureindicates for how long
(usually measured in terms of the number of iterations) each element of the list
remains tabu. Then, during the local search only those moves that are not tabu will be
explored unless the tabu move satisfies the predefispdation criteria These
aspiration criteriaare used because the attributes in the tabu list may also be shared
by unvisited good quality solutions. A commaspiration criterionis better fitness,

l.e. the tabu status of a move in the tabu list is overridden if the move produces a

better solution.

Long-term Memory

The long-term memory component is implemented by keeping a history of the

overall search process based on the four principles mentioned above. Then, by
storing information about theecency frequency quality andinfluenceof solutions,

moves or other attributes, it is possible to tune the strategies that will attempt to

guide the search in a more intelligent way.

Intensification and Diversification Strateqgies

An example of an intensification strategy is that after identifying components of
good quality solutions and moves that have had the most influence towards these
solutions, the search is intensified around certain areas of the solution space and

using these beneficial moves. An exampleadliversification strategy is that after

62

Literature Review

identifying moves that have been accepted more frequently, the search is directed
towards other areas by forcing moves that have not been used so frequently.

Remarks

The variety of principles that are incorporated in tabu search and the flexibility in
which they can be implemented are factors that have contributed to the successful
application of this metaheuristic to a wide range of combinatorial optimisation
problems (Reeves, 1995; Glover and Laguna, 1997). In fact, tabu search can be better
conceptualised as a framework rather that a method. This is because each of its
components can be designed specifically for the target application following the
principles and suggested refinements that have emerged as a result of the experience

from practitioners and researchers in various fields.

3.5.12. Genetic Algorithms (GA)

Genetic algorithms were in essence proposed by Holland in hisAutagkation in
Natural and Artificial SystemgHolland, 1975). However, the ideas of using
evolution and recombination for optimisation were proposed even earlier by
Bremmermann (Bremmermann, 1962). A genetic algorithm is a population-based
method that is based on the principles of natural evolution (e.g. Goldberg, 1989; Man
et al., 1999; Michalewicz, 1999). The main idea in genetic algorithms is to generate a
population of individuals and then, during a number of iterations (generations) to
evolve this population by means sélf-adaptationand recombination Figure 3.9

shows the general framework of a genetic algorithm.

Step 1. Generate initial population.

Step 2. Evaluate population.

Step 3.Selectindividuals that will act as parents.

Step 4. AppyRecombinatiorio create offspring.

Step 5. ApplyWutationto offspring.

Step 6.Selectparents and offspring to form the new population for the next generation.
Step 7. If stopping condition met finish, otherwise go to Step 2.

Figure 3.9. The genetic algorithm framework.

Mutation and crossover are the two basic genetic operators used for
implementing self-adaptation and recombination respectively. Crossover refers to the

generation of one or more individuals (offspring) from the recombination of two or

63

Literature Review

more solutions in the current population (parents) and its purpose is the propagation
of good solution components (genetic material) from parents to offspring. Mutation
refers to small random variations of the solution and its purpose is to add diversity to
the population. At each generation, some parents are selected and then recombined to
generate the offspring. Some of the childreay be mutated before adding them to
the next generation. Iélitism is implemented, some high quality individuals are
selected to survive from one generation to the next onesdleetion mechanism

used to choose the parents aims to enforce the principle of survival of the fittest and
therefore, acts as an intensification strategy. Recombination and mutation aim to
encourage exploration and act as a diversification strategy. It is expected that a
genetic algorithm will be capable of evolving the population and then converging
towards solutions of high quality. Among the specific components that have to be
carefully selected when designing effective genetic algorithms are the following: a)
individual encoding, b) selection mechanisms, c) genetic operators, d) replacement

scheme and d) constraint handling techniques.

Individual Encoding

An individual in genetic algorithms is usually a solution, a partial solution or a set of
them. The representation of individuals in genetic algorithms is called the
chromosome Selecting an appropriate chromosome is an important issue because
such representation should be suitable for the effective functioning of the genetic
operators and perhaps the constraint-handling mechanism. Common representations
for combinatorial problems are binary strings (including gray coded strings) and
permutations of integer numbers but more complex structures are often designed to

represent individuals for real world problems (Coley, 1999; Goldberg, 1989).

Selection Mechanism

Several mechanisms exist for selecting individuals that will act as parents (Coley,
1999). For example, a common method is fithess-proportional selection where the
probability of individuals for being chosen is proportional to their fithess. Another

common method is tournament selection where two or more individuals compete

among themselves for the right to become parents. In rank-based selection the

64

Literature Review

individuals are assigned a reproductive probability that depends on the rank they are

given based on some criteria.

Genetic Operators

Mutation and crossover can also be implemented in many ways (Chambers, 2001).
For example, a common way of implementing mutation is to select one or more
positions in the chromosome and then modify them with a given (usually low)
probability. The single-point and multi-point crossover operators are among the most
well known and frequently used. In these operators one or more points (respectively)
are selected at random to split the chromosome of the parents into sections and then

recombine these sections to create the offspring (Goldberg, 1989).

Replacement Scheme

Once the crossover and mutation operators have been applied it is necessary to
decide which individuals from the last generation will be replaced by the new
offspring to form the new population. A non-elitist strategy replaces all individuals in
the current population while an elitist strategy maintains the best individuals so that

their genetic material can be transferred to the next generations (Man et al., 1999).

Constraint Handling

In constrained problems, the application of recombination (crossover) and random
variations (mutation) to individuals makes the creation of infeasible solutions very
likely with genetic algorithms. Constraihaindling techniques for genetic algorithms

can be grouped into three categories (Michalewicz, 1999):

1. Allow the violation of constraints but penalise them.

2. Apply special repairing heuristics to correct infeasible solutions.

3. Use special individual representations to guarantee or increase the
probability of generating only feasible solutions or use problem specific

operators that preserve the feasibility of solutions.

65

Literature Review

Remarks

Genetic algorithms are regarded as methods that are suited for exploring large
solution spaces. It can be said that genetic algorithms are a general technique that can
produce acceptable results in relatively short time and there exist many ways to
design the main components mentioned above (Goldberg, 1989; Coley, 1999).
However, in order to obtain high qualitystdts it is generally acknowledged that it is
required to design good genetic operatansl to perform fine parameters tuning
(Back, 1996). These algorithms have been applied to a variety of applications
including optimisation, design and creative systems (Goldberg, 1989; Davis, 1991,
Chambers, 2001; Bentley and Corne, 2002).

3.5.13. Other Evolutionary Algorithms (EA)

Although there is no universally accepted definition of evolutionary algorithms,
some classifications have been proposed, see for example (Calegari et al., 1999;
Hertz and Klober, 2000). Here, we refer to evolutionary algorithms as methods that
handle a population of solutions, iteratively evolve the population by applying phases
of self-adaptationand co-operationand employ acoded representatiomf the
solutions. The genetic algorithm described above is one of several types of
evolutionary algorithms that exist. Some of the key evolutionary approaches are

described below.

Evolutionary Strategies

While genetic algorithms emphasize recombination (high crossover probability) as
the main search mechanism and usually use self-adaptation (low mutation
probability) only as a supportive mechanism, evolutionary strategies emphasize both
mechanisms as fundamental for searching. Another difference is that while genetic
algorithms usually operate on the encoded representation of a sobeiawtypg
evolutionary strategies operate on the solution itgdéotype (Back, 1996; Back

et al., 1997). The basic notatign € A)ES whereu is the number of parents afdds

the number of offspring, represents an evolutionary strategy that in each generation

selects the begt individuals from they + A individuals (parents and offspring) in

66

Literature Review

total. The modified notationqA)ES indicates that offspring are generated from the

M parents but the begtindividuals are selected only from theffspring.

Scatter Search and Path Relinking

The scatter search and path relinking metaheuristic (Laguna, 2002) consists of two
phases. In the first phase, one or more feasible solutions are generated which serve as
seed solutions. Then, a reference set containing the best solutions found so far in
terms of fitness and diversity is created as follows: trail solutions are generated using
the seed or the trial solutions. Then, these trial solutions are improved by means of
local search before using them to update the reference set. It may be that the trail
solutions and their improved versions are infeasible. Then, it will be necessary to
apply repairing heuristics to these infeasible solutions. Once the reference set is
created, the algorithm enters the second phase where a subset of solutions is created
by recombination of solutions in the reference set. The combination of solutions is
based on generalized path constructions in the Euclidean (scatter search) or
neighbourhood space (path relinking). These newly generated solutions are then
improved and used to update the reference set. This process continues until the

stopping criteria are satisfied.

Memetic Algorithms

The term memetic algorithms (MA) has been used to identify a broad class of hybrid
metaheuristics: evolutionary algorithms that incorporate local search heuristics,
specialised recombination/mutation operators and/or other “helpers” specifically
designed to exploit the knowledge of the problem domain (e.g. Moscato 1989;
Moscato, 1999). While genetic algorithms are inspired by the metaplgenet
memetic algorithms are inspired by the metaphomefmesA gene is the unit of
genetic information that is propagated biologically between generations during the
evolution process. A meme is the unit of conceptual information (knowledge, ideas,
behaviour, customs, etc.) that is transmitted by imitation from one generation to the
next one. Then by incorporating the available knowledge about the problem into an
evolutionary algorithm, the working metaphor is that of evolving a population both
biologically and culturally. Since the term memetic was introduced some time after

researchers have started to study this kind of hybrids, it is common that names such

67

Literature Review

as genetic local search, hybrid genetic algorithms an others are used when referring
to memetic algorithms (e.g. Reeves, 1996; Ishibuchi et al., 1997; Falkenauer, 1996;
Burke et al., 2000; Jaszkiewicz, 2002).

Ant Colony Optimisation

The ant colony optimisation (ACO) metaheuristic (Dorigo et al., 1996) is inspired by
the behaviour of ants when finding the shortest path between a food source and their
nest. Ants deposit a substance capfgeromonewhile exploring paths and also use

the level of concentration of pheromone to decide which path to follow. Since the
pheromone evaporates as time passes, the concentration is stronger in the shortest
paths making them more attractive for other ants that also contribute to enhance the
attractiveness of the path. An ant colony optimisation algorithm consists of a set of
artificial ants that incrementally construct solutions by adding components to their
solutions. There exist several variants of algorithms based on the ant colony
optimisation framework. For more references see (Dorigo et al., 1996; Blum and
Roli, 2001).

Particle Swarm Optimisation

A swarm of individuals exploring a large solution space can benefit from sharing the
experiences gained during the search with the other individuals in the population.
This social behaviour has inspired the development of the particle swarm
optimisation algorithm (PSO) (e.g. Kennedy and Eberhart, 1999). In most versions of
this metaheuristic, individuals are not selected to survive or die in each generation.
Instead, all the individuals learn from the others and adapt themselves by trying to
imitate the behaviour of the fittest individualdowever, selection can also be

implemented to simulate trsocial rejectionof those individuals that are not well

adapted to the group performance.

Cultural Algorithms

Cultural algorithms have been developed inspired by the way in whiktaral
evolutionis achieved in social systems (Reynolds, 1999). In the evolution of social
systems and in particular human societies, culture is a vehicle for transmitting

information at three levels: between generations, between populations and between

68

Literature Review

individuals in the same population. In a social system some individuals may have
more experience and knowledge, which are of high value for the society. Then, these
individuals are voted to have a deeper influence in the population beliefs and hence
the cultural evolution of the society. More instances of these desirable individuals
may be promoted while those individuals who are not so desirable may be
eliminated. The culture or beliefs of the society is then adjusted and used to guide the

evolution of the population in each generation.

3.5.14. Hybrid Metaheuristics

With the exception of memetic algorithms, the metaheuristics described above can be
consideredpure in the sense that they are not a combination of two or more
approaches. When applying metaheuristics to solve an optimisation problem, one
way to pursue success is to adapt the technique using knowledge from the problem
domain. This adaptation can be achieved by modifying its components and/or tuning
its parameters. Another approach that is commonly adopted is to combine two or
more algorithms to develop a hybrid approach better suited for the given problem.
Hybrid metaheuristics have proven to be successful in many optimisation problems
and patrticularly in practical or real-world problems. It is not within the scope of this
thesis to provide an extensive survey on hybrid metaheuristics. Instead, the reader is
referred to some of the surveys and compilations of metaheuristics applications
available in the literature (Glover and Kochenberger, 2003; Voss et al., 1999; Aarts
and Lenstra, 1997; Osman and Kelly, 1996; Osman and Laporte, 1996; Rayward-
Smith et al., 1996; Reeves, 1995).

The hybridisation of metaheuristics has been proposed at various levels and in
different ways. For example, the components of one metaheuristic can be embedded
into another (using tabu lists within a genetic algorithm) or one metaheuristic can be
used as a component to enhance the performance of another (simulated annealing as
the local search phase in variable neighbourhood search). The many ways in which
metaheuristics can be combined makes it very difficult to describe or list all of them.
Instead, it is perhaps more effective to differentiate between the designing principles
used. In order to achieve this, it would be useful to have a nomenclature or

framework that covers and permits the description of the majority of the hybrids

69

Literature Review

proposed in the literature. Some attempts towards this have been made although it
seems that still no common scheme for classifying hybrid metaheuristics has been

adopted among researchers.

For example, (Hertz and Klober, 2000) proposed a framework for describing a
wide range of evolutionary algorithms including their hybrids with local search.
Seven main features are identified and used to describe an evolutionary algorithm
with their framework: individuals, evolution process, neighbourhood, information
sources, infeasibility, intensification and diversification. The authors illustrate their
framework by using it to describe various evolutionary algorithms including genetic
algorithms, scatter search and ant systems. In their final remarks the authors note that
“a good description of the main features of evolutionary algorithms can help to
understand the philosophy of the method and better analyse the reasons that explain
the good performance of a particular evolutionary algorithrA’similar taxonomy
called Table of Evolutionary Algorithms (TEA) was proposed by (Calegari et al.,
1999) to compare the principles of various evolutionary algorithms also including

some hybrids.

Hybrid EA
. }
Sequential Parallel
Synchronous Asynchronous
. !
| Homogeneous Heterogengous
.] ¢

Global Partial Functional

Figure 3.10. Hierarchy of hybrid evolutionary algorithms of (PrexdkEalbi, 1999).

Another taxonomy of hybrid metaheuristics (focused also on evolutionary
algorithms) is the one proposed by (Preux and Talbi, 1999). In their scheme the
authors define the hierarchy shown in figure 33€quentiahybrids refer to a set of
algorithms that are applied one after another. For example, solutions initialised with
a greedy heuristic are then evolved with a genetic algorithm and the final population
improved by a local search method such as tabu search. The classificaioallet
hybrids is more elaborate. The algorithms can be precisely synchronised

70

Literature Review

(synchronoushybrids) or cooperating with no specific coordination mechanism
(asynchronoushybrids). In theasynchronousipproachhomogeneoubybrids occur

if all the cooperating algorithms are the same whiléeterogeneousybrids the
cooperating algorithms are different. From a different perspective panalel
asynchronousybrids are divided into the following categorigtobal, partial and
functional A global implementation occurs when all the algorithms search the same
solution space. In partial approach the solution space is decomposed and each
algorithm searches a part of it. In thmctionalhybrid, each of the algorithms solve

a different problem.

In their paper, Preux and Talbi not only illustrate how some previously proposed
hybrid algorithms can be classified using their taxonomy, but they also argue that the
building blocks induced by their scheme can be combined in other ways to inspire
other hybridisations (like the ones proposed in this thesis). They notpdnaliel
asynchronous hybrid algorithms are strongly appealing for three main reasons:
cooperation of individuals proves an efficient strategy on the long run, the
stochasticity induced by the asynchronous cooperation has not been thoroughly
explored as yet and the model ideally meets the requirements of implementation on
parallel computers’ A classification scheme similar to the one by Preux and Talbi
but including many more references tobhg metaheuristics was suggested by
(Talbi, 2002).

The local search template of (Vaessens et al., 1998) is another classification
scheme that attempts to capture most of the variants of local search algorittems. Th
template is based on three features: thnber of levelg(different searching
strategies and neighbourhoods), th&pulation size(point-based and population-
based) and theluster size(lnumber of current solutions used to generate candidate
solutions). Using their template, the authors describe algorithms such as tabu search,
simulated annealing, threshold accepting, genetic algorithms, genetic local search
and others. Note that they include genetic algorithms within their template although
some researchers may argue that these algorithms are not local search methods. At
the time of publication Vaessens et al. noted thaine hybrids induced by their
template had not been proposed or were not well known Yetparticular they

suggest that multi-level local searchg@ithms deserve special attention since

71

Literature Review

existing techniques that fall into this classification have proven to be successful.
These include genetic local search and other algorithms using more than one strategy

or neighbourhood structure.

3.5.15. Evaluating the Performance of Metaheuristics

Metaheuristics are approximate algorithms and many of them will produce solutions
of various qualities in different runs on the same problem instance. The stochastic
nature of metaheuristic approaches is one of the main reasons for this (not unusual)
behaviour. Obviously, if the optimal solutions for the problem are known, the
performance of the metaheuristic technique can be assessed by comparing the
solutions obtained by the metaheuristic technique to the optimal solutions. If the
optimal solutions for the problem being solved are not known, assessing the quality
of the solutions obtained using metaheuristics can be done in two ways: by referring
to known upper and lower bounds or by referring to benchmark results (Reeves,
1995). Three aspects are of particular interest when assessing the performance of
metaheuristic methodsffectivenes®fficiencyandrobustnessEffectiveness usually

refers to the quality of the solutions produced by the method. Efficiency usually
refers to how much computation time and memory the method uses. Robustness
usually refers to how consistent the method is in producing the same or very similar

results over many runs on the same problem instance.

72

General Metaheuristic Approaches

Chapter 4. General Metaheuristic Approaches

4.1. Introduction

This chapter presents an initial investigation into applying metaheuristics to automate
the solution of the academic space allocation problem described in chapter 2. The
aim of this initial study is to assess the suitability of applying some well-known
heuristic search methods in order to have an insight into the difficulty of solving the
space allocation problem. Before starting an investigation into heuristic search,

several decisions have to be made. The following aspects should be considered:
§ The selection of solution representation and associated data structures.

§ The definition of neighbourhood structures.

§ The implementation of efficient fitness evaluation routines.

§ The design of solution initialisation strategies.

§ The selection of search algorithms.

§ The tuning of algorithm parameters.

The rest of this chapter describes how these issues were addressed with respect
to the problem studied here. The following four search techniques were selected to

carry out this initial investigation:

§ lIterative improvement local search.
§ Simulated annealing algorithm.

§ Tabu search algorithm.

§ Genetic algorithm.

These methods were chosen because they have been applied to a great variety of
problems, are considered robust in the gdremase, many papers exist that provide
guidelines for implementing them and various comparative studies between these

and other techniques exist in the literature. See for example (Corne and Ross, 1995;

73

General Metaheuristic Approaches

Hasan et al., 2000; Youssef et al., 2001). These four techniques can be considered as
general search methods that need to be adapted and tuned for specific applications in
order to obtain good results (Pirlot, 1996). From the work presented in this chapter,
the material corresponding to the tabu search metaheuristic is included in the
[Bur2003b] paper, while the material corresponding to the other three approaches is

included in the [Bur2000] paper (see the appendix on page 199).

A considerable number of publications report on the improvement and tuning of
the various components of the techniqgues above to make them more effective,
efficient and robust. For example, in genetic algorithms different replacement
policies have been proposed to manage the incorporation of the new generated
individuals into the next generation and the preservation of the fittest individuals
(elitism) from the current generation (B&ck et al.,, 1997). Several selection
mechanisms, genetic operators and techniques for tuning the probabilities of these
genetic operators have also been investigated (e.g. Tuson and Ross, 1998; Julstrom,
1995). As mentioned in section 3.5.10, with respect to simulated annealing, various
cooling schedules including both deterministic and adaptive approaches have been
studied in order to control the variation of the acceptance probability (Aarts and
Korst, 1998; Ingber, 1996). In tabu search, there are different implementations of
short-term and long-term memory structures or tabu lists including the use of
learning techniques. The incorporation of preferred candidate lists, i.e. lists of
promising moves or attributes of moves has also been explored. The aspiration
criteria to be used when overriding the tabu status of a candidate move is another
aspect that has received attention from the community and the use of different
aspiration criteria during the search in an adaptive way has also been proposed
(Glover and Laguna, 1997).

Various researchers have carried out experiments to compare the performance of
the above metaheuristics on different problem domains. For example, the
performance of simulated annealing, tabu search and a genetic algorithm are
compared when solving an unconstrained Pseudo-Boolean function in (Hasan et al.,
2000). In that paper the authors conclude that, after extensive experiments using
well-tuned parameters for the three methods, the genetic algorithm performed the

best although no reasons for this were identified. Another comparison between these

74

General Metaheuristic Approaches

three metaheuristics was carried out in (Youseef et al., 2001) for the floorplanning of
VLSI circuits. Four aspects were taken into account: quality of the best solution
found, progress of the search, progress of the best fithess and number of solutions
discovered at successive intervals of the fitness function. In that paper, the authors
aimed to study the behaviour of the three algorithms instead of demonstrating the
superiority of one of them. However, they reported that the best performance was
exhibited by tabu search, closely followed by the genetic algorithm while simulated
annealing stayed far behind. It was also noted that the genetic algorithm required the
most effort with respect to the complexity of implementation and tuning of

parameters.

4.2. Solution Representation and Data Structures

There are, in general, two types of solution representations for combinatorial
problems: direct and indirect represeimas (also called explicit and implicit
respectively). A direct representation encodes a solution while an indirect
representation encodes the steps to construct a solution. For the academic space
allocation problem investigated here, it was decided to represent an allocation or
solution using the direct encoding described in section 2.4.2 where a saligian

string in which each position represents an entity and the value in that position
indicates the room to which the entity has been allocated. Other representations (e.g.
each position in the string representing a room) were also considered, but having a
string where each position represents an entity makes it easier to maintain the
feasibility of solutions in terms of the condition that each entity must be allocated to
exactly one room (eg. 2.8). In addition to this direct vector representation, it was also
decided to design an appropriate data structure in which to keep all the information
corresponding to the problem instance being solved (penalties, list of entities, list of
rooms, etc.) and the details of each particular allocation or solution (penalties, used
rooms, fitness, etc). All the information is organised using a data structure based on
linked lists as described below.

The data for a problem instance is organised in three lists of objects

corresponding to the following groups: entities, rooms and constraints.

75

General Metaheuristic Approaches

§ Entities This list holds the details of each entity to be allocated: name, associated

weight level or priority, owner department, associated group, etc.

§ Rooms This list holds the details of each room: id, capacity, building, floor, list of

adjacent rooms, type of room, special features, etc.

§ Constraints This list holds details of each constraint (hard and soft): label,

description, associated penakgsociated entities/rooms, etc.

The lists described above hold information about the problem instance being
solved but another data structure is reegiito keep details of an allocation or
solution. The data structure used to represent a solution or allocation is based on the

three objects described below.

§ EntityGene This includes: fitness statistics for this entity, pointer to the respective
entity in the global entities list, pointer to the RoomGene to which this entity is
allocated, pointer to the next EntityGene that is allocated to the same room and

pointer to the first ConstraintGene in the list of constraints affecting this entity.

§ RoomGene This includes: fitness statistics for this room, pointer to the
corresponding room in the global rooms list, pointer to the first EntityGene in the
list of entities allocated to this room and pointer to the first ConstraintGene in the

list of constraints affecting this room.

§ ConstraintGeneThis includes: pointer to the corresponding constraint in the
global constraints list and pointer to the next ConstraintGene that is also assigned

to the same entity or the same room.

Using the structures described above, the linked list model shown in figure 4.1
holds all the details of the problem instance and the allocation or solution. Note that
the lists Entities, Rooms and Constraints are common to all solutions and are created
only once. In this example, the problem consists of allocating the 5 entities (E1 to
E5) to the 5 available rooms (R1 to R5) subject to 4 constraints (C1 to C4). Entity E1
is allocated to room R5, entity E2 and E4 are allocated to room R3 and entity E5 is

allocated to room R1. Room R2 is empty and entity E3 is not allocated. Constraint

76

General Metaheuristic Approaches

C1 applies to room R5, constraint C2 applies to entity E1 and constraints C3 and C4

apply to entity E5.

This data structure, based on linked lists, has the flexibility to easily change
details about the problem instance and the solution. Also, the linked list model
permits the easy implementation of local search moves that maintain the feasibility
of the solution in terms of hard constraints (eq. 2.9) and the implementation of

efficient solution evaluation routines as it is described later in this chapter. Other

RoomGene List EntityGene List
|R1|R2|R3|R4|R5| |El|E2|E3|E4|E5|
I I
A A A A A A A A A A
| | I |
Rooms Entities

V1

C1 | C2 | C3 | C4 | ConstraintGene List

A4 A A 4 A4
| | | | | Constraints

researchers have also found that the use of linked lists is advantageous for

representing combinatorial optimisation problems and their solutions (Randall and
Abramson, 2001). So, an allocation or solution for the academic space allocation
problem is represented in this thesis using the string of lengtid stored using the
data structure shown in figure 4.1. The combination of the string and the linked list
structure helps to maintain the feasibility conditions in this problem.

Figure 4.1. Data structure used for the space allocation problem. The globahtites, Rooms and

Constraints hold data corresponding to the problem instance being solved. Eldelibtk of genes
hold details of a particular allocation or solution.

77

General Metaheuristic Approaches

4.3. Neighbourhood Structures

Three neighbourhood structures or movesdafened to perform local search. These
structures are given below together with their respective size in terms of the number

of entities to allocaten] and the number of available roonns).(

§ Relocatean entity to a different roomNg| =n (m-1).
§ Swapthe rooms between two entitieldg|=n(n-1)/2.

§ Interchangethe allocated entities between two rooNg.¥m(m-1)/ 2.

In the aboven is the number of entities to allocate,is the number of available
rooms, and N, Ns and N refer to the relocate, swap and interchange neighbourhoods
respectively. These neighbourhood structures are naturally associated to the problem
studied in this thesis. They were selected so that targeted changes can be
implemented in the existing allocation and the feasibility of solutions is fully or
nearly maintained. Also, more elaborate moves or chains of moves can be generated
from these three basic neighbourhood structuredeasible move modifies the
solution maintaining the feasibility conditions whilesaitable move is afeasible

move that also improves the solution quality. From the description of the problem
given in chapter two, it can be noted that the improvement of solution quality can be
achieved by reducing the amount of space misuse and/or by reducing the violation of
soft constraints. Then, given the types of constraints in this problem, it is also
possible to design specific moves or neighbourhood structures aimed to improve the
solution quality. However, it was decided not to have such a high degree of
specialisation so that the metaheuristic approaches proposed in this thesis could
eventually be applicable to different problem instances (given the variety of soft

constraints) and perhaps similar problem domains.

4.4. Fitness Evaluation Routines

After modifying a solution by means of the moves described above or using the
genetic operators described later in this chapter, the fitness of the new allocation has
to be calculated. Unfortunately, an exact evaluation of the new fitness cannot be
carried out locally. The reason for this is that not only the entities and rooms

involved in the move have to be taken into account but also the entities and rooms

78

General Metaheuristic Approaches

affected indirectly by the modification. The level of satisfaction of other soft
constraints not directly related to the implemented move may also be affected and
then, an exact fitness evaluation would require consideration of all the soft
constraints. Such an exact fitness evaluation routine is very time consuming and
therefore, an approximate fitness evaluation routine, also known as delta evaluation
(Corne et al., 1994), is also implemented. Such approximate evaluation takes into
account the changes in space utilisation and the changes in the soft constraints
satisfaction directly related to the entities and rooms involved in the selected move.
But this approximate evaluation does not consider the potential changes produced in
the soft constraints satisfaction related to other entities and rooms not involved in the

move.

Consider the situation illustrated in figure 4.2 where the seleabed m toswap

the assigned rooms between entities E3 and E4. The approximate evaluation takes
into account the changes in space utilisation in rooms R5 and R6 and the change in
the satisfaction of constraint C2 but not the satisfaction of constraint C1, which is
also affected. The purpose of implementing two fithess evaluation routines
(approximate and exact) is to use each of them in the appropriate case so that the
search can be performed more efficiently. The exact evaluation is used when an
improved solution has been found, in order to update the solution fithess accurately.
The approximate evaluation is used while exploring the neighbourhood of a solution,

in order to carry out a quick assessment of the suitability of implementing a move.

constraint C1 constraint C2 constraint C1 constraint C2

be t@mether with E3 be t@mether with E2 be tmether with E3 be taether with E2

entities El| E2| E3| E4| E5 E1l| E2| E3| E4| E5

swap E3and E4 >
rooms R6| R5(R6(R5| R2 R6| R5| R5| R6| R2

Figure 4.2. The approximate fitness evaluation routine. This procedlyreonsiders the entities and
rooms involved in the implemented move.

79

General Metaheuristic Approaches

4.5. Constructive Heuristics and Neighbourhood Exploration

In this section, the heuristics employed to initialise an allocation and to perform
neighbourhood search are described. Various degrees of greediness and exploration
can be used when performing initialisation and neighbourhood search respectively.
That is, there exist a number of strategies for constructing an initial solution that
ranges from random selection to complete greedy heuristics including peckish
methods, i.e. a greedy heuristic that occasionally makes mistakes (Corne et al.,
1994). Similarly, while performing neighbourhood search, the selection of the next
neighbouring solution can be done at random or after evaluating all the solutions in
the neighbourhood.

Several researchers have noted that a trade-off needs to be established between
the size of the neighbourhood and the efficiency and effectiveness of the exploration
(Liu, 1999; Marett and Wright, 1996). Another aspect that must be considered is the
connectedness of the solution space and the difficulty to explore it. The degree of
intensification used to construct initial solutions and to explore the neighbourhood
can have an effect on the performance of the metaheuristic used to perform the
search (Dowsland, 1996; Corne et al., 1994).

4.5.1. Constructive Heuristics

The initialisation of an allocation is accomplished by iteratively allocating entities to
rooms. Two selections have to be made: the next entity to allocate and then, the room
to which the entity should be allocated. The constructive heuristic can vary from
complete random selection of both the entity and the room to a greedy strategy that

selects the best assignment. The following simple heuristics were implemented here:

AllocateBestAll. Selects the pair (unallocated entity,room) that produces the largest

improvement in the solution fithess and allocates the entity to the room.

AllocateRnd-Rnd. Selects an unallocated entity and room at random and allocates

the entity to the room.

AllocateRnd-BestRnd Selects an unallocated entity at random, then explores a
number of randomly selected rooms evaluating the suitability of each of them. Then,

the chosen entity is allocated to the best of the subset of explored rooms.

80

General Metaheuristic Approaches

AllocateWgt-BestRnd The unallocated entities are sorted in decreasing order of
their weight (required space). In each iteration, the unallocated entity with the largest
weight is selected (breaking ties at random) and the room to allocate this entity is

chosen using the same procedure as in the heuristic AllocateRnd-BestRnd.

AllocatePrty-BestRnd. The unallocated entities are sorted in decreasing order of
their importance (for example managers, professors, technicians, etc.). In each
iteration, the unallocated entity with the highest priority is selected (breaking ties at
random) and the room to allocate this entity is chosen with the same procedure as in
the heuristic AllocateRnd-BestRnd.

AllocateCsrt-BestRnd This heuristic was designed specifically to allocate entities
subject to hard constraints. If the selected unallocated entity is subject to hard
constraints that limit the possible rooms to which this entity can be allocateBde.g.
located in or Be together witfy the feasible assignment that produces the best
improvement in the allocation fitness is implemented. By using this heuristic to
allocate entities subject to hard constraints, it is easier to guarantee the feasibility of
the generated initial solutions.

Note that all the above heuristics select the entity to be allocated and then search
for an adequate room using random or tournament selection. Heuristics selecting first
the room to fill and then searching for adequate entities for the chosen room were
also tried. However, the strategy of driving the initialisation by entity selection
instead of by room selection produced better results overall. The main reason
observed for this was that most of the constraints (soft and hard) are associated to
entities rather than to rooms. This means that there is more flexibility when searching
a room for a given entity and achieving satisfaction of constraints even with a small

detriment in the room space utilisation efficiency.

4.5.2. Neighbourhood Structure Selection

The first step is to decide which type of neighbourhood structelecate swapor
interchang® to use and then to explore the chosen neighbourhood with a
predetermined strategy. A heuristic was designed to select the type of neighbourhood
structure or move before initiating the neighbourhood exploration to select the actual

move. This heuristic is shown in figure 4.3.

81

General Metaheuristic Approaches

Note that the strategy shown in fig. 4.3 considers the cases when all the entities
are already allocated and also when there are unallocated entities. Although it was
specified in chapter 2 that one of the feasibility conditions considered in this thesis is
that all the entities in the problem instance must be allocated (eq. 2.8), the heuristic
presented in figure 4.3 permits flexibility to consider other problem conditions (for
example, when unallocated entities are allowed) and adaptability to various search
strategies (considering or not infeasible solutions during the search). Moreover, this
heuristic can be used for initialising solutions as well as for neighbourhood
exploration. In this case, the heuristic tliesllocate as many entities as possible to
produce a feasible solution by using tléocate move, but it also tries to avoid
getting stuck by examining tlrelocate swapandinterchangeneighbourhoods when

no more allocate moves are possible.

Step 1. If alin entities are allocated then do
Step 1.1. Select the move type at rand@iwcate swapor interchange
Step 2. If not alh entities are allocated then do
Step 2.1. If the number aftempts> maximum attemptsermitted then do
Step 2.1.1. If the previous selected move type alxate then select a move
betweerrelocate swapandinterchangeat random.
Step 2.1.2. If the previous selected move type wasalotate then select the
allocatemove.
Step 2.1.3. Set the numberatfemptsequal to zero.
Step 2.2. If the number aftempts< maximum attemptsermitted then do
Step 2.2.1. If the previous selected move type waslfastate then select a move
betweerrelocate swapandinterchangeat random.
Step 3. Explore the neighbourhood and return a move of the selected type.

Figure 4.3. Local search heuristit; s selects the type of move or neighbourhood structure and then
explores the selected neighbourhood to find a move. The numbéewofptsrefers to the number of
previously consecutive failed (i.e. no accepted) moves. The wadvgmum attemptsefers to the
maximum number of failedttemptgpermitted.

To select the type of move, this heuristic takes into account the current state of
the allocation and the history of success in applying each type of move. The type of
move that is undertaken in each iteration, depends on the number of allocated entities
and the number of prior failed attempts to find a feasible move of the selected type.
That is, if all entities are allocated in the current solution, only the nrel@sate
swapandinterchangeare explored. In the case that not all entities are allocated, a
certain number ofmaximum attemptsormally set ta/10 (decided by preliminary
experimentation) is given to either of the three move types. For example, suppose
that in the current solution there are still 5 unallocated entities from a total of 100 in

82

General Metaheuristic Approaches

the allocation problem. Then, if after 20 failed attempts, none of these entities have
been successfully allocated, the algorithm examines the feasibility of modifying the
solution using theelocate swap andinterchangemoves up to a maximum of 20

failed attempts. The number of failed modification attempts is set to zero when a
move has been accepted by the driving metaheuristic (e.g. iterative improvement,

simulated annealing or tabu search).

4.5.3. Neighbourhood Exploration

Once the neighbourhood structure (type of move) is chosen, exploring the selected
neighbourhood consists of visiting one, some or all the solutions in the vicinity of the
current solution and selecting one of them. As in solution initialisation, the
neighbourhood exploration strategy can vary from random (visiting one neighbour at
random) to exhaustive (visiting all neighbours). The heuristics that were
implemented in this thesis to carry out the neighbourhood exploration are described

below.

RelocateRnd-Rnd Selects an allocated entity and a room at random and moves the

entity from its previous room to the selected room.

RelocateRnd-BestRnd Selects an allocated entity at random, then explores a
number of randomly selected rooms evaluating the suitability of each of them to
relocate the selected entity. Then, the chosen entity is allocated to the best of the

subset of explored rooms.

RelocatePnty-BestRnd The allocated entities are sorted in non-increasing order of
their individual penalties (violation of soft constraints). In each iteration, the
allocated entity with the highest penalty is selected and the room to relocate this

entity is chosen with the same procedure as in the heuristic RelocateRnd-BestRnd.

SwapRnd-Rnd Two entities allocated to different rooms (so that the swap move can
take place) are selected at random. Thka assigned rooms are swaped between

these two entities.

SwapRnd-BestRnd Selects one allocated entity at random, then explores a number

of randomly selected entities allocated to a different room evaluating the suitability

83

General Metaheuristic Approaches

of the swap. Then, the pair that produces the largest improvement in the solutions
fitness is selected.

SwapPnty-BestRnd The allocated entities are sorted in non-increasing order of
their individual penalties (violation of soft constraints). In each iteration, the
allocated entity with the highest penalty is selected and the entity to implement the

swap is chosen with the same procedure as in the heuristic SwapRnd-BestRnd.

InterchangeRnd-Rnd. Two rooms are selected at random and the interchange move

is conducted betweent these two rooms.

InterchangeRnd-BestRnd Selects one non-empty room at random, then explores a
number of randomly selected non-empty rooms evaluating the suitability of the
interchange. Then, the pair of rooms that produces the largest improvement in the

solution fitness is selected and the interchange move is conducted.

InterchangePnty-BestRnd The non-empty rooms are sorted in non-increasing
order of their individual penalties (space nsiswand violation of soft constraints). In
each iteration, the room with the highest penalty is selected and the room to
implement the interchange is chosen with the same procedure as in the heuristic
InterchangeRnd-BestRnd. Then, the intewrege move is conducted using these two

rooms.

The number of rooms explored when the BestRnd variant is used in the above
moves was set to/3 by preliminary experimentation. The various neighbourhood
structures and heuristics described above permit the implementation of the heuristic
H.s (figure 4.3) in many different ways considering (or not) infeasible solutions and
using different degrees of intensification. As mentioned above, the neighbourhood
exploration is carried out faster because the approximate fitness evaluation routine is
used. Another mechanism used in this thesis to speed up the neighbourhood search
was to estimate the percentage of space that may be wasted or overused when
implementing the selected move and to consider the move only if this percentage of
misused space is within certain limits50% of the required space(j) for thej"
entity). If this space deviation is not calculated, the move is evaluated even if the
rooms involved in the move are too big or too small for implementing the move. The

selection of a suitable move with the above neighbourhood search heuristics does not

84

General Metaheuristic Approaches

imply that the current solution will be improved. The moves are locally evaluated
with the approximate fitness evaluation routine and the selected move is passed to
the driving metaheuristic which will decide whether the move is accepted or not after
the exact fitness of the new solution is calculated. That isHtkelocal search
heuristic samples the neighbourhood and returns a promising move to the driving
metaheuristic. The following sections describe the metaheuristics implemented in

this thesis.

4.6. lterative Improvement Algorithm

The iterative improvement local search that was implemented in this thesis is shown
in figure 4.4. By selecting different heuristics to explore the neighbourhood in the
H.s heuristic, this iterative improvement local search can be implemented with

various degrees of neighbourhood exploration.

Various configurations were compared in order to select the best one. The
experiments and results are described later in this chapter. Although this iterative
improvement local search approach is quite simple, it is used in this thesis as a non-
trivial algorithm against which to compare the performance of other more elaborate

approaches.

Step 1. Generate initial current solution

Step 2. Generate candidate solutibising theH s heuristic.
Step 3. If fithess() > fitnessk) thenx =x'.

Step 4. If stopping condition met finish, otherwise go to Step 2.

Figure 4.4. lterative improvement local search usesithéeuristic for neighbourhood sampling.

4.7. Simulated Annealing

Simulated annealing is a metaheuristic approach that has been applied to many
optimisation problems. In particular, tleerare several papers in the literature
reporting on the performance of this approach on scheduling related problems and
the correlation between the observed performance of this algorithm and the
neighbourhood exploration strategies, cooling schedules and acceptance probability
functions used. For example, (Liu, 1999) studied the impact of different

combinations of the neighbourhood structure size and cooling schedules on the

85

General Metaheuristic Approaches

performance of simulated annealing for the flowshop scheduling problem. Liu
observed that large neighbourhood sizes were more appropriate for fast annealing
processes, small sizes did better for slow annealing processes while variable sizes

gave the best results with respect to the effectiveness of the whole process.

Step 1. Generate initial current solution

Step 2. Setemperature= initial temperature.

Step 3. Generate candidate solutibisingH s heuristic.

Step 44F = fitnessk’) - fitnessk).

Step 5. If4F > 0 therx =x'.

Step 6. If4F < 0 then do
Step 6.1. Calculate acceptance probability = exf-(temperaturg
Step 6.2 If acceptance probability > random [0,1] therx'.

Step 7. Updateemperatureaccording to the cooling schedule.

Step 8. If stopping condition met finish, otherwise go to Step 3.

Figure 4.5. The simulated annealing approach used théeuristic to explore the neighbourhood and
the Boltzman-like distribution as the acceptance probability function.

The simulated annealing algorithm that was implemented in this thesis is
described in figure 4.5. Several of the cooling schedules proposed in the literature
were tested in the preliminary experiments carried out in this thesis. However, no
significant difference was observed in the performance of the metaheuristic and
therefore only the arithmetic and geometrooling schedules are considered here

due to their simplicity and good performance.

4.8. Tabu Search

As was the case with the simulated annealing algorithm, tabu search has also been
applied to a great number of optimisation problems including many scheduling
related problems. Many ways to implement the four main components of tabu search,
short-term memory long-term memoryand intensification and diversification
strategieshave been proposed and compared in the literature (e.g. Glover and
Laguna, 1997). The common strategy to implensrt-term memongand long-

term memoryin tabu search is to store move attributes rather than to store visited
solutions (which is not very efficient). One disadvantage of storing move attributes is
that by forbidding certain moves, solutions that have not yet been visited may be
avoided and some solutions may still be re-visited since they might be generated by a

different sequence of moves. The heuridtics uses three types of moves and

86

General Metaheuristic Approaches

therefore the attributes that define the move that has been implemented may be
different. For example, the attributes describingelacate move can be the entity
together with the previous and new assigned rooms. In the casessfdhenove,

the attributes can be the two entities being swapped together with their corresponding
assigned rooms. The attributes for describingnégrchangemove can be the two

rooms being involved in the move together with the corresponding allocated entities
in each of the rooms. Of course, simplified attributes could be used to describe the
moves and then all moves sharing the same attributes would be considered to be the
same. Even the same set of attributes could be used to describe the three types of
moves, such as the entity together with its previous room and its new assigned room.
Various strategies of storing move attributes were tried, but managing lists of moves
attributes is another aspect that contributed to slowing down the neighbourhood
exploration. Therefore, instead of dealing with lists of moves, a mechanism that
maintains pools of genes (parts of solutions) was used to implemestidtiderm
memory thelong-term memonrgand theintensification and diversification strategies

in the tabu search algorithm. Other researchers have also used matrices to store parts
of solutions in order to implement short-term memory and long-term memory (Diaz
and Fernandez, 2001; White and Xie, 2001).

4.8.1. Matrices of Tabu and Attractive Genes

Two matrices of size x mare used and in both of them the cgi) €orresponds to

the allocation of th¢" entity to thei™ room forj = 1,..n andi = 1,..m. The matrix

My stores those pairs (entity,room) that will be considered as tabu for a number of
iterations while the matriki, stores those pairs (entity,room) that will be considered
attractive during the search. The tabu maiix is updated each time a move
suggested by the heuristit,s produces a detriment in the fitness of the current
solution while the attractive matriMa is updated each time the move produces an

improvement.

Updating a cell irtMt means setting its value ¢orrent_iteration+ tenureso that
a move involving the pair (entity,room) corresponding to that cell is set as tabu for
tenurenumber of iterations. Some researchers have proposed the random variation of

the tenure value within certain limits (Di Caspero and Schaerf, 2001; Schaerf,

87

General Metaheuristic Approaches

1999b). Preliminary experiments carried out in this thesis for tuning the tabu search
parameters, showed thatemurevalue of arounch and kept constant throughout all

the iterations produced good results. Updating aMglfefers to incrementing the
value of the cell in one unit, i.81a(j,i) = Ma(j,i) + 1. In each type of move, the cells
that are updated are the ones corresponding to the pairs (entity,room) after
implementing the move. For example, if tH&dhtity is relocated from thé'®to the

4™ room, then the value in the ceéMa(6,4) is incremented in one if the move
produced a better solution but if the move generated an inferior solution the value in
the cellM+(6,4) is set to the valueurrent_iteration+ tenure Note that in aswap

move two cells are updated while iniaterchangemove more cells can be updated.

The tabu matrix acts as the short-term memory component while the attractive
matrix acts as the long-term memory component. Since both matrices store pairs
(entity,room), this mechanism can be regarded as a way of memorising parts of

allocations or genes that come from bad solutiéhig ¢r good solutionsMa).

4.8.2. Intensification and Diversification Strategies

Commonly, the intensification strategiesanporated in tabu search implementations

use the short-term memory for exploring the neighbourhood of promising solutions.
In the case of diversification, various strategies have been proposed. For example,
one common way is to identify unvisited areas of the solution space with the aid of
the memory components and then encourage the exploration of these areas. Some
researchers have suggested to periodically change the weights in the fitness function
during the search, a mechanism known as strategic oscillation (Costa, 1994; Alvarez-
Valdes et al., 2000; Diaz and Fernandez, 2001; Schaerf, 1999b). Another way to
diversify the search is to replace the current solution with the best solution so far
after a number of non-improving iterations (Higgins, 2001). Tabu relaxation has also
been proposed for diversification and it consists of re-initialising the tabu lists after a

number of non-improving iterations (White and Xie, 2001).

In the tabu search algorithm implemented here, the mai¢@esndMa are used
to implement the strategies for intensifying and diversifying the search as described
next. In the heuristi¢l s, the neighbourhood exploration attempts to find a feasible

move of the selected type (step 3 in figure 4.3). If a feasible move is found and its

88

General Metaheuristic Approaches

attributes are considered tabu accordingto another move is sought unless the
aspiration criterion is satisfied. The aspiration criterion used here is that the
candidate solution generated by the move should be better (measured with the
approximate fitness evaluation routine) than the current solution. If the
neighbourhood exploration cannot find a feasible move, thezlogate move is
heuristically created using the information storedvin To do this, an entity is
selected at random and the highest value in jtheow is identified in Ma
(corresponding to the most attractive roobto allocate entity). If the entityj is not
already allocated to roomthen the move proposed is to relocate the entity to that
room (provided it is feasible). If this assignment already exists in the current
solution, another entity is selected at random and the same process in carried out
until a feasibleelocatemove is found. The tabu search implemented in this thesis is
described in figure 4.6.

Step 1. Generate initial current solution

Step 2. Initialise the taband attractive matricddr andMa.

Step 3. Explore a set of candidate solutions as follows. Generate a set of caotlitiates X' from
current solutionx using the modifiedH, s heuristic. As described above, the modified version
incorporates théntensification and diversification strategiesing thememory componentd; and
Ma. Select the best candidate solutiorfrom the seX’ only if X’ (associated move attributes) is not
tabu or if the gpiration criterionis satisfied.

Step 5. If fithess() > fitnessk) thenx=x" .

Step 6. Update tabu and attractive matridegndMa.

Step 7. If stopping condition met finish, otherwise go to Step 3.

Figure 4.6. The tabu search approach uses matrices to storefggrtsl and bad solutions in order to
implement the short-term and long-term memory components.

4.9. Genetic Algorithm

A simple genetic algorithm was designed as described in figure 4.7 but several ways
to implement its components were compared in order to obtain a relatively well-
tuned version of this metaheuristic for the problem investigated here. The
subsections below describe the various components of this genetic algorithm in more
detail.

Step 1. Generate an initial current population.

Step 2. Evaluate the current population.

Step 3. Until the new population if completed do the following:
Step 3.1. Select two individuals that will act as parents.

89

General Metaheuristic Approaches

Step 3.2. If crossover probabilityrandom [0,1] then recombine the two selected parents to
create two offspring.
Step 3.3. If crossover probability < random [0,1] then copy the twatedl@arents as the
offspring.
Step 3.4. Apply the mutation operator with a given probability to trepioffg.
Step 3.5. Copy the two offspring to the new population.
Step 6. Apply the elitist strategy consisting on replacing the wadstidoial in the new population
with the best individual in the current population.
Step 7. Copy new population to the current population.
Step 8. If stopping condition met finish, otherwise go to Step 2.

Figure 4.7. The genetic algorithm approach implemented in this thesis.

4.9.1. Selection of Parents

Two variants were tried: fithess proportional selection (also called roulette-wheel
selection) and tournament selection (Coley, 1999). Both selection methods produced
comparable results and it was decided to use tournament selection with a tournament

size between 2 and 5.

4.9.2. Genetic Operators

Four crossover operators were implemented and compsiregle-poinf uniform
heuristic uniformandheuristic non-uniformBoth single-point and uniform operators

are well-known and their descriptions can be found in the literature (Coley, 1999). In
the heuristic uniform operator, each pair of corresponding genes (entity,room) in
both parents are compared in terms of their local fitness, i.e. the fithess of the
corresponding entity. The gene with the highest fitness is copied to one of the
offspring while the other gene is copied to the second offspring. In the heuristic non-
uniform crossover operator, the first step is to copy both parents to the two offspring
and then identify a number of genes (a parameter set usually)twith the lowest
fitness (the fitness of the entity) in each offspring. Then, for each of the offspring,
these less fit genes are copied from the other offspring. That is, suppose tf{at the 5
entity is allocated to thé"6room in the first offspring and allocated to ther8om in

the second offspring. Assuming that this gene has been identified as one of the less
fit (the penalty due to the violation of soft constraints is high for this pair) in the first
individual, then the '8 entity will be relocated from thé"go the &' room in the first

offspring.

90

General Metaheuristic Approaches

Both the single-point and uniform crossover operators performed reasonably
well but very elaborate routines for repairing the allocations (satisfy the feasibility
conditions imposed by the hard constraints) were required. On the other hand, the
heuristic uniform and heuristic non-uniform operators produced solutions with not
too many hard constraint violations (so are easily repaired) due to the fact that the
fitness of each gene also reflects the degree of hard constraints violations. The
heuristic non-uniform crossover operator was the one that produced the best results

overall and it was selected for the final implementation of the genetic algorithm.

The mutation operator implemented here is a simple mechanism in which for
each gene in the chromosome and with certain probability, a new room is selected at
random and assigned to the corresponding entity. If the chosen room is not feasible

for allocating the entity then the next gene is processed.

4.10. Experiments and Results

This section describes the experiments carried out in order to assess the performance
of the metaheuristics described above and reports on the results obtained in these
experiments. The goals were to tune the approaches to produce the best results
possible with these methods and to identify those components of each metaheuristic

that can be used to design a hybrid approach.

4.10.1. The Initialisation Heuristics

The first set of experiments compared the quality of solutions (in terms of fithess and
diversity) generated by each of the initialisation heuristics described in section 4.5.1.
The experiments consisted of generating 50 solutions with each of the heuristics for
three of the test instances described in section 2.5. The results are reported in tables
4.1t04.3.

Initialisation Heuristics - Total PenaltyF(x)_ - V(p)
maximum | average| minimum

AllocateBestAll 1817.10 | 1817.10| 1817.10 | 0.0
AllocateRnd-Rnd 9686.72| 8892.05| 8246.58 | 82.71
AllocateRnd-BestRnd 6294.67) 4639.40 2966.13 60.26
AllocateWgt-BestRnd 8479.87| 8269.83 8097.73 5|50
AllocatePrty-BestRnd 5583.31 4284.81 2789.26 36.38
AllocateCsrt-BestRnd 3713.60 2521.13 171752 44.43

91

General Metaheuristic Approaches

Table 4.1. Performance of the initialisation heuristics on the test instance nott1l.

Initialisation Heuristics - Total Penalty F(X). - V(p)
maximum | average| minimum

AllocateBestAll 6070.47 | 6070.47| 6070.47 | 0.0
AllocateRnd-Rnd 6637.38| 6235.83| 5854.21 | 71.76
AllocateRnd-BestRnd 6418.23 610041 5852.30 67.98
AllocateWgt-BestRnd 7335.64| 6917.46 658147 20.44
AllocatePrty-BestRnd 5614.65] 5221.08 4986.64 20.89
AllocateCsrt-BestRnd 5735.85 5453.26 5210.24 57.03

Table 4.2. Performance of the initialisation heuristics on the test instance trentl.

Of course, the greedy heurist&locateBestAll always generates the same
solution which can be used as a reference to assess the quality of the solutions
generated by the other heuristics. As may be expected, the hedlistiateRnd-

Rnd produces sets of solutions with the highest diversity but also with low quality.
The heuristicAllocateWgt-BestRnd generates solutions with low quality and also

low diversity. This gives an indication that in this problem, guiding the initialisation

of solutions by space utilisation appears to be inadequate perhaps due to the
existence of additional constraints. Therefore, although the problem studied here can
be seen as a variant of the knapsack problem, it would probably not be wise to use
initialisation heuristics that have been proposed for knapsack problems to generate
solutions for the academic space allocation problem since those heuristics are mainly

based on the optimisation of space.

Initialisation Heuristics - Total PenaltyF(x)_ - V(p)
maximum | average| minimum

AllocateBestAll 1974.03 | 1974.03| 1974.03 | 0.0
AllocateRnd-Rnd 7079.90| 6449.81| 5596.82 | 80.55
AllocateRnd-BestRnd 2264.54 1470.26 857.18 32.17
AllocateWgt-BestRnd 8112.36| 8041.62 8112.36 438
AllocatePrty-BestRnd 2989.34) 2054.71 1473.20 22.78
AllocateCsrt-BestRnd 2189.87] 1395.62 931.04 31.62

Table 4.3. Performance of the initialisation heuristics on the test instance wolverl.

The heuristicAllocatePrty-BestRnd generates solutions with higher quality but
the population diversity¥/(p) is still low. The heuristicé&\llocateRnd-BestRnd and
AllocateCsrt-BestRnd appear to be the ones that provide the best compromise
between quality and diversity in the set of generated solutions. Comparing these two

heuristics, it can be observed thdtocateRnd-BestRnd produces solutions with

92

General Metaheuristic Approaches

higher diversity and competitive fithess whiidocateCsrt-BestRnd obtains sets of
solutions with lower diversity but better quality. Comparing the sets of solutions
generated by each of the proposed initialisation heuristics permits the choice of the
appropriate strategy to generate initial solutions when assessing the performance of
the metaheuristics investigated in this thesis. In the rest of ferisents in this
chapter, the heuristidllocateRnd-BestRnd is used to initialise solutions. The
reason for this selection is that with this strategy, solutions with a wider range of
fitness values can help to better assess the performance of metaheuristics instead of
using mostly very high quality initial solutions like those generated by the
AllocateCsrt-BestRnd heuristic.

4.10.2. The Neighbourhood Exploration Heuristics

The next set of experiments was carried out to compare the various neighbourhood
exploration strategies described in section 4.5.3. Different versions of the three
metaheuristics that use neighbourhood search (iterative improvement, simulated
annealing and tabu search) were implemented using the various neighbourhood
exploration strategies as shown in table 4.4. The same neighbourhood exploration
heuristic was used for the three moves in each varianiRmé-Rnd in table 4.4

means that this strategy was used in the three melesate swapandinterchange

No combinations between different heuristics of the three moves were used in these

experiments.

Metaheuristics Neighbourhood Exploration Heuristics

Rnd-Rnd Rnd-BestRnd Pnty-BestRnd
Iterative Improvement IIRnd-Rnd IIRnd-BestRnd IIPnty-BestRnd
Simulated Annealing SARnd-Rnd SARnd-BestRnd SAPnty-BestRnd
Tabu Search TSRnd-Rnd TSRnd-BestRpd TSPnty-BestRnd

Table 4.4. Variants of the three approaches using neighbourhood search.

The algorithm parameters used in the=xperiments were as described next
(some of the parameters were tuned according to the size of the problem instance).
For the simulated annealing algorithm the arithmetic cooling schedule was used with
initial temperature = 1000, decrement step = 200 and decrement intamizal For
the tabu search algorithm, tenure = Zhe termination condition in all runs was a

maximum of 5000 iterations. Each metaheuristic variant was tested 20 times with

93

General Metaheuristic Approaches

each data set and the best results obtained by each variant are presented in tables 4.5
to 4.7. The aim here was to assess the effect of the different neighbourhood
exploration heuristics on the performance of the three metaheuristics. Therefore,
each table compares the performance between the variants of the same metaheuristic
on the three problems. Each table shows the best solution, the execution time in
seconds needed to complete the run and the iteration at which the best solution was

obtained.

From the results presented in tables 4.5 to 4.7 it can be observed that the variants
with the Rnd-Rnd and theRnd-BestRnd heuristics are comparable in terms of the
solution quality and execution time in most of the cases. On the other hand, the
variants with thePnty-BestRnd heuristic produce competitive results in terms of
solution quality in some cases but the execution time is the longest in most of the
cases too. Although there is not clear evidence th&RticeBestRnd strategy is the
best, it appears from the results presented here that this heuristic for neighbourhood
exploration benefits the performance of the three metaheuristics tested here since
good quality solutions are obtained in short execution time and also the best solutions

are found in the earliest iterations in most of the cases.

Problem Instance Metric IIRnd-Rnd | IIRnd-BestRnd | lIPnty-BestRnd

total penalty=(x) 2227.19 774.22 1733.17

nottl execution time (s) 39 31 57
iteration best 4905 2924 4957
total penalty=(x) 2712.43 4440.12 5914.62

trentl execution time(s) 30 33 66
iteration best 4939 2730 121
total penalty=(x) 717.23 634.19 1164.02

wolverl execution time(s) 25 20 37

iteration best 4309 1465 234

Table 4.5. Results for the iterative improvement metaheuristic variants.

Problem Instance Metric SARNd-Rnd | SARnd-BestRnd| SAPnNty-BestRnd
total penalty=(x) 4591.96 839.50 1371.96
nottl execution time(s) 34 33 83
iteration best 87 4522 4543
total penalty=(x) 3558.76 4646.73 5144.22
trentl execution time(s) 28 29 76
iteration best 4898 3490 2052
total penalty=(x) 1391.87 1627.55 1110.38
wolverl execution timg(S) 16 20 28
iteration best 54 1433 4123

94

General Metaheuristic Approaches

Table 4.6. Results for the simulated annealing metaheuristic variants.

Problem Instance Metric | TSRnd-Rnd | TSRnd-BestRnd | TSPnty-BestRnd
total penalty=(x) 2111.15 735.37 1626.76
nottl execution time(s) 54 37 46
iteration best 4719 3424 4637
total penaltyF(x) 3214.61 3903.82 3728.87
trentl execution time(s) 38 57 73
iteration best 4938 4658 4833
total penalty=(x) 1867.14 1431.77 1726.65
wolverl execution time(s) 26 20 34
iteration best 5000 635 4129

Table 4.7. Results for the tabu search metaheuristic variants.

4.10.3. Comparing the Four Metaheuristics

After selecting the initialisation and neighbourhood exploration heuristics as
described in the previous sections, experiments were carried out to compare the
performance of the four metaheuristics: iterative improvement, simulated annealing,
tabu search and the genetic algorithm. For the first three algorithms, the parameters
were set as described in the previous section an®RnldeBestRnd variants were

used in these experiments. The parameters for the genetic algorithm were set as
follows: population size = 20, tournament size = 3, crossover probability = 80% and
mutation probability = 5%. Each algorithm was executed 20 times with each problem
instance and the best results in terms of solution quality are presented here. The
termination condition for the single-solution algorithms (iterative improvement,
simulated annealing and tabu search) was a maximum of 10000 iterations while for

the genetic algorithm the maximum number of generations was set to 1000.

The results obtained are presented in table 4.8. For each of the test problems, a
reference solution exists and its corresponding quality is also given in table 4.8. This
reference solution is a manually constructed allocation that was obtained from the
space officers in the universities that provided us with the test data sets. The quality
of this reference solution is shown here for comparison with the quality of the

solutions generated by the four algorithms tested here.

Problem Instance Metric Iterative Simula'_[ed Tabu Gen_etic
Improvement | Annealing | Search | Algorithm
nottl total penalty=(x) 754.45 849.62 772.28 2145.21
reference = 599.56 execution time(s) 60 58 57 221

95

General Metaheuristic Approaches

iterationbest 4220 3700 4957 812
trentl total penalty=(x) 4341.77 4385.99 3924.03 7924.10
reference = 3873.5] &xecution time(s) 59 60 66 237
iteration best 6840 9940 9480 901
wolverl total penalty=(x) 634.19 1217.81 634.14 1312.01
reference = 1141.0] €xecution timg(s) 39 44 45 178
iteration best 1020 1024 1300 620

Table 4.8. The best solutions obtained by the four approaches in thee$trénstances. The quality of
a reference (manually constructed) solution is also shown for comparison.

4.10.4. Further Discussion of Results

From the results shown in table 4.8 it can be observed that the best results in terms of
the solution quality and execution time are produced by the iterative improvement
and the tabu search algorithms in the three test problems. The simulated annealing
algorithm produces good results but which are slightly inferior to those obtained with
iterative improvement and tabu search. Overall, the genetic algorithm seems to be the
worst performer in terms of the solution quality and execution time. However, it is
interesting to note that the genetic algorithm seems to be competitive in terms of
solution quality for the problem wolverl but is well outperformed in problems nottl
and trentl. That is, it seems that thengge algorithm is capable of finding
competitive solutions for the less constrained problem (wolverl). This gives an
indication of the importance of the additional constraints that exist in the academic
space allocation problem. Even when the genetic operators were reasonably tuned to
deal with these constraints, still the recombination of solutions appears to be a
difficult issue in this problem.

The time required for manually constructing an allocation varies from weeks to
months according to space officers. Iblsserved that the metaheuristic approaches
implemented here offer a promising alternative for automating the academic space
allocation process in a shorter time. From the approaches investigated here, iterative
improvement and tabu search appear to be the ones that are able to produce the best
results but still do not match the quality of the manually constructed allocation when
the problem is highly constrained (nottl and trentl). Again, for the less constrained
problem (wolverl) these two methods are able to produce solutions that are better
than the reference solution measured with the fitness function used in this thesis.

Constructing a completely new allocation is not a frequently needed task, but the

96

General Metaheuristic Approaches

experts spend days, even months, on it, while the heuristic methods implemented
here produce competitive initial solutions in seconds or minutes.

4.11. Summary and Final Remarks

This chapter presented an initial investigation into the application of metaheuristics
for searching good solutions to the academic space allocation problem. A direct
solution representation and associated data structures based on linked lists were used
to store the information about the instance being solved and the allocation or
solution. The use of these two components was beneficial in three ways. They
permitted the implementation of faster solution evaluation routines. It was also easier
to design the local search and genetic operators. In addition, these data structures can
be easily updated if the features of the problem instance change, i.e. humber of

entities and rooms, constraints, etc.

Various initialisation heuristics were designed and compared in terms of the
quality and diversity of the set of generated solutions. Having different strategies to
generate initial allocations permits the production of sets of solutions with various
quality and diversity values that help to better analyse the performance of the
metaheuristics investigated in this thesis. Two of the initialisation heuristics generate
sets of solutions with a good compromise between solution quality and population
diversity. The heuristic finally chosen to generate initial solutions for the rest of the
experiments wa#\llocateRnd-BestRnd which selects one entity at random and
then evaluates the suitabiliy of a set of rooms to allocate the entity and chooses the
best of these rooms.

Heuristics for neighbourhood exploration with various degrees of intensification
were compared with respect to their effect on the performance of the local search
based metaheuristics (iterative improvement, simulated annealing and tabu search).
The neighbourhhod exploration strategy that obtained the best results is the one in
which the search of the move of the selected tygledate swapor interchangéis a
trade-off between random and exhaustive sedod-BestRnd).

This chapter proposed implementations of four well-known approaches: iterative

improvement, simulated annealing, tabu search and a genetic algorithm and

97

General Metaheuristic Approaches

compared their performance on some test instances of the space allocation problem.
The iterative improvement algorithm is a simple non-trivial method used as a
reference to compare the performance of other more elaborate approaches. In the
simulated annealing method, several cooling schedules were compared. The best
results were obtained with the arithmetic and geometric schedules with reheating.
For the tabu search method, two matrices were proposed to implement the short-term
and long-term memory components. These matrices maintain pools of genes (parts of
solutions) that are used in the intensification and diversification strategies. For the
genetic algorithm, several recombination operators were implemented. The best
results were obtained with the heuristic non-uniform operator which was designed
specifically for the space allocation problem in order to avoid the excessive violation
of hard constraints. The simple mutation operator implemented in this thesis changes

the assigned room (maintaining feasibility) of an entity selected at random.

Overall, after comparing the four metaheuristics, iterative imporvement and tabu
search are the best performers, simulated annealing produces good results and the
genetic algorithm is the worst performer mainly because of the highly constrained
nature of the problem. Since no similar previous work has been reported in the
literature, this investigation is a useful reference not only for the work presented in
the following chapters but also for other researchers and practitioners interested in
the application of metaheuristics to solve the space allocation problem in academic

institutions.

98

Hybrid Metaheuristic Approaches

Chapter 5. Hybrid Metaheuristic Approaches

5.1. Introduction

This chapter describes hybrid metaheuristics that were designed by combining
components of the algorithms investigated in the previous chapter and adding some
additional features described here. By preliminary experiments, it was possible to
identify suitable sets of parameters that produced good performance on the
approaches tested in chapter four and also to identify those components that seemed
to contribute the most to their best performance. Two hybrid metaheuristics are
proposed here. The first is a single-solution method that incorporates various features
such as local search heuristics, adaptive cooling schedules, short-term memory, long-
term memory and mutation operators. Teeahd hybrid approach proposed here is a
population-based variant of the first one. Both approaches make an automatic
selection of the parameter settings according to the size of the problem instance and
surpass the best performance of the metaheuristics implemented in the previous

chapter.

In chapter two we noted that in the space allocation problem, like in many other
optimisation problems, it is often desirable to obtain a set of high quality candidate
solutions so that the decision-makers can select the best among them. However, it
may also be the case that only one high quality solution is required. One particular
feature of the hybrid population-based metaheuristic described later in this chapter is
that by controlling a common cooling schedule for the whole population, it is
possible to adapt the cooling schedule to favour either the generation of one high
quality solution in short time or a set of high quality solutions at the expense of more
computation time. The experiments andresponding results presented in this
chapter show that these hybrid approaches produce competitive solutions for the
academic space allocation problem. The research work described in this chapter is
included in the papers [Bur2001b], [Bur2001c] and [Bur2001d] (see the appendix on
page 199).

99

Hybrid Metaheuristic Approaches

5.2. A Single-Solution Hybrid Metaheuristic

Preliminary experiments revealed that some of the components of the metaheuristics
tested in chapter four were beneficial when incorporated into a hybrid approach. For
example, the aggressive exploration of the iterative improvement algorithm

permitted us to construct solutions of reasonable quality in a relatively short

computation time compared with the other techniques. Also, the oscillating effect in

the acceptance function in simulated annealing and the memory structures in tabu
search had a considerable contribution to the good performance of those algorithms.
The mutation operator in the genetic algorithm was the operation that permitted us to
better explore the solution space by adding diversity to the population without
introducing too many problems of infeasibility. The pseudocode for the proposed

single-solution hybrid metaheuristic is shown in figure 5.1.

Step 1. Generate an initial current soluton

Step 2. Execute heuristic for parameters setting.

*rrkx Heuristic Iterative Improvement Phase *****

Step 3. For iterations = 1 tterationsll do
Step 3.1. Generate a candidate solutionsing the modifiedH, s heuristic that incorporates
theintensification and diversification strategiasing the memory componeis andMa.
Step 3.2. If fitnes() > fitnessk) thenx = x'.

Step 4. Copy current solution to the best solution so fax*iex.

*xx Simulated Annealing with Reheating Phase *****

Step 5. SeAcceptanceProbability InitialAcceptance

Step 6. Generate a candidate solutionsing the modifiedH, s heuristic that incorporates the

intensification and diversification strategiasing the memory componenis andMa.

Step 7. If a feasible move was found then calculiite fithessK’) - fitnessk).

Step 8. If4AF > 0 therx = x’ and if fithess{’) - fitnessk*) > 0 then update the best so fdr=x'.

Step 9. If4F < 0 then ifAcceptanceProbability random [0,1] them = X'.

Step 10. Update th&cceptanceProbabilitgccording to the geometric cooling schedule.

Step 11. If no feasible move was found then increrRaittdMoveAttempts

Step 12. IfFailedMoveAttempts MaxFailedAttemptémplement théHdeavy Mutation Operatato

disturb the current solution

Step 13. If stopping condition satisfied finish, otherwise go to Step 6.

Figure 5.1. The single-solution hybrid metaheuristic incorporatesalsrfrom various methods.
The hybrid approach consists of the components listed below:

§ Heuristic Neighbourhood Search.Selects the neighbourhood to be explored and

in consequence the moves to try while attempting to improve the current solution.

§ Heuristic Iterative Improvement. Initialises the solution and achieves a certain

level of quality in the initial allocation.

100

Hybrid Metaheuristic Approaches

§ Simulated Annealing with Reheating.Improves the solution produced by the
heuristic iterative improvement algorithm and avoids being trapped in poor local
optima by exploring different areas of the solution space by using an oscillation

strategy driven by the acceptance probability.

§ Heavy Mutation Operator. Modifies the current solution by unallocating some
entities from the current solution and encourages a better exploration of the

solution space.

§ Heuristic Parameters Setting.Selects the algorithm parameters according to the
problem characteristics. This heuristic might not produce the optimal parameter

values for each problem, but will find a good set of parameters in general.

5.2.1. The Hybrid Components

Heuristic Neighbourhood Search

The strategy used to explore the neighbourhood of the current solution in the hybrid
approach was the s heuristic of figure 4.3 extended with the incorporation of the

tabu and attractive matrices described in chapter four, i.e. the neighbourhood
exploration in the hybrid algorithms is done in the same way as in the tabu search

algorithm of section 4.8.

Heuristic Iterative Improvement

After generating an initial solution, the iterative improvement algorithm described in
chapter four is executed fterationsll. The purpose of this component is to quickly
improve the initial solution by using the heuristic neighbourhood search component.
Given the improved solution (not necessarily local optima) produced by this
component, a further exploration of the solution space is accomplished in the

subsequent phases of the single-solution hybrid metaheuristic.

Simulated Annealing with Reheating

The simulated annealing phase takes the improved feasible current solution obtained
from the previous phase and uses the heuristic neighbourhood search component to

search the solution space and attempt to find a better solution. This simulated

101

Hybrid Metaheuristic Approaches

annealing phase uses a cooling schedule that is simpler than the one used in the
implementation of chapter 4. It is a simple geometric cooling schedule (see section
3.5.10) that sets theAcceptanceProbability parameter to the value of
InitialAcceptance and decrements it after a number of iterations. When the
AcceptanceProbabilitys below a certain minimum, the cooling schedule maintains
this value while the search process attempts to find improvements in the best solution
so far. If, after a number of iteratioReheatintervalno improvement is achieved in

the best solution so far, the paramefsceptanceProbabilityis again set to

InitialAcceptancei.e. the process is reheated.

Heavy Mutation Operator

A mutation operator was designed to disrupt the current solution and explore other
areas of the solution space after a number of failed attempts to find a feasible move.
The disruption consists of removing from their assigned room, those allocated
entities that contribute the most to the total penalty. This operation releases the space
assigned to those entities so that new possibilities of allocating them can be explored.
This heavy mutation operator works as follows. A maximurR@&hoveLimientities

to be unallocated is determined accordioghe size of the problem instance. The
allocated entities are sorted in decreasing order of their associated penalty, i.e. the
violation degree of the soft constraints associated to each of them. Then, starting
from the most penalised one, entities are unallocated up to the maximum
RemoveLimit Once the current allocation is disrupted in this way, the simulated
annealing component will reallocate the unallocated entities because the
neighbourhood exploration heuristic will select #tlecatemove until all entities are
allocated again as described in section 4.5.2. The purpose of this heavy mutation
operator is to modify the current allocation after the algorithm gets stuck but this
modification is directed so that only bad parts of the solution (penalised entitities) are
disturbed.

Heuristic Parameters Setting

This component selects the algorithm parameters according to problem instance
being solved. The parameters for the simulated annealing component are set as

follows. The maximum acceptance probabilitytialAcceptanceis set to a value

102

Hybrid Metaheuristic Approaches

between 95% and 100%. The decrement fagtor the geometric cooling schedule

is set to a value between 0.97 and 0.99. The number of iterations after which
AcceptanceProbabilityis reduced is set to a value between 1 and 3. Once
AcceptanceProbabilityemperature has been reduced to 0.001 or below (the process
is cooled), it is reset to the value loftialAcceptanceif after Reheatintervak 10n
iterations no further improvement has been achieved in the best solution so far. The
number of iterations for the iterative improvement phase is degragionsll = 5n.

The value for the maximum number of failed move attempts is set to
MaxFailedAttempts: n/10.

5.3. On the Performance of the Single-Solution Hybrid

In this section the performance of the proposed hybrid approach is assessed and
compared against the three single solution metaheuristics implemented in chapter 3:
iterative improvement, simulated annegland tabu search. The experiments carried

out for this purpose are described next followed by a presentation and discussion of
the results obtained. The genetic algorithm was not considered here because of the

poor performance shown in section 4.10.3.

5.3.1. Experimental Settings

Three problem instances: nottl, trentl and wolverl were used for the experiments.
For each of these test problems, 20 initial solutions were generated using the
AllocateRnd-BestRnd heuristic described in section 4.5.1. Then, each algorithm

was executed with each of these 20 initial solutions. Preliminary experiments were
carried out to determine, for each algorithm, the execution time after which no

further improvements on the best solution so far were observed. Then, the
termination condition was set to an amount of execution time large enough to allow
the four algorithms to achieve their best performance in each test problem. This
execution time for problems nottl, trentl and wolverl was set to 300, 120 and 15

seconds respectively.

103

Hybrid Metaheuristic Approaches

5.3.2. Results and Discussion

Table 5.1 below shows for each test instance, the quality of the reference solution
and the results obtained in the experiments described above. Similarly to the results
from the experiments carried out in the previous chapter, the iterative improvement
and the tabu search algorithms produce very competitive results while the simulated
annealing implementation exhibits comparable performance only in the nottl
instance. However, note that the hybrid metaheuristic outperforms the other three
algorithms and it is also capable of finding better solutions than the reference
allocations for the three test instances. It also appears that the performance of the
hybrid metaheuristic is more robust than the other three algorithms with respect to
the quality of the solutions produced in different runs as reflected by the values for
the worst and average fitness.

The contribution of the space misuse and violation of soft constraints to the total
penalty in the solutions obtained is presented in figure 5.2. This permits to have a
closer look at the improvements achieved using the single-solution hybrid
metaheuristic over the solutions produced with the other three algorithms and over
the reference solution. Each bar in the graphs represents the average space misuse
and the average soft constraint violation for each set of 20 solutions obtained by each

algorithm in the experiments described above.

Iterative Simulated Tabu Single-Salution
Problem Instance | Total Penalty Kx) Improvement | Annealing Search Hybrid
Metaheuristic
worst 887.65 806.81 844.63 674.49
nottl average 716.79 703.14 698.77 592.24
reference = 599.56 best 568.36 548.52 546.67 527.15
execution time (s) 300 300 300 300
trentl worst 4531.50 4671.72 4302.54 3838.03
reference = average 4303.11 4435.04 3960.90 3676.36
387351 best 3968.48 4162.94 3572.19 3526.27
execution time (s) 120 120 120 120
wolverl worst 920.20 1935.64 872.15 714.05
reference = average 716.70 1583.05 717.47 642.17
1141.01 best 634.19 1142.16 634.19 634.19
execution time (s) 15 15 15 15

Table 5.1. Quality of the solutions obtained by the four single-solution approaches in the teree test
problems. The quality of the reference (manually constructed) solution is shown forisompa

It can be observed from figure 5.2 that, regarding space utilisation, it is apparent

that all the solutions obtained with the four algorithms are comparable with the

104

Hybrid Metaheuristic Approaches

reference solution. The difference between the performance of the single-solution
hybrid metaheuristic and the other thrggm@aches appears to be mainly in the
satisfaction of soft constraints. That is, the single-solution hybrid metaheuristic
obtains solutions of better quality because it is capable of finding solutions with less
violation of soft constraints than the solutions produced by the other three
algorithms. By comparing the solutions obtained with the single-solution hybrid
metaheuristic to the reference allocations, it can be observed that in all problems the
hybrid approach is capable of finding solutions with better space utilisation which
contributed to produce solutions with lower total fitness overall. However, for the
problem nottl, none of the algorithms is capable of finding better solutions than the
reference one with respect to the satisfaction of soft constraints. This gives an
indication of the particular difficulty of this problem instance for which none of the
algorithms implemented so far has been capable of finding solutions that are better
than the manually constructed allocation in terms of the satisfaction of soft

constraints.

O space misuse B soft constraints violation

800

problem nottl

700
600

al

o

o
|

400 -

Total Penalty
w
o
S
Il

200
100

REF-ITE-SA-TS-HMH

Total Penalty

4500

4000 -
3500 -
3000 -
2500 -
2000 -
1500 -
1000 -

500 H

problem trentl

REF-ITE-SA-TS-HVH

Total Penalty

1800

1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 +

problem wolverl

REF-ITE-SA-TS-HMH

Figure 5.2. Contribution of space misuse and soft constraints violation to thpeto#dty. For each
problem, the reference solution (REF) and avesmjyations obtained with the iterative improvement
(ITE), simulated annealing (SA), tabu search (TS) and hybrid metaheuristic (HMH) are shown.

5.3.3. Further Comparison with Previous Results

The results presented and discussed above show that the single-solution hybrid
metaheuristic produces the best solutions for the three test instances. The aim of the
experiments described above was to assess the ability of each algorithm on finding

good solutions after considerable execution time. This is the reason why the best

105

Hybrid Metaheuristic Approaches

solutions obtained in these experiments using the three ‘pure’ metaheuristics
(iterative improvement, simulated annealing and tabu search) are better than those
produced by the same algorithms in chapter 4 (table 4.8, see section 4.10.3).
Therefore, to further assess the performance of the hybrid approach proposed in this
chapter, this hybrid algorithm was executed using the same initial solutions and
termination condition (10000 iterations) of the experiments in section 4.10.3. The
results are presented in table 5.2. In this table, the values for the three ‘pure’ methods

are those given in table 4.8.

. . Single-Solution
Problem Instance Metric Imltfczsg\r/:ent ilnn;:ﬁtiﬁd STeaabrl(J:h Hybrid
P 9 Metaheuristic
nottl total penaltyF(x) 754.45 849.62 772.29 715.42
_ execution time (s) 60 58 57 54
reference =599.56 i oration best 4220 3700 4957 812
entl total penalty=(x) 4341.77 438599 3924.08 3803.14
_ execution time (s) 59 60 66 71
reference = 3873.54 iieration best 6840 9940 9480 4193
wolverd total penalty=(x) 634.19 1217.81 634.14 634.19
reference = 1141.01 execution time (s) 39 44 45 31
"1 iteration best 1020 1024 1300 843

Table 5.2. Quality of the solutions obtained by the four single-solution approaches in the teree test
problems when the number of iterations is set to 10000.

It is confirmed with the results presented in table 5.2 that even with a limited
number of iterations, the single-solution hybrid metaheuristic obtains better solutions
that the other three approaches. For the three test instances, the hybrid approach
generates better solutions and the best solution is achieved in a shorter number of
iterations. With respect to the total execution time required for the 10000 iterations, it
can be observed that the time spent by the hybrid approach is very similar to the time
spent by the other three algorithms. . From the results presented and discussed here,
it is clear that the single-solution hybrid metaheuristic is the algorithm that produce

the best solutions so far.

5.4. A Population-Based Hybrid Metaheuristic

In this section we show how the single-solution hybrid metaheuristic described in the
previous section was extended towards a population-based approach. A population of
individuals is initialised and then it is subjected to further improvement using the

heuristic iterative improvement component described in the previous section. This

106

Hybrid Metaheuristic Approaches

iterative improvement phase is executed for a numbkeaftionsll as in the single-
solution approach. Then, the simulated annealing with reheating phase also described
above is applied to each of the individuals in the improved population. The feature of
the approach presented here is that instead of having a cooling schedule for each
individual (this would be like a parallel implementation of the single-solution hybrid
metaheuristic), a common cooling schedule is set for the whole population. The way
in which the parameters for the common cooling schedule are set is described below.
Since in the simulated annealing phase, inferior solutions may be accepted with some
probability, two populations are maintained. The current population consists of the
current solution for each individual in the population and the best population consists
of the best solution found by each individual during the search process so that a set
of best solutions can be presented at the end of the algorithm. The pseudocode for
this population-based approach is presented in figure 5.3.

Step 1. Generate the initial current population.
Step 2. Execute heuristic for parameters setting.
*rrkx Heuristic Iterative Improvement Phase *****
Step 3. For each individuglin the current population Do
Step 3.1. Generate candidate soludrirom x; using the modifiedH, s heuristic that
incorporates thantensification and diversification strategiasing the memory components
M+ andMa.
Step 3.2. If fitness(') > fithessk;) thenx =x’.
Step 4. If stopping condition (usually a maximumnitefationsl| iterations) for the heuristic iterative
improvement phase is met then go to Step 5, otherwise go to Step 3.
Step 5. Copy the current population to the best populatiom;*iex; fori = 1,..p.
*k Simulated Annealing with Reheating Phase *****
Step 6. Set globacceptanceProbability InitialAcceptance
Step 7. For each individuglin the current population Do
Step 7.1. Generate candidate solugorfirom x; using the modified s heuristic that
incorporates thantensification and diversification strategiasing the memory components
M+ andMA.
Step 7.2. If a feasible move was found then calculkte fitnessk’) - fitnessk;) otherwise
increment failed move attempifs(
Step 7.3. If4F > 0 then Do
Step 7.3.1. Update the current solution for the individga ;.
Step 7.3.2. If fitnesg() - fitnessk*) > 0 then update the best solution for the
individual, x* =x.
Step 7.4. IfAF < 0 then ifAcceptanceProbability random [0,1] thew; = x;’.
Step 7.5. If thédcceptanceProbabilitgquals zero (process is cooled) and
FailedMoveAttemp(s) > MaxFailedAttemptshen implement theleavy Mutation Operator
to disturb the current solution
*rixx Common Cooling Schedule Update *****
Step 8. UpdatécceptanceProbabilitpaccording to common cooling schedule.
Step 9. If stopping condition satisfied finish, otherwise go to Step 7.

Figure 5.3. The population-based hybrid metaheuristic uses a common cobigdyle to control the
simulated annealing phase for the whole population of individuals.

107

Hybrid Metaheuristic Approaches

To summarise, the population-based hybrid metaheuristic incorporates a
population of individuals that cooperate during the search by using the common
neighbourhood search strategy and memory structures. Also, the annealing process
for the whole population is driven by a common cooling schedule in which the
control of the acceptance probability is distributed over all individuals in the
population. The various features of the proposed algorithm are further described in

the following subsections.

5.4.1. The Shared Memory Structures

Instead of maintaining a single solution, a set of individuals are evolved in the
extended algorithm. Therefore, in order to take advantage of the collective searching
process, the memory structures containing tabu and attractive genes (mdirixes
and M,) are shared among all individuals in the population. In this way, the heuristic
H.s for neighbourhood exploration can be seen as a cooperative mechanism by
which the good and bad parts of solutions encountered by the various members of the

population are stored so that a more effective search can be performed collectively.

Then, the neighbourhood search in the population-based hybrid metaheuristic is
performed as in the previous chapter by using the heukkticwith the same
memory structures and diversification and intensification mechanisms. Referring to
the pseudocode in figure 553 represents the current solution for ifiéndividual in
the populationx* represents the best solution found so far byi'thadividual and
the shared memory structures are updated accordingly each time a candidate solution
x; is generated for thé" individual. Experiments were carried out to assess the
contribution of the shared memory structures to the performance of the extended

algorithm and the results obtained are presented later in this chapter.

5.4.2. The Common Cooling Schedule

The other feature which is characteristic of the population-based hybrid

metaheuristic is that a common cooling schedule is used to control the evolution of
the whole population. This strategy of using a common cooling schedule for the
whole population makes it possible to have a set of co-operating individuals that

react differently to the annealing process. The way in which the common annealing

108

Hybrid Metaheuristic Approaches

process is controlled permits the algorithm to find one high quality solution in a short
computation time or a set of good solutions provided more computation time is
available. This section describes how the common annealing schedule (step 8 in

figure 5.3) operates upon the population.

TheAcceptanceProbabilitis decreased (process is cooled) dftervalCounter
iterations (complete executions of step 7 in figure 5.3\@sptanceProbability:
AcceptanceProbabilitgr where a takes values between 0.97 and 0.99 as in the
single-solution hybrid metaheuristic. A counteeheatCounteris maintained for
each individuali in the population and it is incremented in one each time the
candidate solutiong’ does not improve upon the current solutimnand the
AcceptanceProbabilitgquals zero. There is a global courtdobalReheatCounter
that is set to the higheReheatCounterof all individuals each time the step 7.5 in
figure 5.3 is processed. This means that as soon as one of the individuals cannot be
improved forReheatIntervalterations, the commoAcceptanceProbabilitys raised
again. The effect of this common annealing strategy is that while one (maybe more)
individual is stuck during the search, the others may not be yet. Then, by switching
to the random phase of the simulated annealing algorifksoeptanceProbability
above 0.001) the exploration of the search space can continue. It may appear that
waiting for all the individuals to achieve the most improvement possible before
raising the global acceptance probability makes more sense. However, our
experiments showed that when this was done, few individuals in the population were
likely to achieve further improvement after getting stuck in a possible local optima.
On the other hand, using the strategy proposed above permitted more individuals to
explore other areas of the search space and more improvements were obtained which

allowed the algorithm to produce better results overall.

5.5. On the Performance of the Population-Based Hybrid

5.5.1. Experiments and Results

Since in the previous section it was observed that the single-solution hybrid
metaheuristic obatined the best results among all the single-solution algorithms, the

first set of experiments in this section seeks to compare the performance of the

109

Hybrid Metaheuristic Approaches

single-solution hybrid metaheuristic and the population-based variant. Experiments
were also carried out to assess the contribution of the shared memory structures and
the heavy mutation operator on the performance of the population-based algorithm.
For each test problem, the same initial populatiop ®f20 individuals used for the
single-solution variant was also taken as the initial population for the population-
based hybrid metaheuristic. The overall computing time assigned to each algorithm
was the same. That is, while each of the 20 runs (one run for each individual) of the
single-solution hybrid metaheuristic was given a certain executiortinaecording

to the test instance, the execution time for one run of the population-based approach
was set to 2},,. Another run of the population-based approach without the shared
memory structures and without the heavy mutation operator but using the same
initial population was executed. This experiment was repeated 10 times. That is, 200

solutions were produced in total with each of the theree algorithms compared.

Total Penalty Single-splution Population-based Population-based
Problem Instance FX) hybrid hybrid hybrid
metaheuristic metaheuristic metaheuristic’
best-average 576.15 619.02 681.69
average 592.24 633.10 668.61
nottl minimum 527.15 575.51 641.38
reference = 599.56| std. dev. 47.21 44.67 67.33
diversity V(p) 32.85 61.96 62.58
execution time (s) 300 6000 6000
best-average 3614.85 3787.56 4279.78
average 3676.36 3817.34 4319.19
trentl minimum 3526.27 3669.97 4238.67
reference = 3873.51 std. dev. 120.54 115.90 69.88
diversity V(p) 30.72 80.65 80.94
execution time (s) 120 2400 2400
best-average 639.94 664.12 681.63
average 642.17 677.85 690.73
wolverl minimum 634.19 634.25 634.19
reference = 1141.01 std. dev. 61.23 53.16 74.02
diversity V(p) 28.41 45.31 44.63
execution time (s) 15 300 300

Table 5.3. Quality and diversity of the final population obtained ey gimgle-solution hybrid
metaheuristic and the population-based variant on the three testsnmofopulation-based hybrid
metaheuristic’ refers to the modified algorithm when the shared memory structures andtakion
operator are not implemented. The quality of the reference solution is also sh@emparison.

Table 5.3 shows the results of these experiments. For each algorithm and each
test instance, this table reports the following: the minimum penalty (the best of the
200 obtained solutions), average penalty (average of all 200 solutions), best-average

penalty (the best value selected from the averages of the 10 repetitions), the standard

110

Hybrid Metaheuristic Approaches

deviation (measured for all 200 solutions), the diversity of solutions (for all 200
obtained solutions) measured as described in section 2.4.3 and the execution time in
seconds. The values in the third column are the results obtained by the single-
solution hybrid metaheuristic apoproach in section 5.3 (see table 5.1). The fourth
column shows the results obtained by the population-based hybrid metaheuristic
(complete version) while the last column shows the results obtained by this approach
when no shared memory structures are used during the neighbourhood search and no

mutation operator was implemented.

It can be observed that the population-based algorithm (the complete version)
produces solutions that are very competitive with those obtained by the single-
solution approach for the three test problems. In particular, note that the best
solutions found by both algorithms are of similar quality. It appears that in terms of
the quality of solutions, the results produced by the single-solution approach are
better that those obtained with the population-based variant. That is, the average and
best-average values obtained with the single-solution method are better than those
produced with the population-based variant in the three test cases and the standard
deviations are very similar. However, an interesting observation can be made by
looking at the results obtained with respect to the diversity of solutions. It is clear
that the population-based algorithm produces more diverse sets of solutions for the
three test instances. In other words, although the sets of solutions obtained with the
single-solution approach seem to be of better quality, the diversity values obtained
(around 30%) suggest that all the 20 solutions are in fact very similar in structure. On
the other hand, the population-based variant produces sets of solutions of slightly
lower quality but which are more diverse in structure. As discussed above, this can
be particularly important in some scenarios where a set of solutions that actually
represent very different allocations are required so that the decision-makers can
choose the most appropriate. These results on the diversity of solutions motivated a
further investigation of this aspect in the next chapter. The interest on this arises from
the fact that obtaining a set of diverse solutions is an important goal in areas such as

multicriteria decision-making and multiobjective optimisation.

From the results presented and discussed above, it appears that the population-

based variants achieve solutions that are not only competitive with those produced by

111

Hybrid Metaheuristic Approaches

the single-solution method in terms of the solution quality, but also the diversity of
the population is clearly higher. It is also noted that when the shared memory
structures and mutation operator are eliminated from the population-based approach,
the performance of this algorithm is worsened as reflected by the results shown in the
last column of table 5.3, although the diversity of the obtained populations is still
high.

5.5.2. Variants of the Population-Based Hybrid

So far, the single-solution hybrid metaheuristic has produced the best solutions in
two of the three test instances. The population-based approach generated solutions of
slightly less quality. The aim of this section is to further investigate the performance
of this population-based approach and present a variant of it that seems to outperform
the best results produced by the single-solution hybrid metaheuristic. In the previous
section, the termination criterion for the experiments was a fixed computation time.
An insight into the behaviour of the population-based algorithm is observed when the
termination criterion is a maximum number of iterations without improvement (idle
iterations) on the best solution achieved by each individual. In order to assess the
effect of the strategy selected to control the evolution of the population in the
population-based approach, more experiments were carried out using a maximum
number of iterations without improvement over the best solutions so far as the
termination criterion in the iterative improvement and the simulated annealing phases
(steps 4 and 9 respectively in figure 5.3). This permits us to produce a set of
solutions of uniform quality or one high quality solution with the rest of the
population being considerably less fit. Suppose that the termination condition is a
number of iterations without improvement upon the best solution, i.e. foi"the
individual, the counteNolmprovesCounteis incremented each time the candidate
solutionx;’ does not improve upon the best solutign Obviously, some individuals
would reach this condition before others. If the algorithm is stopped after the first
individual reaches this condition, one high quality solution is obtained after a
relatively short computation time. But if the algorithm is stopped after all individuals
have reached the above condition, a set of solutions of uniform high quality will be

obtained at the expense of more computation time.

112

Hybrid Metaheuristic Approaches

Two versions of the population-based hybrid metaheuristic were implemented:
the population-based hybrid metaheuristic-single and the population-based hybrid
metaheuristic-multiple (referred to as PMHS and PMHM respectively in the results
presented below). The termination cdiudi for the iterative improvement and
simulated annealing phases was setlficahd 2Reheatintervali.e. 200) iterations
without improvement respectively. In the PMHS approach, these two phases are
terminated when the first individual in the population reaches the corresponding
termination condition. In the PMHM approach, these phases are terminated until all
individuals in the population reach the termination condition. The single-solution
approach of section 5.2 was also implemented usiRghatintervaldle iterations
as the termination condition (step 13 in figure 5.1). As before, 20 individuals were
generated and the same initial population was used for each of the three algorithms.
Ten repetitions of the experiment were executed for each algorithm and each test

instance. The results obtained in theggegiments are presented in table 5.4.

Population-based Population-based . .
. Total Penalty hybriF()j metaheuristic hybrti)j metaheuristic Slngle—splutlon
Problem instance . . hybrid
F(x) single strategy multiple strategy metaheuristic
PMHS PMHM
best-average 1001.76 780.90 835.89
average 825.18 698.75 780.27
nottl minimum 664.19 619.21 647.61
reference = 599.56| std. dev. 102.26 50.67 89.19
diversity V(p) 67.44 61.25 32.77
time (s) 526 2150 620
best-average 4166.59 3892.93 4260.69
average 3937.63 3789.43 4056.22
trentl minimum 3711.75 3580.10 3909.87
reference = 3873.51 std. dev. 155.66 85.36 112.75
diversity V(p) 82.56 80.79 39.51
time (s) 890 2220 720
best-average 834.59 905.27 638.09
average 725.71 735.71 634.58
wolverl minimum 637.22 638.36 634.19
reference = 1141.01 std. dev. 65.30 88.11 1.20
diversity V(p) 47.82 46.95 41.73
time (s) 225 300 210

Table 5.4. Solutions obtained by the single-solution hybrid metaheudsér 20 runs and the
population-based variants with a population of 20 individuals when a nwhi#e iterations is used
as termination criterion.

Several observations can be made from the results summarised in table 5.4. Both
population-based variants seem capable of finding solutions of higher quality than

those obtained with the single-solution approach with the exception on the wolverl

113

Hybrid Metaheuristic Approaches

test instance were all 20 solutions are of high quality as reflected by the low standard
deviation value. It is clear that the population of solutions produced by the PMHM
algorithm are the best for the trentl and nottl test problems. For these instances, this
variant obtains a population of high quality solutions while the PMHS approach
obtains populations in which an outstanding high quality solution can be identified
with the rest of the population being noticeably less fit, which is also reflected by the
values of the standard deviation. It is observed that the single-solution variant is
capable of producing high quality solutions for the three test instances but the
variation between the results over the runs is also considerable. With respect to the
computation time spent in these runs, as was expected, the PMHS variant finds a
good quality solution quickly while the PMHM variant requires more execution time

to achieve a set of high quality solutions. The execution time required by the single-
solution hybrid metaheuristic is the lowest in the wolverl and trentl test problems
but not in the nottl instance where the best computation time is that of the PMHS
approach. An additional observation is that as before, the diversity of the populations
produced by the single-solution approach is the lowest while both population-based
variants produce sets of solutions that are very different in their structure. This aspect

is further investigated in chapter 6 where a multiobjective approach is adopted.

O space misuse B soft constraints violation
problem nottl problem trentl problem wolverl
900 4500 1200
800 - 4000 H
700 - 3500 - 1000 1
2 2 2
§ 600 - § 3000 - £ 800 -
T 500 & 2500 - &
o o Q. 600 4
T 400 - T 2000 - IS
o (o] (o]
300 - 1500 - =400 -
200 - 1000 -
200 -
100 - 500
0 0 0
REF-HMH-PMHS-PMHM REF-HVH-PMHS-PMHM REF-HMH-PMHS-PMHM

Figure 5.4. Contribution of the space misuse and soft constraints violation to thpetudity. For

each test instance, the reference allocation (REF) and average solutions obtainee wiitiglél
solution iterative hybrid metaheuristic (HMH), the population-based hybrid metaheuristic single
(PMHS) and the population-based hybrid metaheuristic multiple (PMHM) vadamgtresented.

114

Hybrid Metaheuristic Approaches

Figure 5.4 shows the contribution of space misuse and violation of soft
constraints to the total penalty with respect to the average quality in the populations
produced by each of the algorithms compared in this section. As before, the reference
solution for each test problem is also shown for comparison. In the wolverl instance,
the single-solution approach finds solutions that are the best even than the reference
solution and with no soft constraint violations. For the trentl problem, the three
algortihms are comparable. The PMHM variant and the single-solution approaches
obtain solutions with slightly better space utilisation than in the reference solution.
Finally, it is also observed that for the nottl instance, none of the algorithms match
the manually constructed solution with respect to the satisfaction of soft constraints,
although all the solutions found are better than this reference solution on the space
utilisation. Then, it is confirmed that the nottl test instance seems to be particularly
difficult to solve due to the high number of constraints that should be satisfied in this

problem.

5.6. Summary and Final Remarks

In this chapter, competitive hybrid metaheuristic approaches for the space allocation
problem were described and tested on some test instances. Van Veldhuizen and
Lamont expressed thdthe selection of an appropriate solution technique must
follow after a detailed examination of the problem to solve has been accomplished to
integrate both problem and algorithm domaingVan Veldhuizen and Lamont,
2000). The approaches presented here were designed by a combination of the best
features of several algorithms and a certain amount of knowledge about the problem
domain. As a result, improved solutions have been produced with these hybrid

algorithms over those generated with the ‘pure’ approaches investigated in chapter 4.

The single-solution approach described in section 5.2 is a hybrid that
incorporates elements from the various techniques investigated in chapter 3: iterative
improvement, simulated annealing, tabu search and genetic algorithms. The hybrid
algorithm clearly outperforms the other techniques in the experiments carried out in
this thesis. In the population-based approach described in section 5.4, the
combination of adaptive cooling schedules in simulated annealing, population-based
techniques and shared memory structures is proposed as an effective technique to

115

Hybrid Metaheuristic Approaches

tackle the space allocation problem. The population-based technique produces very
competitive results when compared to the single-solution hybrid but still the latter
obtains the best solutions. However, with respect to the population diversity, the
population-based variant produces much better results than those obtained with the
single-solution approach. In addition, it was shown that when the shared memory
structures and the mutation operator are not present in the population-based

algorithm, the performance of this technique deteriorates considerably.

The population-based metaheuristic was modified in order to produce one single
high quality solution in a short amount of time (PMHS algorithm) or a population of
high-quality allocations provided more computation time is available (PMHM
algorithm). The two variants of the population-based technique and the single-
solution hybrid were again compared in section 5.5.2. The advantage of having a
population of solutions is evident when the cooling schedule is controlled over a
maximum number of iterations with no improvement (idle iterations). Under this
condition, the PMHM algorithm was capable of producing sets of solutions with
better quality and which are more diverse than those obtained with the single-
solution approach for two of the test instances. The techniques proposed in this
chapter seek to combine the best features from the metaheuristics studied in chapter 4
so that better results can be obtained for the problem studied in this thesis. If a
diverse set of high quality solutions is required, then the population-based
approaches are more appropriate but if the required non-similarity between
allocations is low, then the single-solution hybrid metaheuristic is the most

appropriate approach.

As with other combinatorial optimisation problems, in the real instances of the
academic space allocation problem it is usually desirable to present a set of high
quality solutions so that a human administrator can decide which allocation will be
finally implemented (Burke and Varley, 1998). In such situations, two possible ways
of achieving this are suggested here: reinitiate the single-solution hybrid
metaheuristic to find several solutions, or use the population-based approaches. It is
shown that the population-based techniques described here are capable of finding
sets of high quality solutions. Given the considerable non-similarity between the

solutions obtained (population diversity), it is clear that these solutions represent

116

Hybrid Metaheuristic Approaches

very different allocations, which is valuable in some scenarions where one solution
has to be chosen by the decision-makers. This observations motivated the

investigation presented in chapter 6 on the multiobjective nature of this problem.

117

Multiobjective Approaches

Chapter 6. Multiobjective Approaches

6.1. Introduction

In the previous chapters, the space allocation problem has been approached as a
single-objective optimisation problem. The single goal has been the minimisation of
the total penalty=(x) (eq. 2.7), i.e. the sum of space misuse and violation of soft
constraints. This chapter investigates the space allocation problem from a
multiobjective perspective based on the concepts of Pareto optimisation (Rosenthal,
1985; Steuer, 1986). We consider the multiple objectives separately and use the
concept of dominance to assign fitness to solutions. Instead of combining all the
criteria into a single scalar value, the solution fitness is represented by a
dimensional vector containing all tHecriteria. A solutionx is said to be non-
dominated with respect to a set of solutions if there is no other sokitiorthat set

that is as good asin all the criteria and better in at least one of them. The Pareto
optimal front is the set of non-dominated solutions with respect to the whole solution
space. The aim in Pareto optimisation is to find the Pareto optimal front or a set of

non-dominated solutions that constitutes a good approximation to that front.

Two main issues are investigated in this chapter. First, the hybrid metaheuristics
developed in chapter 5 are adapted to approach the space allocation problem from a
multiobjective perspective. Then, an investigation of the influence that different
fitness evaluation methods have on the performance of some multiobjective
optimisation algorithms is carried out. Since non-dominated solutions represent the
goal, the dominance relation is frequently used to establish preference between
solutions in Pareto optimisation. It has been argued that using aggregating functions
to evaluate the solution fitness in multiobjective optimisers is not adequate (Deb,
2001). Recently, relaxed forms of the dominance relation have been proposed in the
literature for improving the performance of multiobjective optimisers (Kokolo et al.,
2001). It is shown in this chapter that the method used to evaluate the fitness of
candidate solutions during the search affects the performance of the algorithms tested
here and it appears that the dominance relation is not always the best method to use,

in particular if the search space is highly constrained. The research work presented in

118

Multiobjective Approaches

this chapter is included in the papers [Bur2002] and [Bur2003] (see the appendix on
page 199).

6.2. A Brief Review of Multiobjective Optimisation

6.2.1. Multiple Criteria Decision-Making

In multiobjective combinatorial optimisation problems, various criteria exist to
evaluate the quality of the solution and there is an objective (minimisation or
maximisation) attached to each of these criteria. It is commonly the case that some of
the criteria are in conflict, i.e. an improvement in one of them can only be achieved
at the expense of worsening another. Moreover, some of the criteria may be
incommensurable, i.e. the units used to measure the compliance with each of the

criteria are not comparable at all.

The first decision that has to be made when dealing with a multiobjective
optimisation problem is how to combine the search and the decision-making
processes. This can be done in one of three ways (Steuer, 1986; Goicoechea et al.,
1982):

§ Decision-making and then searchAlso known as tha priori approach because
the preferences for each of the objectives have to be set by the decision-makers
and then, one or various solutions satisfying these preferences have to be found.

§ Search and then decision-making.This is also known as tha posteriori
approach because various solutions have to be found and then, the decision-
makers select the most adequate. All the solutions presented to the decision-
makers should normally represent a trade-off between the various objectives.

§ Interactive search and decision-makingln this approach the decision-makers
intervene during the search in order to guide it towards promising solutions by

adjusting the preferences in the process.

Another important decision in multiobjective optimisation is how to deal with
the multiple objectives. At present, three methods can be identified in the literature
(Coello Coello, 2000; Coello Coello et al., 2002):

119

Multiobjective Approaches

§ Combine the objectives.This is one of the classical methods to evaluate the
solution fitness in multiobjective optimisation. It refers to converting the
multiobjective problem into a single-objective one by combining the various
criteria into a single scalar value. The most common way of doing this is by
setting weights to each criterion and then adding them all together using an

aggregating function. This is the approach used in previous chapters in this thesis.

§ Alternating the objectives. This approach refers to optimising one criterion at a
time while imposing constraints on the others. The difficulty here is establishing
the ordering in which the criteria should be optimised since this can have an effect
on the success of the search.

§ Optimising all objectives simultaneously (Pareto optimisation)in this method,
a vector containing all the objective values represents the solution fitness and the

concept of dominance is used to establish preference between solutions.

Commonly, in the first two methods, preferences are established a priori
(decision-making and then search) whilePareto optimisation, no preferences are

considered or are available before the search (search and then decision-making).

6.2.2. Pareto Optimisation

Formally, the dominance relation is described as follows (Dasgupta et al., 1999):

Suppose we have two distinct vectdfs= (vi,V2,...,\) and U = (ug,Up,...WU)
containing the objective values of two solutions fok-abjective minimisation
problem, then:

8 V strictly dominatedJ if vi <u;, fori=1,2,...,k
§ V loosely dominatedl if v su, fori=1,2,..,k andv; < u; , for at least one
§ V andU are incomparable if neith&f (strictly or loosely) dominated norU

(strictly or loosely) dominateg.

Other researchers refer $trict dominanceandloose dominancasdominance
andweak dominanceespectively (Zitzler, 1999). Minimisation is considered here

because of the problem tackled in this thesis, but the above definitions are altered in

120

Multiobjective Approaches

the obvious way for the case of maximisation problems. It is important to note that
using strict or loose dominance can have an effect on how the search is performed.
This is because if a solution is strictly dominated then it is outperformed by the other
solution in all criteria while if the solution is loosely dominated it means that it is
outperformed in some of the criteria but as good as the other solution in at least one
of them. Then, finding a new solution that strictly dominates the current one may be
more difficult than finding a solution that loosely dominates it. This is particularly
true in some combinatorial problems in which the connectedness of the search space
is such that some solutions are more difficult to reach from the current one. In such
cases, using loose dominance may enable more solutions to be reached (Ehrgott and
Klamroth, 1997).

In this thesis, strict dominance is used to distinguish a dominated solution from a
non-dominated one, i.e. only solutions that are strictly dominated are rejected. This
means that solutions that are loosely dominated are also considered because of the
interest in obtaining diversity in the solution space. In the rest of this docistranit,
dominances referred to as dominance.

A solutionx is said to be non-dominated with respect to a set of soluigins
there is no other solution % that dominatesx. The Pareto-optimal front in
multiobjective optimisation is the set of all non-dominated solutions in the whole
solution space (Coello Coello et al., 2002; Deb, 2001; Steuer, 1986). When there is
no knowledge of the localization of the Pareto-optimal set, the set found should be
referred to as the obtained non-dominated set or the known Pareto front. In the test
instances of the problem tackled in this thesis, there is no knowledge about the

localization or shape of the Pareto-optimal front.

The appeal of Pareto optimisation derives from the fact that in most
multiobjective optimisation problems there is smgle-bestsolution or global
optima and it is also very difficult to establish preferences among the criteria before
the search process is carried out. Even wihénis possible, it may be that these
preferences change and having a set of solutions eases the decision-making process.
One of the conditions that must be satisfied for a problem to be considereiuy be

multiobjective is that the criteria are in conflict. Two objectives are in conflict if the

121

Multiobjective Approaches

complete satisfaction of one of them prevents the complete satisfaction of the other.
If any improvement in one of the objectives induces a detriment on the other, then
the objectives are said to be strictly conflicting (Bagchi, 1999). It has been argued by
some researchers that even if the conflicting nature of the criteria is not proved,
Pareto-based metaheuristics would be able to find the ideal solution that is the best in

all criteria (Fonseca and Fleming, 1995).

Since in Pareto optimisation the final outcome must be a set of non-dominated
solutions, another important aspect to consider is how to evaluate the quality of the
obtained non-dominated front. This is a multiple criteria problem on its own because
several aspects have to be considered to determine how good the obtained front is.
Among these aspects there are the following (Zitzler, 1999; Deb, 2001):

§ The number of non-dominated solutions obtained.
§ The closeness between the obtained front and the Pareto optimal front (if known).
§ The coverage of the front, i.e. the spread and distribution of the non-dominated

solutions.

Several methods have been proposed to evaluate the quality of the obtained non-
dominated front in Pareto optimisation and therefore, assess the performance of
multiobjective optimisers (Fonseca and Fleming, 1996; Van Veldhuizen and Lamont
2000b; Knowles and Corne, 2002). Since the Pareto optimal front is defined with
respect to the objective space, is it common that most of the metrics proposed are
also defined with respect to the objective space. One aspect that is frequently
overlooked is the diversity of the obtained front with respect to the solution space. In
fact, when researchers report on the quality of the obtained non-dominated sets it is
very rare for information to be provided regarding the diversity in the solution space.
This is extremely important becauséhaligh the obtained non-dominated solutions
may be well spread and distributed over the front in the objective space, it may be
that the solutions are structurally very similar between them. Considering diversity in
the solution space when assessing the quality of the obtained front becomes even
more important in real-world multiobjective combinatorial optimisation problems
(like the one tackled in this thesis) because this type of similarity directly relates to

how different the solution structures are.

122

Multiobjective Approaches

Large multiobjective combinatorial aptisation problems are particularly
difficult to tackle. One reason for this is that the size of the search space grows
exponentially as the problem size increases. Also, theoretical understanding of the
solution space is lacking and as a consequence, in many problems of this type, there
is no notion of the localization and shape of the Pareto optimal front (Ulungu and
Teghem, 1994).

6.2.3. Metaheuristics for Multiobjective Optimisation

This section provides an overview of some proposed techniques for Pareto
optimisation but no attempt is made to present an exhaustive survey of the field. This
brief review is limited to multiobjective metaheuristics, in particular to evolutionary
algorithms and approaches based on local search, and does not cover classical
techniques because they are not relevant to the work reported in this thesis. The
classical methods (also called traditional methods in the literature) include weighting
approaches, goal programming, constraint methods, the Tchebycheff method and
others. For reviews on classical techniques for multiobjective optimisation refer to
(Steuer, 1986; Belton et al., 2002; Goicoechea et al., 1982; Miettinen, 2001).

In recent years, metaheuristics have received considerable attention in the area of
multiobjective optimisation. Several surveys on the application of metaheuristics to
multiobjective optimisation are available in the literature (Coello Coello, 1999;
Coello Coello, 1999a; Van Veldhuizen and Lamont, 2000; Ehrgott and Gandibleux,
2000; Jones et al., 2001). Also, there are several studies that focus on measuring and
comparing the performance of different algorithms for multiobjective optimisation
(Zitzler and Thiele, 1998; Zitzler et al., 2000; Van Veldhuizen and Lamont, 2000Db;
Zydallis et al., 2001; Tan et al., 2001; Purshouse and Fleming, 2001).

Multiobjective Evolutionary Algorithms

A number of multiobjective evolutionary algorithms have been proposed in recent
years and the increasing interest in these methods has motivated the extension of
evolutionary algorithms (originally proposed for single-objective optimisation) to
multiobjective variants. See (Coello Coello, 2001) for a brief tutorial on this topic.

Some of these algorithms are briefly described next.

123

Multiobjective Approaches

Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985). This is perhaps
the first genetic algorithm that used dominance for evaluating and selecting
individuals. In each generation, a group of individuals is selected according to one of
the k objectives in the problem untid groups are formed. That is, each group of
individuals excels in one of thecriteria. Then thé& groups are shuffled together and

the genetic operators are applied to produce the new population.

Multiobjective Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993). In this
algorithm each individual is assigned a rank according to the number of individuals
in the population by which it is dominated, i.e. all non-dominated solutions are
assigned rank 1. The fitness is assigned to each individual using an interpolation
between the best and the worst rank. A scheme for niche formation is used in which
fitness in the objective domain is shared among non-dominated individuals in order
to maintain a uniform distribution of individuals over the trade-off surface. The
fitness of all individuals in the same rank is averaged and this value is assigned to all
of them. A more recent version of this algorithm is described and compared against
other methods in (Purshouse and Fleming, 2001).

Niche Pareto Genetic Algorithm (NPGA) (Horn et al., 1994). The selection of
individuals is carried out using a tournament scheme based on the concept of
dominance. The two individuals competifgy selection are compared against a
subset of the population and the one that is non-dominated (assuming the other is
dominated) is selected for reproduction. If both competitors are dominated or non-
dominated, a sharing scheme based on the size of the niche (equivalence class
sharing) is used to break the tie. The improved version of this algorithm, called
NPGA-2 is described in (Erickson et al., 2001).

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1995).

This algorithm also classifies individuals according to dominance in a ranking
scheme similar to the one used in (Fonseca and Fleming, 1993). However, a dummy
fitness value proportional to the population size is determined for each dominance
class. Fitness sharing within the same class is also implemented to help maintain a
well-distributed population over the trade-off front. Once the whole population is

classified, a stochastic remainder proporttenselection scheme is used to ensure

124

Multiobjective Approaches

that the individuals in the first front get more copies for reproduction than the rest of
the population. Updated versions of this algorithm incorporating elitism are
described in (Deb, 2001).

Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999). This
algorithm was proposed as an approach that incorporates several of the desirable
features of other multiobjective evolutionary algorithms. The three features common
to other approaches and put together here are: the use of dominance to evaluate and
select solutions, the use of additional populations to store non-dominated solutions
and the use of a niching or clustering scheme. The particular feature in this approach
is that the non-dominated individuals in the external population are used to determine
the fitness of individuals in the current population and also participate in the
selection process for reproduction. In addition, a niche method based on Pareto
dominance is proposed which does not require any measure of distance between
individuals as in other clustering techniques. The improved version of this technique,
called SPEA2 is described in (Zitzler et al., 2001).

Pareto-Archived Evolutionary Strategy (PAES)(Knowles and Corne, 2000). This
algorithm starts with one randomly initialised solution and then, one candidate
solution is generated in each iteration by means of mutations. An external archive (of
limited size) is maintained to collect non-dominated solutions. An adaptive grid that
divides the objective space is used to evaluate how much crowded the region (in
which each solution lies) is. The candidate solution is discarded if it is dominated by
the current solution or any other solution in the external archive. The candidate
solution is added to the archive and becomes the current solution if it dominates the
current solution. If none of them dominates the other, the decision as to which
solution becomes the current solution and whether to add or not the candidate
solution to the archive is made based on the crowding mechanism. Other variants of
this algorithm with population sizes greater that one, were also proposed (Knowles,
2001).

Other Multiobjective Evolutionary Algorithms. The algorithms above are just a
sample of the vast number of methods proposed in the literature in recent years.

Other approaches include the multiobjective messy genetic algorithm (MOMGA) |

125

Multiobjective Approaches

and Il (Van Veldhuizen and Lamont, 2000) and the Pareto converging genetic
algorithm (PCGA) (Kumar and Rockett, 2002). Another multiobjective genetic
algorithm was proposed in (Murata et al., 1996; Murata et al., 1996b). Subsequent
variants of this algorithm were presented in (Ishibuchi et al., 1997; Ishibuchi and
Murata, 1998; Murata et al., 2000; Murata et al., 2001; Ishibuchi et al., 2002;
Ishibuchi et al., 2002a). In the last two years, many other extensions of evolutionary
algorithms for multiobjective optimisation have been proposed. For example,
variants of micro-genetic algorithms, cellular genetic algorithms, particle swarm
optimisation methods, agent-based algorithms and others can be found in
proceedings of recent conferences in this area (EMO 2001, EMO 2003, CEC 2002,
GECCO 2002, GECCO 2003, PPSN VlI).

Other Multiobjective Metaheuristics

Another class of metaheuristics for Pareto optimisation are those that explicitly use
local search or neighbourhood exploration (instead of genetic operators) to drive the
search or as an important component of the process (hybrid approaches). Several
multiobjective metaheuristics using local search have been put forward in the

literature. Some of these multiobjective metaheuristics are briefly described below.

Simulated Annealing for Multiobjective Optimisation (Serafini, 1992). This was
perhaps the first extension of simulated annealing for multiobjective optimisation
reported in the literature. The proposed idea was to modify the acceptance criteria of
candidate solutions in the original algorithm. Various alternative criteria were
investigated in order to increase the probability of accepting non-dominated
solutions. A special rule given by the combination of several criteria was proposed in

order to concentrate the search almost exclusively on the non-dominated solutions.

Multiobjective Tabu Search (MOTS) (Hansen, 1997). This algorithm is a
population-based extension of the tabu search metaheuristic that uses a set of weights
to guide the search towards the Pareto frontier. Each solution maintains its own tabu
list and the weights are adjusted in order to keep the solutions away from their

neighbours and therefore, attempt to cover the whole trade-off surface.

126

Multiobjective Approaches

Pareto Simulated Annealing (PSA)(Czyzak and Jaskiewicz, 1998). This is a
population-based extension of simulated annealing proposed for multiobjective
combinatorial optimisation problems. The population of solutions explore their
neighbourhood in a similar manner to classical simulated annealing, but weights for
each objective are tuned in each iteration in order to assure a tendency to cover the
trade-off surface. The weights for each siolu are adjusted in order to increase the
probability of moving away from the closest neighbourhood in a similar way as in
the multiobjective tabu search algorithm (Hansen, 1997). From simulated annealing,
this hybrid metaheuristic borrows the idea of neighbourhood search, probabilistic
acceptance of candidate solutions and the dependence of this acceptance from a
temperature parameter. From genetic algorithms, the approach incorporates the idea

of using a sample population of interacting solutions.

Multiobjective Simulated Annealing (MOSA) (Ulungu et al., 1999)This approach

is another extension of simulated annealing in which a weighted aggregating function
is used to evaluate the fithess of solutions to attempt approximating the various
regions of the trade-off surface. The algorithm works with only one current solution
but maintains a population with the non-dominated solutions found during the

search.

Evolutionary Local Search Algorithm (ELSA) (Menczer et al., 2000). This is an
evolutionary algorithm that uses local selection as the main component in order to
minimise the interaction between the individuals in the population. The idea behind
this approach is that a population of competing individuals can search the space in a
parallel fashion. This algorithm does not use recombination and the only operator to
generate new solutions is mutation. The authors stressed that the major strengths of
this algorithm are its potential to be implemented in parallel and that it maintains the

diversity of the population in a way similar to fitness sharing but more efficiently.

Memetic PAES (M-PAES)(Knowles and Corne, 2000b). This is a memetic variant
originated from the PAES method. This memetic algorithm incorporates a population
and a crossover operator but uses the same selection mechanism as PAES. Two
archives are used, one is the global archive of non-dominated solutions and another

serves as the comparison set in the local search phase. The second archive is emptied

127

Multiobjective Approaches

after each local search and filled again with solutions from the global archive. The
authors reported that this memetic version outperformed the original algorithm on

test instances of the multiobjective knapsack problem.

Genetic Local Search (GLS)(Jaszkiewicz, 2002). This algorithm is a hybrid
between genetic algorithms and local search in which a weighted aggregating
function is generated at random in each iteration. This function is used to select the
solutions that will be recombined to form the offspring and to guide the local
optimisation of this offspring.

Simulated Annealing for Multiobjective Optimisation (Suppapithnarm et al.,

2000). This is another extension of simulated annealing in which one temperature is
associated to each objective in the problem. The algorithm uses only one solution
and the annealing process adjusts each temperature independently according to the
performance of the solution in each criterion during the search. An archive is used to

store all the non-dominated solutions visited.

Other Multiobjective Metaheuristics Using Local Search.Many other approaches

have been proposed and investigated in the literature. For example, the tabu search
variant of (Baykasoglu et al., 1999) maintains a single solution but additional lists of
non-dominated solutions found during the search are kept in order to seed and guide
the search. Another tabu search approach using weights adaptation was proposed
specifically for the bi-objective knapsack problem in (Gandibleux and Freville,
2000). Other multiobjective variants of ant colony optimisation, hybrids between
tabu search and evolutionary algorithms and other implementations of multiobjective
genetic local search can be found in proceedings of recent conferences (EMO 2001,
EMO 2003, CEC 2002, GECCO 2002, GECCO 2003, PPSN VII).

6.3. Conflicting Objectives in Space Allocation

Using the dominance relation when dealing with a multiobjective optimisation
problem makes sense only if the objectives are partially or totally conflicting. If the
objectives are uncorrelated or reinforce each other, it is often adequate to combine all
of them into a single scalar value and approach the problem as a single-objective one.

More than two objectives could be considered in the space allocation problem as

128

Multiobjective Approaches

described in chapter 2. In fact, it can be argued that this problem is an eight-objective
optimisation problem, i.e. the satisfaction of each of the six types of constraints listed

in section 2.4.1 plus the minimisation of space wastage and space overuse (eq. 2.10).

Sets of experiments were carried out in order to investigate the conflicting nature
of the objectives in the space allocationlgem. For the test problems nottl, trentl
and wolverl described in section 2.5, eight sets of ten runs were executed using the
single-solution hybrid metaheuristic described in section 5.2. In each set of ten runs,
one of the eight objectives was subject to optimisation, i.e. only the value of that
objective was used to assign fitness to solutions while the value of the other seven
objectives were traced to observe their response. Since in each set of runs one of the
objectives is subject to optimisation, it is possible to calculate the correlation
between that objective and the others. A positive correlation is an indication that the
two objectives are reinforcing each other or moving together, i.e. improvements in
one objective are associated to improvements in the other. A negative correlation is
an indication of the conflict between two objectives, i.e. improvements in one
objective are associated with detriments in the other. A correlation value near to zero

is an indication that the two objectives being unrelated or not affecting each other.

Objective being traced
ws 0s ai af at tg sh ap
0.98 0.04 -0.0¢ -0.1t -0.7C -0.5C -0.4C

WS -
o> |os| 099 - 038 -02¢ -061 -05C 055 0.48
S5l ai | 021 03 - 018 088 024 002 00Q
gg af | 046 002 006 -- 004 006 028 003
S<|at|-08 074 008 007 -~ 034 -001 053
-§—° tg | -0.6¢ -0.6¢ 030 005 030 -~ 060 060

sh | -0.8c -0.8c 0.06 0.01 -0.01 0.06 - 0.08
gp | -0.24 -0.5C -0.0¢4 0.02 0.72 0.77 054 -

Table 6.1. Correlation between objectives for the nottl test instance.

The correlation values obtained in each set of ten runs were averaged for each
pair of objectives. Results are presented in table 6.1 for the nottl test problem. Each
row corresponds to the objective being subject to optimisation and the columns in
that row contain the correlation with each of the other (traced) seven objectives. The
corresponding abbreviation for each objective is as followsss wasted spacesis

overused spacaii is allocated in af is away from at is adjacent tQ tg is together

129

Multiobjective Approaches

with, sh is not sharingand gp is grouped with The negative correlation values

corresponding to pairs of conflicting objectives are highlighted in table 6.1.

It can be observed that there is a high positive correlation between the
minimisation of space wastaged) and the minimisation of space overuss).(It
appears then that these two objectives reinforce each other or cooperate strongly. On
the other hand, it can be noted that in most of the cases, the correlation values
between these two objectives and those corresponding to the satisfaction of soft
constraints are negative or very near to zero. Only the minimisation of space overuse
(09 has a relatively high positive correlation with the satisfaction of not shaiting (
constraints and the satisfaction of grouped wip) Constraints. It seems that the
minimisation of space misuse is in conflict with the satisfaction of soft constraints in
general. With respect to the correlation values between the six objectives associated
to the satisfaction of constraints, it is observed that most of the values are positive
and near to zero. Only two (very low) negative values were obtained corresponding
to the correlations betweeat andsh. It appears that in general, the satisfaction of
one type of soft constraints is not in conflict with the satisfaction of another type of
soft constraint.Similar observations were made in the results obtained for the other
two test instances. These results permit us to conclude that, at least on the test
instances used in this thesis, not all the eight objectives are conflicting. We then
grouped the eight objectives into two conflicting objectives: the minimisation of
space misuse and the minimisation of soft constraint violation. It should be noted that
the conflicting nature of the objectives will depend very much on the constraints that
exist in each particular problem instance and therefore, an analysis similar to the one
described here would be appropriate in otdellustrate the multiobjective nature of

the problem.

In order to confirm that the two objectives considered here are conflicting, the
experiments described next were carried out to observe the behaviour of each
objective while the other was subject to optimisation. Two sets of ten runs were
executed for each test instance (nottl, trentl and wolverl) and each run was executed
for a fixed number of iterations (20000, 10000 and 5000 respectively). In each set of
runs, only one of the objectives was subject to optimisation (i.e. considered for

evaluation of the solution quality) while the values of the other objective were

130

Multiobjective Approaches

monitored during the search. For clarity, only two of each set of ten runs are shown

in figures 6.1 to 6.3, but similar results (discussed below) were obtained in all runs.

a) response of space misuse while b) response of soft constraints violation
minimising soft constraints violation while minimising space misuse
Run A Run B RunA RunB
2200 2900
&
- 1800 - 2600 c_‘o‘u
] >
- 1400 & 2300 @
2 £
L1000 E L2000 £
8 2
L 600 & L1700 3
@ =
: : 200 — 1400 @

2700 2200 1700 1200 700 200 1800 1500 1200 900 600 300 O

soft constraints violation space misuse

Figure 6.1. Response of one of the objectives while minimising the other bsirgingle-solution
hybrid metaheuristic on the nottl instance.

a) response of space misuse while b) response of soft constraints violation
minimisina soft constraints violatio while minimisin sopace misuse
Run A RunB Run A RunB
800 5600
c
S
L 700 /\J\\ 5400 &
[} >
\\f_//\v - 600 & @2
2 - 5200 £
- 500 £ £
Q c
400 & - 5000 §
? £
T T T 300 4800 o

5500 4900 4300 3700 3100 2500 600 500 400 300 200 100 O

soft constraints violation space misuse

Figure 6.2. Response of one of the objectives while minimising the other bsirgingle-solution
hybrid metaheuristic on the trentl instance.

The graphs presented in figures 6.1 to 6.3 show, to some extent, the conflicting
nature of the two objectives in the space allocation problem: the minimisation of
space misuse and the minimisation of soft constraints violation. For example, in
figure 6.1.a it is observed that in both runs the space utilisation has to be worsened
(space misuse increases in the graph) at some stages during the optimisation of the
soft constraints satisfaction. Similarly, figure 6.1.b shows that the violation of soft
constraints has to be increased if the space misuse is to be optimised. Note also that

this behaviour can occur in an unpredictable way. While in the two runs in figure

131

Multiobjective Approaches

6.1.a the conflict appears to be accentuated towards the end of the run, in figure 6.1.b
the conflict between the two objectives occurs at different stages in each run.
Moreover, if their corresponding graphs are compared, it is also apparent that the
conflicting performance of the objectives is different for the three test problems. It
should be noted that in the case of the wolverl test instance, the particular shape of
the graphs presented in figure 6.3.a can be explained because the problem has a small

number of soft constraints which are satsified very easily at the begining of the

search
a) response of space misuse while b) response of soft constraints violation
minimising soft constraints violation while minimising space misuse
ORunA ORunB RunA RunB
t 1700 13200 §
r 3
1500 § L 2600 ©
- 1300 o -
IS - 2000 £
i 1100 o s
| 900 g - 1400 %
L 700 - 800 o
5
T T 566 T T T T 200 0
50 30 10 -10 -30 -50 1200 1000 800 600 400
soft constraints violation space misuse

Figure 6.3. Response of one of the objectives while minimising the other heirgingle-solution
hybrid metaheuristic on the wolverl instance.

6.4. Pareto Optimisation of Space Allocation

6.4.1. Adapating the Hybrid Algorithms

This section assess the suitability of the hybrid metaheuristics presented in the
previous chapter for the Pareto optimisation of the space allocation problem. The two
algorithms were slightly modifed in order to apply them to the space allocation
problem treated as a two-objective optimisation problem. A mechanism to archive
non-dominated solutions found during the search was added. Solutions visited during
the search can be considered for updating this external archive. Since both the single-
solution and the population-based algorithms employHikeneighbourhood search
heuristic of section 4.5.2, candidate solutions are generated which may replace the
current solution if they are considered to be better than the existing one. Every time a
candidate solution is generated, the dominance relation is used to decide if the new

solution replaces the current solution or not. The external archive is not used for this

132

Multiobjective Approaches

purpose, i.e. it is enough for the candidate solution to dominate the existing current
solution in order to replace it. However, every candidate solution is considered for
updating the archive of non-dominated solutions because even if the current solution
is not replaced by the new one, the candidate solution may dominate some of the
solutions in the archive. The purpose here is to investigate if these adapted versions
of the algorithms (which perform well on the single-objective case) are capable of

producing good results on the two-objective version of the space allocation problem.

6.4.2. Experiments and Results

In these experiments only the nottl and trentl test problems were used. Two reasons
exist for this. On one hand the wolverl test instance has been consistently the easiest
to solve by the algorithms tested so far and, on the other hand, only few soft
constraints exist in that instance so thadecomes almost a single-objective problem

(as shown in figure 6.3). The experiments here consisted of applying the single-
solution hybrid metaheuristic and the two versions of the population-based hybrid
metaheuristic (PMHS and PMHM) to the test problems. Ten runs of each algorithm
were executed on each test instance. The termination condition in each run was a
number of idle iterations equal tdRZheatintervalas in the experiments of the
previous chapter. Figure 6.4 shows the offline non-dominated populations (i.e. the

non-dominated solutions collected after the ten runs) found by each algorithm.

1300

a) Problem nottl

X

4500

a) Problem trentl

oo e 4 N 4300{ %
° O&Xx Zx x HMH 4100 - %‘ x HVH
900 | B a PHVS 44 a PHVS
° 4 o PHMM 3900 1 3 o PHVMM

700 -

500

100

150 200 250

300

3700

3500

x A Ap

0 50 100 150 200 250 300 350

Figure 6.4. Non-dominated solutions obtained by the single-solution hyletaheuristic (HMH) and
the two variants of the population-based hybrid metaheuristic (PHIMdSPBIMM) on the nottl and
the trentl test instances.

Although the three algorithms are capable of producing non-dominated

solutions, it is clear from figure 6.4 that for the nottl test instance, the PMHM

Multiobjective Approaches

algorithm multiple produces the best results since the solutions found by this
approach dominate all the solutions found by the two other approaches. In the case of
the test instance trentl, the solutions obtained with the single-solution hybrid
metaheuristic dominate all solutions produced by the PMHS algorithm and some of
the ones produced by the population-based hybrid metaheuristic multiple. However it
is clear that in terms of the distribution and spread of the solutions, the results
produced by the single-solution hybrid metaheuristic are not competitive. Similar
experiments were carried out with the nottlb and nottlc tests instances and the same
observations were made. From these results, it was clear that among these three
methods, the PMHM algorithm obtains the best sets of non-dominated solutions
overall. Since this approach is slightly different (dominance-based fitness evaluation
and archive of non-dominated solutions added) from the one described in chapter
five, in the rest of this chapter this modified version is referred to as the population-

based hybrid annealing algorithm (PBAA).

6.5. The Influence of the Fitness Evaluation Method

6.5.1. Assigning Fitness to Solutions in Pareto Optimisation

In Pareto optimisation we usually wish to establish the way in which the various
objectives will be handled in order to assign fitness to candidate solutions during the
search and therefore, decide which solutions will survive and which ones will be
discarded. Three ways of doing this are investigated here: an aggregating function,
the dominance relation and a relaxed form of the dominance relation. With
aggregating functions, the two objective values are combined into a single scalar
value as shown in section 2.4.2 (eq. 2.7). With this method, the solution with the
smaller value oF(x) is preferred or considered to be better. In Pareto dominance, the
solution fitness is represented using a two-dimensional vector containing the values
of the two objectivesH1(x),F2(x) and preference between solutions is established
as described in section 6.2.2. The relaxed dominance method is described in the next

section.

134

Multiobjective Approaches

6.5.2. Relaxed Pareto Dominance

Relaxed forms of Pareto dominance have been proposed by researchers as a means to
improve the performance of multiobjective optimisers. For example, Kokolo et al.
suggested the use af-dominance for dealing with what they call dominance
resistant solutions, i.e. solutions that are fairly inferior quantitatively but other
solutions that dominate them are scarcely found (Kokolo et al., 2001). This variant of
dominance establishes lower and upper bounds for trade-off between the objectives.
In a-dominance, small detriments in one of the objectives are considered to be

acceptable if this leads to an attractive improvement in the other objective.

objectivev

maximum

C objectiveu

minimum |:

minimum Buw maximum

Figure 6.5. Three fitness evaluation methods: aggregating function, domindatienrand a-
dominance (relaxed dominance) in a two-objective minimisation problem. Solutioreggion A
dominatex. Solutions in regions B, C and @-dominatex. Solutions above the sloping line have a
better aggregated value than

Figure 6.5 illustrates the concept af-dominance for a two-objective
minimisation problem and it also compares it to the other two evaluation methods
considered here: dominance and aggregation of objectives. Solutions in regions B, C
and D alla-dominate solutiorx. Then, in region C for examplg,, represents the
maximum detriment permitted in objectiuggiven the minimum improvemeimpt, in
objectivev. In region D, and yy are defined in a similar way. Solutionis
dominated by all solutions in region B while solutiwrominates all solutions in
region A. When using the aggregation of objective values, a line that splits the
objective space into two regions can be drawn. All the solutions above the line are

considered to be worse tharand all solutions below the line are considered better

135

Multiobjective Approaches

thatx. A line at 45 degrees of inclination is used here according to equal weight

values for the two objectives but different slopes will reflect different preferences.

In a-dominance, given an optimisation problem whtlobjectives, the relation
betweens,, and y,, for each pair of objectivas# v represents the relation between
the detriment permitted in the objectiveand the improvement obtained in the
objectiveu. For the formal definition ob-dominance see (Kokolo et al., 2001). A
similar form of relaxed dominance calleedominance was recently suggested by
Laumanns et al. to implement better archiving strategies that permit us to overcome
the difficulty of multiobjective evolutionary algorithms to converge towards the
Pareto-optimal set and maintain a wide diversity in the population at the same time
(Laumanns et al., 2002). In some sense, the relaxed forms of dominance (
dominance ands-dominance) are similar to establishing preferences among the
objectives using weights in an aggregating function. In both cases, a detriment in one
or more of the objectives is permitted in an attempt to widen the search by accepting
not only dominating solutions. The different perspectives in viewing candidate
solutions affects the way in which surviving solutions are selected. An algorithm
may find it difficult to discover feasible solutions that dominate the current one(s).
This is particularly true in highly constrained combinatorial optimisation problems
like the one presented here. Then, by acceptirpminating (or&dominating)
solutions or solutions for which the aggregated value is better, it is possible to
provide the algorithm with a wider view of the potential ways to approach the

Pareto-optimal front.

The relaxed form of dominance implemented here for the two-objective space
allocation problem follows the same principlecadominance and-dominance but
it is slightly different. Letx be the current solution and be a candidate solution
with fitness vectors given By = (vi,V,...,\) andU = (Uy, W,...,k) respectively. If
the first objective in the candidate solution is better than in the current solution, i.e.
u; < vy, the correspondingain or improvement proportion igain = (v; —ug) / va.
The candidate solutioxi is considered to be better than the current solutibrhe
detriment proportion in the other objective is at ngah, i.e. if u; < wI(l+gain).

This calculation is modified in the obvious way in the aasev; fori = 1,2,...k.

136

Multiobjective Approaches

6.5.3. Multiobjective Algorithms Tested

Justification

The two algorithms used in this investigation are: the population-based hybrid
annealing algorithm of section 6.4 and the (1+1)-Pareto archived evolutionary
strategy proposed in (Knowles and Corne, 2000). It was observed in preliminary
experiments that when applying the population-based hybrid annealing algorithm to
the two-objective space allocation prefl, better non-dominated fronts were
produced if the aggregation of objectives or the relaxed concept of dominance was
used instead of the dominance relation to assign fithess to solutions during the
search. In order to investigate whether this behaviour is due to the search strategy
used by the algorithm or due to the problem domain, a multiobjective optimiser that
has been well-studied in the specialised literature was also implemented and tested.
The (1+1)-Pareto archived evolutionary strategy is a modern multiobjective
optimisation technique that is simple to implement, it has been tested across a range
of problems and it is considered to be competitive with other modern multiobjective

evolutionary algorithms (Knowles, 2001; Tan et al., 2001).

The two approaches above are alike in the sense that both evolve solutions based
on self-adaptation, i.e. the current solution is modified by mutation or local search
and no recombination is used. Algorithms like these are often referred to as
trajectory-based methods because the candidate solution is somehow similar to the
existing one. The population-based hybrid annealing algorithm has been tested on
various instances of the space allocation problem in previous chapters while the
(1+1)-Pareto archived evolutionary strategy is an approach that has been applied to
many other multiobjective optimisation problems but not to the one tackled in this
thesis. Then, by using these two algorithms in this study, the effect of the fitness
evaluation method can be further investigated without bias due to the algorithm
design. Also, previous experience has shown that the recombination of solutions in
this highly constrained problem almost always produces infeasible solutions (see
chapter 4). Since both algorithms use local search as the main operator to generate
candidate solutions, they show good performance when applied to the highly
constrained two-objective space allocation problem. A brief description of the (1+1)-

Pareto archived evolutionary strategy is given below.

137

Multiobjective Approaches

The (1+1)-Pareto Archived Evolutionary Strateqy

This algorithm starts with one initial solution and in each iteration, one candidate
solution is generated by means of mutations. An external archive (of limited size) is
maintained to collect non-dominated solutions. An adaptive grid that divides the
objective space is used to evaluate how crowded the region in which each solution
lies is. The candidate solution is discarded if it is dominated by the current solution
or any other solution in the external archive. The candidate solution is added to the
archive and becomes the new current solution if it dominates the old current solution.
If none of them dominates the other, the decision on which solution becomes the
current solution and whether to add or not the candidate solution to the archive is
made based on the crowding mechanism, see (Knowles and Corne, 2000) for a
detailed description. For the problem domain considered here, when a mutated
solution is infeasible, successive mutations are tried until a feasible solution is

generated. This is a very fast operation and it worked well in this implementation.

6.5.4. Experimental Settings

The nottl, nottlb and trentl test instances described in section 2.5 were used in these
experiments. For each test instance and each fitness evaluation method (aggregation
of objectives, dominance and relaxed dominance) ten repetitions of the experiments
(as described next) were executed. An initial population of size 20 was generated as
described above. The population-based hybrid annealing algorithm was executed for
eval solutions evaluations. Since the Pareto archived evolutionary strategy evolves a
single solution, one run of the algorithm corresponds to 20 executiorvdt20
solution evaluations, one with each of the 20 initial solutions. That is, the same initial
population was used in each set of runs comparing the three evaluation methods in
the two algorithms, i.e. 10 different populations were generated and in total 90 runs

were executed for each algorithm.

For the population-based hybrid annealing algorithm, the parameters were set as
follows: a = 0.95,IntervalCounter= n andReheatCounter 101 (see figure 5.3).
The number of maximum solution evaluatiansl was set to 100000, 80000 and
50000 for the nottl, nottlb, and trentl test instances respectively. The number of

non-dominated solutions in the external archive was limited to 30 in both algorithms

138

Multiobjective Approaches

although in some cases fewer solutions were obtained in the final set. In the rest of
this chapter, the population-based hybrid annealing algorithm and the (1+1)-Pareto

archived evolutionary strategy are referred to as PBAA and PAES respectively.

6.5.5. The Offline Non-dominated Sets

For each set of ten runs corresponding to the same triplet (algorithm, problem,fitness
evaluation method) the offline non-dominated sets were collected and these are
presented in figures 6.6 to 6.8. It is observed from figure 6.6 that for the nottl
problem, the non-dominated sets obtained with both algorithms using the relaxed
dominance and the aggregating function are better than those sets produced using the
standard dominance relation. For both algorithms, the relaxed dominance clearly
produces better results than the dominance relation. Also for both algorithms, a
considerable section of the front obtained using the relaxed dominance is dominated
by the front obtained using the aggregating function with the exception of a few
solutions at the top end of these fronts. That is, using the aggregating function seems
to benefit the performance of the algorithms in finding more solutions with low
violation of soft constraints (small valuesks(x)) but none of the solutions obtained
have values of space misusel(x)) as low as some of the solutions obtained using

the relaxed dominance relation.

PBAA PAES
1600 1600
1400 1 —x - Agg 1400 -
——8a— Dom
1200 ~——°— Rel.Dom. 1200
1000 - % 1000 -
F2(x) No, F2(x)
800 | el 800 |
e
600 - X —° 600 -
fa Nx
400 - o 400 -
F1(x)
200 200
120 150 180 210 240 270 300 120 150 180 210 240 270 300

Figure 6.6. Offline non-dominated sets obtained by the PBAA and PAES fafgsrivith each
evaluation method for the test instance nott1.

For the problem nottlb, figure 6.7 shows that the non-dominated sets obtained
using the standard dominance and the relaxed dominance are comparable in the case

of the two algorithms. That is, none of these two fitness evaluation methods appears

139

Multiobjective Approaches

to clearly outperform the other. With PBAA some of the solutions obtained using
dominance have better space utilisation while with the PAES many solutions
obtained using relaxed dominance are better with respect to the satisfaction of soft
constraints. It is noticeable that for both algorithms, none of the solutions obtained
using the aggregating function is dominated by solutions produced with the other two
fitness evaluation methods. However, as in the nottl problem, using the aggregating
function produces solutions that excell with respect to the minimisation of soft
constraint violation K2(x)) but solutions with very low values of space misuse
(F1(x)) are not found.

PBAA PAES
1500 1500
1250 * ’ggfn 1250
——o—— Rel.Dom.
1000 - 1000 -
750 - 750 -
500 - &_;%«;o 500 -
KX
250 1 250 |
F1(x)
0 T T . T 0 : . T T
50 100 150 200 250 300 50 100 150 200 250 300

Figure 6.7. Offline non-dominated sets obtained by the PBAA and PAES fafgsrivith each
evaluation method for the test instance nottlb.

PBAA PAES
4750 4750
4500 - 4500 - —> —Agg
. ——a— Dom
4250 | 4250 1 ——°—— RelDom
4000 A 4000 -
3750 | 3750
3500 - 3500 -
— —X%
3250 - 3250 -
F1(x) F1(x)
3000 ; 3000 ;

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Figure 6.8. Offline non-dominated sets obtained by the PBAA and PAES fagsrivith each
evaluation method for the test instance trentl.

140

Multiobjective Approaches

Figure 6.8 shows that for the trentl problem, the comparison between the non-
dominated sets obtained using the standard dominance and the aggregating function
is very tight. In the case of PBAA the aggregating method outperforms the
dominance relation with respect to the solutions in the bottom half of the front, i.e.
solutions with low values of soft constraint violation. But in the case of the PAES,
using the dominance relation generates a few solutions that dominate a section in the
middle of the front produced with the aggregating method. Note that the results
obtained using the relaxed dominance are very poor for both algorithms. Only a few
solutions in the top end of the front produced with the relaxed form of dominance are
competitive with those produced by the two other evaluation methods. It seems that
when the relaxed dominance is used in problem trentl, both algorithms have
difficulty in finding solutions with low values of soft constraints violatiéi2 ()).

One of the reasons for this behaviour might be the levels established for the relation
between improvement in one of the objectives and the corresponding detriment in the

other. This is further investigated later in this chapter.

6.5.6. The Online Non-dominated Sets

With respect to the online performance, the non-dominated populations obtained in
the runs using the same algorithm on the same test instance but with the three
different fitness evaluation methods were compared by using the metric proposed by
(Zitzler et al., 2000). This metric was selected because it directly compares the
quality of two non-dominated sets, it is not required to know the Pareto optimal front
and it is simple to compute. Various other metrics are described in (Knowles and
Corne, 2002). The metric by Zitzler et al. is described by the equation 6.1, Ayhere

B are sets of non-dominated vectors.

cap =L B D|aBT Aa 2 b 6.1)

A value of C(A,B) = 1 indicates that all solutions in $tare dominated by at
least one solution in set A while a value@(A,B) = 0 indicates that no solution in
setB is dominated by a solution in sat Ten values ofZ(dom,agg) C(agg,dom)
C(dom,reldom) C(reldom,dom) C(agg,reldom)and C(reldom,agg)were computed

141

Multiobjective Approaches

and averaged for each set of runs comparing the three fitness evaluation methods
using the same algorithm and test problem. These results are shown in table 6.2.

By observing the comparison between the aggregating function results and the
two other evaluation methods, it can be said that in general the aggregating function
helps both algorithms to obtain the best results or at least it is as competitive as the
relaxed dominance. Only for the PBAA method on the trentl instance, the average
coverageC(dom,agg)s slightly better than the average cover@gaegg,dom)When
comparing the results obtained with the stardard dominance and relaxed dominance,
it is clear that for the nottl instance the relaxed dominance is better. In the case of the
nottlb instance, both strategies appear to be comparable along the ten runs. However,
as mentioned above, in the trentl instance the performance of both algortihms when
using the relaxed dominance is very poor and beaten clearly by the standard

dominance too. The following section presents and discusses results in terms of the
population diversity.

PBAA PAES

nottl | nottlb| trentl nottl nottlb trentl
C(dom,agg) 0.13 0 0.39 0.08 0.17 0.28
C(agg,dom) 0.99 0.76 0.23 0.96 0.81] 0.32
C(dom,reldom)| O 0.58 0.94 0 0.51 0.92
C(reldom,dom)| 1 0.49 0.14 0.98 0.64 0.21
C(agg,reldom) | 0.65 0.54 0.97 0.77 0.62 0.9¢
C(reldom,agg) | 0.41 0.43 0.10 0.26 0.35 0.17

Table 6.2. Comparing the online performance of each algorithm using the three ewvahettods,
whereagg = aggregating functiomom= dominance relation amdldom= relaxed dominance.

6.5.7. Results on Diversity

Table 6.3 shows the results with respect to the divevgpy (see section 2.4.3) of

the non-dominated sets obtained in the experiments described above. For each set of
10 runs corresponding to the same triplet (algorithm, test problem, fithess evaluation
method), the values &f(p) were averaged and these are shown as the online results

in table 6.3. The values d&f(p) were also computed for the offline populations

collected after each set of ten runs and these are shown as the offline results in the
same table.

142

Multiobjective Approaches

It can be observed that with respect to the online performance, both algorithms
obtain non-dominated sets with very similar diversities for the three fitness
evaluation methods in the three test problems. In all cases, the relaxed dominance
helps both algorithms to achieve slighlty more diverse populations but the difference
with the other methods is almost insignificant. In the case of the offline non-
dominated sets, although the results obtained with the three fitness evaluation
methods are still very similar, greater differences between the diversity values
obtained can be observed. For example, the aggregating function benefits PBAA in
problems nottl and nottlb and PAES in problem nottlb. The relaxed dominance
method favors PBAA in the trentl problem and PAES in the nottl problem. The
standard dominance relation helps PAES to obtain a slightly more diverse offline
population in problem trentl. In general, it can be said from these results, that none
of the three fitness evaluation methods seems to be clearly more beneficial than the
others with respect to the population diversity that the two algorithms achieve.
However, some improvement in the diversity of the obtained solutions can be noted
when using the relaxed dominance and the aggregating function.

PBAA PAES
nottl| nottlb| trent]l nottl nottb trentl
online agregating 71.3 75.7 81.9 71P2 75.7 82,9
dominance 72.1 76.9 81.5 73.6 75.9 81.8
(average) | relaxed dominance 72.8 78.2 844 738 775 88.6
. agregating 32.2 53.8 32.0 281 48.8 30.5
offline dominance 270 391 328 297 305 336
relaxed dominance 26.3 34.6 400 325 323 28.5

Table 6.3. Results on diversity for the online and offline non-dominaged abtained with each
algorithm when using the three different fitness evaluation methods.

In the next section, further experiments are carried out in order to investigate the
reasons why the relaxed dominance appears to adversely affect the performance of

both algorithms in the trentl instance as noted in section 6.5.5.

6.5.8. Compromise Between Objectives in Relaxed Dominance

As described above, in the relaxed dominance relation used here, the detriment
proportion acceptable in one of the objeetixalues cannot be greater than gae

or improvement proportion obtained in the other objective value. If improvements

143

Multiobjective Approaches

for one of the objectives are more difficult to achieve than for the other, then the
above compromise may not be as beneficial as thought. This appears to be the case in

the trentl problem instance as revealed in the experiments and results presented next.

Given the results obtained with the relaxed dominance as evaluation method in
the trentl problem, it was decided to carrymate experiments with different levels
of compromise between the two objectives. Consider the current and candidate
solutionsx andx’ with fitness vectory = (v1,v2) andU = (u,Uy) respectively. Four

levels of trade-off between the two objectives were considered as described below.

Relaxed Dominanceln this case the compromise is set as described in section 6.5.2.

In the three cases belayain is calculated as before.

Relaxed Dominance Variant A Now, a greater detriment proportion is permitted in
F1(x) given an improvement ifk2(x). That is, wheru; < v, thenx’ is considered
better tharx if u; <wvi[(l+10gain). Whenu; < vi, the detriment permited m is as

before.

Relaxed Dominance Variant B In this case, a greater detriment proportion is
permited inF2(x) given an improvement iR1(x). That is, wheru; < v; thenx’ is
considered better thaqif u, < v,[(l+10gdain). Wheru, < v,, the detriment permited

in vq is as before.

Relaxed Dominance Variant C Now, the detriment proportion permited 2 (x)
given an improvement iR1(x)is less than in the previous case. That is, whenv;
thenx’ is considered better thanf u, < v[(IL+5gain). Whenu; < vy, the detriment

permited inv; is as before.

The variant A refers to the case in which an improvement in the satisfaction of
soft constraints K2(x)) is more desirable and therefore more detriment in space
misuse E1(x)) is permitted. The other two variants reflect the case in which the
improvement in space misudel(x)) is considered more attractive and the detriment
permited in the soft constraints satisfactiéi2(k)) is greater. Sets of runs were
executed as described in section 6.5.4 but using only the above four variants of
relaxed dominance relation on the trentl instance. The results (offline non-dominated

sets) of these experiments are presented in figure 6.9.

144

Multiobjective Approaches

It is clear that the level of compromise between the objectives has an influence
on the performance of both algorithms when solving the trentl instance. Among the
levels of compromise considered here, the best results are obtained when greater
detriments in the satisfaction of soft constrain2(x)) are allowed given an
improvement in the space misugel(x)). This can be interpreted in two ways. It
may be that improvements iR1(x) are difficult to achieve so they are highly
welcomed no matter what the detriment causdeRifx). The other possibility is that
improvements irfF2(x) are the ones that are difficult to achieve so that this objective
is permitted to deteriorate sometimes in order to find improvements later in the
search. In order to find out which of the above possibilities is ocurring here, counters
were maintained for the number of times in which the combination of improvement
in one objective and detriment in the other led to the candidate solution being
considered to be better. The results given next correspond to the relaxed dominance

variant B (the one producing better results above).

PBAA PAES
4750 4750
o —x— Rel.DomA —x— Rel.Dom.A
X —a— Rel.Dom.B —ea— Rel.Dom.B
4500 - : — o RelDomC | 45001 i —o— Rel.Dom.C

—a— Rel. Dom. & —a— Rel. Dom.

4250 4250

4000 H 4000 -

3750 - 3750 -

F1(x) F1(x)

3500

‘ ‘ ‘ \ \ 3500 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 35C 0 50 100 150 200 250 300 350

Figure 6.9. Offline non-dominated sets obtained by the PBAA and PAEStlaigorusing the four
variants of the relaxed dominance relation for the test instance trent1.

In the case of PBAA, out of the total number of times in which an improvement
in at least one of the objectives was achieved, 70% of these Ef(@} was
improved and 32% of these timE2(x) was improved. The sum is greater than 100%
since sometimes both objectives are improved. Out of the number of times in which
F1(x) was improved, in 30% of these the detrimenfE2(x) was acceptable and the
new solution considered better than the current one. Out of the number of times in
which F2(x) was improved, in 35% of these the detrimenFirfx) was acceptable

and the new solution considered to be better than the current one. For PAES the

145

Multiobjective Approaches

results are as follows: out of the total number of times in which an improvement in at
least one of the objectives was achieved, 61% of the #he9 was improved and

41% of the timed$=2(x) was improved. Out of the number of times in whikt(x)

was improved, in 43% of these the detrimenE#{x) was acceptable and the new
solution considered to be better than the current one. Out of the number of times in
which F2(x) was improved, in 35% of these the detrimenFirfx) was acceptable

and the new solution considered to be better than the current one.

The above results suggest that, for the trentl instance, finding candidate
solutions with lower values of soft constraint violatidfr2(x)) than the current
solution is more difficult in general. Then, it seems that by relaxing the acceptance of
solutions with higher values df2(x) in the trentl problem, the algorithms are
provided with a wider view and these solutions may lead to better ones later on in the
search. Finally, figure 6.10 compares, for the trentl instance, the offline non-
dominated sets obtained with the relaxed dominance variant B and the other two

evaluation methods, standard dominance and aggregating function.

4000 - 4000 -

PBAA PAES
4750 4750
4500 - 8 —x—Agg 4500 - 9 —x— Agg
/ —a— Dom 3 —a— Dom
4250 —o— Rel.Dom.B 4250 | i —o— Rel.Dom.B
‘ e

3750 - 3750 -

3500 - 3500 -

3250 A 3250 -
F1(x)

F1(x)

3000 3000

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Figure 6.10. Offline non-dominated solutions obtained byeheh algorithm with each evaluation
method for the test instance trent1.

Although the non-dominated sets obtained with both algorithms, using the
relaxed dominance variant B, are much better that the ones obtained with the original
relaxed dominance (shown in figure 6.8), still the two other fithess evaluation
methods help to obtain better results in both algorithms. In the next section, more
results are presented in an attempt to investigate the effect of the fitness evaluation

method used on the evolution of the objective values.

146

Multiobjective Approaches

6.5.9. The Evolution of Objective Values

To investigate the effect of the fitness evaluation method on the evolution of the
objectives, the values dfl(x), F2(x) and F(x) for each individual in the best
populations of PBAA (see figure 5.3) were recorded. The same was done for the
current solution in PAES. Only a sample of the results are presented here, but the
graphs shown below are typical of the observations made in all the runs of the
experiments for both algorithms and the three test problems. Figures 6.11 to 6.13
show for the nottl instance and the PBAA, the evolutidRlgx), F2(x) andF(x) for

one individual when each of the evaluation methods was used.

As expected, the values BfiL(x) or F2(x) when using the aggregating function
are sometimes worsened in favor of improving the aggregated value but frequently
that detriment is temporal and the previous value is recovered or improved later on in
the process. Similar observations can be made when the relaxed dominance is used to
evaluate solution fitness. This, of course, cannot happen when using the standard
dominance relation since the candidate solution is accepted only if at least one of the

objectives is improved without worsening the other.

3000

—F1%) —F2(x) F(x)

2000 -

1000

0

0 Evaluations 5000

Figure 6.11. Evolution of the objective values for one individnathe best population of PBAA
during a typical run using the aggregating function.

3000

—F1Y ——F2
2000 -

1000 -

F(9

0
0 Evaluations 5000

Figure 6.12. Evolution of the objective values for one individnathe best population of PBAA
during a typical run using the standard dominance.

147

Multiobjective Approaches

3000

—F1x) —F2(x)

F()

2000 +

1000 H

0

0 Evaluations 5000

Figure 6.13. Evolution of the objective values for one individnathe best population of PBAA
during a typical run using the relaxed dominance.

6.5.10. Further Discussion of Results

There is an increasing interest by researchers in various fields in the application of
metaheuristics to multiobjective optimisation problems. Most of the published
research on this subject has been focused on the development of new algorithms or
extending existing single-objective ones towards multiobjective approaches. As we
noted in section 6.2.3, a considerable number of papers report on the comparison
between multiobjective optimisers on test and real-world problems. However, it is
also fundamental to investigate the reasons why metaheuristics for multiobjective
optimisation succeed or fail in certajproblem domains to achieve a better
understanding of their functioning in order to design more effective and efficient
approaches. Although some research has been published on the effect that some
strategies have on the performance of some metaheuristics for multiobjective
optimisation (Deb, 1999; Laumanns et al., 2001), we believe that more research on

this subject is required.

The research presented here aims to be a contribution to the better understanding
of the mechanisms and conditions that influence the performance of multiobjective
optimisers. The subject of study here has been the effect of the method used to assign
fitness to solutions (and therefore select surviving ones) on the performance of some
algorithms for Pareto optimisation. The fitness evaluation methods considered here
were: the aggregation of objectives, the dominance relation and a relaxed form of
this dominance relation. Arguments can be found in the literature in favor and
against the use of aggregating functions or the use of dominance within

metaheuristics for Pareto optimisation. For example:

148

Multiobjective Approaches

Some researchers have expressed that Pareto-based evolutionary algorithms are
more suitable for multiobjective optimisation than local search methods using
aggregation of objectives (Coello Coello et al., 2002; Deb, 2001) while other
researchers have shown that approaches that use local search and aggregating
functions are suitable for dealing with various multiobjective optimisation
problems (Jaszkiewicz, 2002; Czyak and Jaszkiewicz, 1998; Gandibleux and
Freville, 2000; Menczer et al. 2000; Ulungu et al. 1999).

Knowles proposed and evaluated several approaches (single-point and population-
based) for multiobjective optimisation based on a form of local search: mutation
operators and using the dominance relation to evaluate solutions (Knowles, 2001).
Jaszkiewicz expressed that.Pareto ranking is not well suited for hybridization

with local searchand found that weighted linear functions had better ability than
Tchebycheff functions in finding potential non-dominated solutions within a
genetic local search algorithm (Jaszkiewicz, 2002, page 54).

Knowles et al. suggested that using the dominance relation can be beneficial even
in single-objective optimisation for reducing the number of local optima (Knowles
et al., 2001).

Kokolo et al. illustrated the difficulty that approaches using dominance selection
may exhibit in finding Pareto optimal solutions and suggested the use of relaxed
dominance ¢-dominance) instead (Kokolo et al., 2001).

Laumanns et al. usedddominance (similar ta-dominance) to implement better
archiving strategies that overcome the difficulty of multiobjective evolutionary
algorithms to converge towards the optimal Pareto front and maintain a wide
diversity in the population at the same time (Laumanns et al., 2002).

The use of subcost guided search was proposed by Wright to deal with compound-
objective timetabling problems (Wright, 2001). An improvement of a subcost
(objective) is preferred even if the overall cost or solution fitness is not improved
at all or it is worsened. The hope is that the detriment suffered will be repaired
later in the process since the improvement in one aspect of the solution (the
subcost) enables a kind of guided diversification towards promising areas of the

solution space.

149

Multiobjective Approaches

The above points show the various opinions (some of these conflicting) that
researchers have expressed when referring to the fitness evaluation method used
when implementing algorithms for multiobjective optimisation. In relation to this,
the investigation carried out in this chapter shows the reader that, although an
approximation to the Pareto optimal set is the aim, the (standard) dominance relation
is not always the best method to assign fithess to solutions. The results from the
experiments described here suggest that the performance of the multiobjective
metaheuristics investigated is very much influenced by the method used to evaluate
the fitness of solutions during the search process. The problem tackled here is a
highly constrained combinatorial optimisation problem and the existence of
constraints seems to be a reason for the difference observed in the performance of
both algorithms when using different fitness evaluation methods. It is apparent that if
it is more difficul to achieve improvements in one of the objectik@éx] here) than
in the otherE1(x) here). Then, a compromise that allows detriments in the objectives
should be made so that the algorithms are provided with better mechanisms to
explore other areas of the solution space. In terms of both online and offline
performance, the inferiority of the dominance evaluation method is evident. Between
the aggregating function and the relaxed dominance it seems that the first one helps
us to achieve better values on the minimisation of soft constraints viol&&¢x)(
while with respect to the minimisation of space misub&(X) the relaxed
dominance benefits the most. It also appears that the relaxed dominance evaluation
method helps to achieve a better coverage of the intended compromise surface.
However, the distance between the obtained non-dominated fronts and the intended
compromise surface is shorter when using the aggregating method. In terms of
diversity in the solution space for the obtained sets, the three methods seem to be

competitive but a small inferiority of the dominance relation can be observed.

6.6. Summary and Final Remarks

This chapter presented an investigation into the space allocation problem from a
multiobjective perspective. First, experiments were carried out to compute the
correlation between the various criteria (six soft constrainst types, space wastage and
space overuse) in order to determine if they were in conflict or not (Wright and

150

Multiobjective Approaches

Marett, 1996). It was shown that not all the criteria are in conflict and therefore, they
were grouped into two conflicting objectives: the minimisation of soft constraints
and the minimisation of space misuse. Additional experiments were carried out to
confirm the conflicting nature of these two objectives in the test problems used here.
It was observed that, in general, while optimising one of these two objectives the
other one suffered considerable detriment.

Given the two conflicting objectives, the hybrid metaheuristics developed in
chapter 5 were adapted for the Pareto optimisation of the academic space allocation
problem. These approaches were modified in order to collect a set of non-dominated
solutions to be presented at the end of the search. It was observed by experimentation
that the population-based hybrid annealing algorithm produced the best results
overall. During the experiments, it was noted that this technique is capable of
obtaining sets of non-dominated allocations that are also highly diverse. It can be
suggested that this is because, instead of recombination, the algorithm is based on
self-adaptation operators to evolvelusions. The cooperation among individuals
within the population is encouraged by a mechanism to share information during the
evolution process. Although it was shown that this population-based hybrid is an
effective technique for the Pareto optimisation of the space allocation problem,
experiments with other benchmark problems, like those proposed in (Deb, 1999;
Zitzler, 1999; Knowles and Corne, 2000; Ulungu and Teghem, 1994), are required to

validate the effectiveness of this approach in other problem domains.

An investigation was also carried out in this chapter to assess the influence that
different methods of assigning fitness to solutions have on the performance of
multiobjective optimisers. We questioned the circumstances (problem domain and
search strategy) under which the dominance relation is the best alternative to identify
improvement during the search. As shown in section 6.5, sometimes it is more
beneficial to use the combination of objectives (aggregating functions) or relaxed
forms of dominance (that allow detriment of objective values) for assessing solutions
during the search in Pareto optimisation. An interesting future research direction is
the evaluation of solution fitness using different strategies within the population. For
example, some solutions in the population can be evaluated using dominance while

others using an aggregated function and others using relaxed dominance.

151

Multiobjective Approaches

Chapter 7. Hybrid Evolutionary Metaheuristics
Based on Cooperative Local Search

7.1. Introduction

As noted in the literature review of chapter 3 (section 3.5.14), the hybridisation of
metaheuristics has proven to be very successful in many applications. Among the
hybrid approaches reported in the literature, some common ideas have been
comprehensively explored while other alternatives appear less frequently. This
chapter focuses on the concept of cooperative local search and proposes this method
for extending a range of single-solution local search algorithms to hybrid
evolutionary metaheuristics. Instead of incorporating local search into a population-
based approach, a scheme that promotes the cooperation between various local

searchers by sharing the information gained during the search is proposed.

At a high level of abstraction there are two ways in which the hybridisation of
population-based algorithms (such as genetic algorithms) with local search-based
techniques (such as simulated annealing or tabu search) can be achieved. One is
adding local search components that ‘help’ the population-based method by
providing it with ‘intensification’ mechanisms (Reeves, 1996b). The second way is
to consider a population of local searchers and a powerful cooperation mechanism
that allows then to ‘help’ each other. The first approach has received considerable
attention and the hybrids obtained are commonly known as memetic algorithms,
genetic local search, hybrid genetic algorithms and other names (Moscato, 1999;
Moscato and Cotta, 2003). It has been shown that by adding intensification local
search techniques to the explorative capability of genetic algorithms better results
can be produced in many optimisation problems. See for example (Fox, 1993;
Reeves, 1996; Reeves, 1996b; Glover et al., 1995).

The hypotheis presented here is that the second method of ‘keeping’ local search
as the driving mechanism and ‘helping’ it when required to perform a better
exploration can be effective in those combinatorial optimisation problems in which
the recombination of solutions is not straightforward. This includes problems such as

space allocation, scheduling, timetabling, grouping and other constrained problems

118

Multiobjective Approaches

that require special attention when recombining solutions. In these cases, specific
solution encodings, recombinative operators, reparing methods or unfeasibility
penalty schemes have to be designed (Michalewicz, 1999). On the other hand, good
local search heuristics can be (relatively) easily implemented for many of the
problems mentioned above (Aarts and Lenstra, 1999). Then, by having a population
of local searchers that share the information obtained during the search, a form of
recombination can be achieved and the performance of the local search mechanism
can be improved. In order to illustrate this form of hybridisation, a range of single-
solution local search algorithms are extended towards hybrid evolutionary
approaches by adding a population and a mechanism that promotes cooperation
between the members of the population during the search. Experiments are carrried
out to compare the performance of the original and the extended variants of the
algorithms when applied to test instances of the space allocation problem. The main
goal of this chapter is to propose and evaluate some ideas for hybridising
metaheuristics particularly for problems where several high quality and diverse
solutions are required and the design ebrabinative operators requires extra effort.

The research presented in this paper is included in the paper [Bur2003b] (see the

appendix on page 199).

7.2. Hybridising Recombinative and Local Search Methods

The hybridisation of recombinative approaches and local search techniques has been
extensively studied and, in particular, the integration of simulated annealing, tabu
search and genetic algorithms has received considerable attention. See for example
(Abboud et al., 1998; Chen and Lin, 2000; Fox, 1993; Glover et al., 1995). The
hybrid metaheuristics proposed in the previous chapters are also examples of this
type of hybridisation. Moreover, the incorporation of local search heuristics,
specialised recombination/mutation operators and other ‘helpers’ specifically
designed to exploit the knowledge of the problem domain into genetic algorithms has
led to the development of so-called memetic algorithms (Moscato 1989, Moscato,
1999; Moscato and Cotta, 2003). The name memetic algorithms is a relatively recent
terminology that attempts to include all algorithms that fit the description given
above but other names for this class of methods include genetic local search, hybrid

119

Multiobjective Approaches

genetic algorithms and others. See for example (Burke and Smith, 1999; Burke and
Newall, 1999; Burke and Smith, 2000; Burke et al., 2001; Falkenauer, 1996;
Ishibuchi et al., 1997; Jaszkiewicz, 2002; Reeves, 1996; Reeves, 1996b).

One of the most common strategies used by researchers and practitioners to
design memetic algorithms is to add ‘helpers’ to an evolutionary algorithm
(commonly a genetic algorithm). That is, the structure of the evolutionary algorithm
based on the concepts of generationspmeination, selection and mutation is
maintained and the knowledge of the problem domain is added to ‘help’ to achieve a
better performance. This strategy is illustrated in figure 7.1.

‘helpers’ . Generate initial population

. Select individuals for recombination

problem domain . ReCOm_bin_e_ _
knowledge, specialised . Select individuals for mutation
operators, specialised . Mutate

. Select individuals to for the new population
. Got to the nexgeneration

heuristics, etc.

~NO A WNPRP

Figure 7.1. Common strategy for designing memetic algorithms.

The design of specialised recombination/mutation operators is not
straightforward for some combinatorial problems such as scheduling, timetabling,
rostering and related problems (Aickelin and Dowsland, 2000; Burke et al., 1995;
Erben, 2001; Falkenauer, 1994). Also, dealing with highly constrained problems
adds additional difficulties to the application of recombinative techniques (Coello
Coello, 2000; Kellerer and Pferschy, 1999; Thiel and Voss, 1999). It must be said
that despite these difficulties, many successful applications of recombinative
techniques to these and other problems exist. See for example (Aickelin and
Dowsland, 2000; Brizuela et al., 2001; Burke et al., 1995; Chambers, 2001; Chu and
Beasley, 1997; Chu and Beasley, 1998; Falkenauer, 1994; Falkenauer, 1996).
However, it can also be noted that not many hybrids based on the opposite
philosophy have been investigated. That is, given a local search method to
incorporate ‘helpers’ perhaps inspired from population-based methods that improve
the explorative ability of the algorithm. In fact, very efficient single-solution local

search heuristics have been developed for some combinatorial problems and their

120

Multiobjective Approaches

possible extension to population-based approaches deserves attention. One way in
which this concept can be implemented is by, what in this chapter is called,

cooperative local search which will be described in the next section.

7.3. Cooperative Local Search

The goal here is to describe algorithms that were implemented following the idea of
enriching local search methods with elements of recombinative approaches. In
cooperative local search, there is a population of local searchers and each of them
can be thought of as an explorer. Eaciplerer is associated with a particular
solution. Several explorers can be made to cooperate by sharing the information that
each of them obtains or learns during the search. This cooperation can be achieved,
for example, by sharing promising parts of good discovered solutions. But also
sharing ‘bad experiences’ among the population can prevent some explorers from
being trapped in areas of poor solutions. This information sharing can be
implemented by recombinative operators or by keeping track of good and bad moves.
Moreover, these periods of cooperation are not necessarily driven by the principle of
generations as in genetic algorithms. That is, each explorer searches the given
solution space on its own and the cooperation occurs whenever it is required. It may
be that some explorers achieve better results than others resulting in asynchronous
converging times. Then those explorers that cannot achieve further improvement ask
for the cooperation of others. This concept@bperative local search is illustrated in

figure 7.2.

cooperation mechanisms start searching cycl

self-improvemen of each individual
by local search

sharing moves, sharing
parts of good and bad
solutions, centralised
control, etc.

finds something to
gets stuk do, gets unstuck
4

ask for cooperation from other
members of the population

Figure 7.2. Thecooperative local searclscheme where each individual carries out its own local
search. When an individual gettuckit asks for the cooperation of the population in order to find
something to do to getnstuckand continue the search from another position in the solution space.
The results achieved by each individual may be different at different times and thisagesou
diversity within the population.

121

Multiobjective Approaches

Each explorer can have its own intensification and diversification mechanisms
and some degree of cooperation during the intensification phases could be permitted
(for example, by means of a common control scheme). However, the central idea is
to allow each explorer to do its own search and implement the cooperative phases
when required. Using the terminology presented by Preux and Talbi (section 3.5.14)
the cooperation can be synchronous or asynchronous, the explorers can use the same
(homogeneous) or different (heterogengossarch strategies and can search the
same of different solution spaces (global, partial or functional). Similar concepts to
the ones illustrated in figure 7.3 were proposed by Salman et al. in their
implementation of a cooperative team of heuristics to solve a variant of the multiple
knapsack problem (Salman et al., 2002).

7.4. Hybrid Evolutionary Metaheuristics

7.4.1. Relation to Previous Work

The application of various metaheuristic approaches, including genetic algorithms, to
solve the space allocation problem has been investigated earlier in this thesis. It was
shown in chapter 4, that despite designing specialised genetic operators to deal with
the existing constraints, the genetic algorithm was outperformed by the other three
local search techniques implemented: iterative improvement, simulated annealing
and tabu search. Then in chapter 5, components from various metaheuristics were
incorporated into one single-solution hybrid approach and it produced very good
results. Also in that chapter, the single-solution hybrid approach was extended
towards two population-based variants using the concepts of cooperative local search
presented above. One population-based approach obtained a high quality solution
(with the rest of the population being substantially less fit) in a short computation
time while the other approach generated a set of high quality solutions at the expense
of longer computation time. In this chapter, the cooperation mechanism described in
section 5.4 has been enhanced as detailed next in section 7.4.2 and is used to extend a

range of single-solution approaches to hybrid evolutionary variants.

122

Multiobjective Approaches

7.4.2. The Cooperation Mechanism

As discussed in section 7.3, the design of a hybrid evolutionary approach based on
the idea of cooperative local search could be implemented in several ways. The way
in which this was done for the space allocation problem domain using the single-
solution algorithms presented in chapter four is illustrated next. The cooperation
mechanism implemented here attempts to promote the idea that individual explorers
should share information during the search and it differs from the one in chapter five
on the heavy mutation operator. The two matribgsand My (described in section
4.8.1) are shared among all individuals in the population in order to store the tabu
and attractive moves explored by all individuals in a shared memory scheme. That is,
this strategy can be regarded as a way of storing parts of attractive solutigRs in
and parts of unattractive solutions Wfr (genetic material in recombinative
algorithms terminology). The information stored in the two matrices is used in the

cooperative local search scheme in two ways:

Information sharing. Each explorer performs the neighbourhood exploration but the
matrices are updated by all individuals in the population so that the whole population
contributes to the tabu and attractive moves storddrimnd Ma. When a single-
solution explorer cannot get a feasible solution from the neighbourhood search
heuristicH_s (see section 4.5.2), i.e. when twoperation mechanisis invoked, a
heuristic is used to modify the solution using the information storet/anThis
heuristic goes through each rawn the matrix and explores the most attractive
allocations for that entity. That is, it starts with the cell having the highest value and
continues to the one with the lowest value and makes the allocation entity to a room
that is suitable (keeps the solution feasible) and is different from the one in the
current solution. The changes are made even if the solution is worsened and in order
to avoid a potential high disruption a maximurmgf0 changes are implemented in

this way.

Heavy mutation. A mutation operator that ‘heavily’ disrupts the current solution is

implemented as follows. Those entities that are penalised the most (are involved in
the violation of soft constraints or in the misuse of space) are removed from their
assigned rooms. Then, the allocation of each of these (now unallocated) entities to

various rooms is attempted. For each entity, the rooms from the first to the last one

123

Multiobjective Approaches

are evaluated for a feasible allocation with the exception of those allocations marked
as tabu in the matri¥/r. The degree of disturbance carried out by the mutation
operator is controlled by setting the maximum number of penalised entities that will
be unallocated (many can be penalised). A maximuni5oéntities are permitted to

be unallocated here. The purpose of this ‘heavy’ disturbance is to encourage each

explorer to search a (hopefully) very different area of the solution space.

7.4.3. Extending the Single-Solution Approaches

Given a single-solution explorer (local searchergdiBat takes the current solution

x and attempts to find a better next solutiona hybrid evolutionary approach gg>

based on cooperative local search can be designed. The three single-solution local
search metaheuristics described in chapter 4 (iterative improvement, simulated

annealing and tabu search) were extended to hybrid evolutionary algorithms as
described in the pseudocode given in figure 7.3 in order to illustrate the idea of

cooperative local search.

Extended Populationbased Approach L$g

Step 1. Generate the initial current population.
Step 2. Archive the current population as the best population so far.
Step 3. Do

Step 3.1. Do population self-improvement (intensification) updatiagotst population so far,
i.e. each individual in the population executes the single-solutoath $earch approach
LSss using theinformation sharingmechanism and attempts to improve its own
solution iteratively. This phase continues until no further self-ingment is possible,
i.e. it terminates when none of the individuals in the population can improvement its
current solution.

Step 3.2. Do random variation of the population (diversification), siece all individuals
appear to be ‘stuck’, all of them are disturbed using the heuhstwy mutation
operator.

Step 4. Until the termination criterion is satisfied.

Figure 7.3. Hybrid evolutionary scheme basedawperative local search

The first phase (step 1) corresponds to the construction of a population of
explorers each one associated to an initial solution. In the intensification phase (step
3.1) each explorer aims to achieve self-improvement usingtbemation sharing
mechanism. In the diversification phase (step 3.2), each explorer randomly modifies
its current solution using thieeavy mutatioroperator. The best solution found by

each explorer is maintained in the best population so far. This population serves as an

124

Multiobjective Approaches

archive that keeps the best solution visited by each explorer in the population. Note
that although the improvement rate of some of the explorers could be better than
others, each explorer has its own solution and none is permitted to contribute more
than one solution to the best population so far. This has been decided for two
reasons: 1) to encourage diversity in the population by avoiding one or more
explorers to dominate the search, and 2) to assess the effect of the cooperation

mechanism in the experiments presented later.

The detailed pseudocode for each hybrid evolutionary approach is not included
here. However, note that the modification consists of replaciggySeach single-
solution technique in the pseudocode shown in figure 7.3 above. Then, the algorithm
variants implemented here are the following: the iterative improvement algorithm of
section 4.6 and its population-based variards@nd Ibg); the simulated annealing
algorithm of section 4.7 and its population-based variant{®Ad SAg) and the

tabu search algorithm of section 4.8 and its population-based variagyg g
TSep).

7.5. On the Performance of the Extended Approaches

7.5.1. Experimental Settings

Several sets of experiments were carried ipubrder to assess the validity of the
concepts presented and described in the previous sections. The main issue was to
evaluate whether it is beneficial or not to extend a single-solution technique towards

a population-based approach as proposed above. The experiments were designed to
compare the performance of the population-based variant against the performance of
the corresponding single-solution technique for finding a set of high quality
allocations which are also diverse with respect to the solution space. A fair way to do
that is to execute each method for an equal computation time. The number of
solution evaluations or neighbourhood move explorations is another possibility for
comparison but because the population-based approaches spend extra time using the
cooperation mechanism this could be unfair for the single-solution methods. Given a
short computation time, the single-solution approaches quickly achieve improvement

but they get stuck relatively early too while the population-based approaches can

125

Multiobjective Approaches

take more time (relatively to the single-solution variants) to reach high quality
solutions. With this in mind, experiments were carried out to find the computation
time ting for which the single-solution approaches achieved no further improvement

for a considerable number of iterations.

Given an initial population of sizp, the single-solution approach was applied
for ti.g computation time to each of the solutions in this population and the best
solution at the end of each run was archived pisolutions are obtained. Then, the
corresponding population-based approach was applied to the same initial population
for pA#q computation time. This process was repeated ten times for each of the
problem instances used here: nottl, nottlb, nottlc and trentl (described in section
2.5). For each set gb solutions obtained, the best, average and worst solution
qualities were recorded and these values were averaged for each set of ten
repetitions. In order to further compare the performance of each population-based
variant against its corresponding single-solution algorithm, experiments were carried
out using small and large populations with low and high diversity for each test
instance as shown in table 7.1 below. The results obtained from the experiments

described here are presented and discussed in the following subsections.

p=20 p=5
65%< Vi, > 90% 20% &/, < 40% 65% </, > 90% 20% &/jp < 40%
nottl ,t,q = 120 nott1A nott1A2 nottlB nott1B2
nottlb t,q = 60 nott1bA nott1bA2 nottlbB nott1bB2
nottlc ,t,g = 30 nottlcA nottlcA2 nottlcB nottlcB2
trentl tnqg =70 trentlA trent1lA2 trentlB trentlB2

Table 7.1. Initial populations of different sizasd diversity values for the four test problems.

7.5.2. Results on the Fitness of Solutions

In this section, the single-solution approaches and corresponding population-based
variants are compared with respect to the fitness of the solutions obtained. Each of
the graphs in figures 7.4 to 7.7 summarises all the results obtained using the various
initialised populations for one of the test instances. In each pair of bars in these

graphs, the left bar refers to the results produced by the population-based variant of
one algorithm, the right bar refers to the results obtained by the corresponding single-
solution approach and a line is drawn between the averaged solution fithess obtained

so that the comparison is clearer.

126

Multiobjective Approaches

From figures 7.4 to 7.7 it is apparent that the solutions obtained by the
population-based variants are better than those produced with the single-solution
approaches. It can be observed that the best, average and worst solution qualities are
better for the extended algorithms in most cases of each test instance. This is clear
for the nottl and nottlc test instances as shown in figures 7.4 and 7.6 respectively. In
the results for the nottlb instance shown in figure 7.5, the extended simulated
annealing algorithm is outperformed by the single-solution approach when the initial
population is small and the diversity is low (nott1bB2). Also, in some cases the worst
solution found by the population-based variant of one algorithm has a lower quality
than the one found by the corresponding single-solution approach. This is true for the
simulated annealing algorithm on the nottlbA, nottlbA2, nottlbB and trentlA2

cases and the tabu search algorithm on the nott1bB and nott1bB2 cases.

1200 - I SA TS I SA TS I SA TS I SA TS
1100 +
1000 +
900 +
F() 800 | H
700 + I/[
600
500 +
400 +
300 L nott1A nott1A2 nottlB nott1B2

Figure 7.4. Results obtained by the hybrid evolutionary approachtefproblem nottl.

Il SA TS I SA TS I SA TS I SA TS
700 +
650
600 +
F(x) 550 |
500 +
450 +
400 +
as0 | nottlbA nott1bA2 nott1bB nottlbB2

Figure 7.5. Results obtained by the hybrid evolutionary approachéefproblem nottlb.

127

Multiobjective Approaches

Another important observation in these graphs is that in some cases, even the
worst solution produced by the extended algorithm outperforms (or at least matches)
the quality of the best solution found by the corresponding single-solution approach.
This is true for the iterative improvement algorithm on most cases of the nottlc and
trentl problems, the simulated annealing algorithm on the nottlcA and trentlB cases

and the tabu search algorithm on nottlcB, nottlcB2 and trentlA2 cases.

Il SA TS 1 SA TS [SA TS Il SA TS
800
700 +
600 +
F(x)

500 +
400 +
300 +

200 L nottlcA nottlcA2 nottlcB nottlcB2

Figure 7.6. Results obtained by the hybrid evolutionary approaches for the problem nottlc.
Il SA TS I SA TS I SA TS I SA TS

4800 1
4500 +
4200 +
3900 +
F(x) 3600 |
3300
3000 +
2700 +

2400 T trentlA trentlA2 trentlB trent1B2
2100 1

Figure 7.7. Results obtained by the hybrid evolutionary approaches for thenprtobhtl.

The size of each bar gives an indication of the difference in quality between the
worst and best solutions found by each algorithm variant and it is observed that in
general this difference appears to be smaller for the population-based approaches
compared with the corresponding single-solution algorithms. The exception to the
above seems to be on the nottlb test instance for which the bars corresponding to the

extended approaches are larger than those of the single-solution variants in most of

128

Multiobjective Approaches

the cases. An interesting result observed from the figures 7.4 to 7.7 is that in some
cases the extended variant of a less sophisticated algorithm outperforms the single-
solution variant of another more elaborate technique. For example, in figure 7.4 it
can be seen that the extended variant of the iterative improvement algorithm clearly
outperforms the single-solution variant of the simulated annealing algorithm on the
nottlB case. The next subsection presents and discusses the results obtained in terms
of the population diversity.

7.5.3. Results on the Diversity of Solutions

Tables 7.2 and 7.3 show the diversity for the initial population (indidasgdnd the
diversity of the set of solutions produced (indica¥g)l by each algorithm variant on

the experiments described above. Each value corresponds to the averaged (over the
ten runs) percentages of the population diversity (see section 2.4.3).

Vjp values obtained by the single-solution and population-
based variants of each algorithm
Test Case Vip ”SS Il PB SASS SAPB TSSS TSDB
P1A 75 57.5 _59.9 58.3 59.5 57.6 55.9
P1B 90 69.7 _73.7 71.6 71.5 71.6 70.4
P2A 78 68.3 _72.0 70.7 71.8 68.2 67.9
P2B 95 88.2 _87.5 87.0 85.8 88.9 83.1
P3A 65 37.9 _46.6 39.4 47.0 37.6 _454
P3B 86 50.5 _58.5 52.9 59.8 49.4 _50.7
nott1A 84 68.9 _74.0 72.8 74.0 71.7 77.3
nottlB 95 85.4 _84.6 85.4 87.2 86.0 88.0

Table 7.2. Average diversity in the final population when the diversityeoinitial population is high.

Vi, values obtained by the single-solution and population-
based variants of each algorithm

Test Case| V Ilss llpg SAss SAes TSss TSs
P1A2 28 354 _595| 442 57.1 34.4 55.9
P1B2 32 48.0 _719 38.5 73.2 46.6 70.8
P2A2 39 48.9 _72.8 41.0 71.9 48.9 69.0
P2B2 34 56.2 _87.0 57.7 88.4 55.3 55.0
P3A2 31 259 475| 371 44.0 25.8 43.8
P3B2 26 29.7 _58.7| 415 58.2 39.7 56.6
nott1A2 23 409 737 | 424 727 51.8 76.5
nott1B2 40 37.0 _87.0| 549 85.5 44.7 875

Table 7.3. Average diversity in the final population when the diversityeahttial population is low.

129

Multiobjective Approaches

Table 7.2 shows the results obtained when the initial population has a high
diversity while table 7.3 shows the results obtained when the initial population has a
low diversity. When comparing the results obtained with the two variants of each
algorithm in each problem, the best diversity (highest value) is underlined to make
the comparison clearer. In those cases in which the initial population is highly
diverse, it is observed in table 7.2 that the population-based variants are capable of
obtaining better results than the corresponding single-solution approaches in many
cases. In the rest of the cases in table 7.2, the diversities of the populations produced
by the extended approaches are very competitive with those of the single-solution
variants. On the other hand, if the initial population has a low diversity (table 7.3),
the extended approach is capable of improve upon the diversity of the initial
population in some cases and although the single-solution variants also achieve a
certain improvement in this respect, the diversities obtained by the extended

approaches are far better in almost all cases.

7.5.4. On the Rate of Improvement

From the results presented and discussed above it is clear that the population-based
variants are capable of finding a high quality and diverse set of solutions regardless
of the diversity (low or high) and size (small or larger) of the initial population. This
section reports on the performance of the single-solution and extended methods with
respect to the computation time required to achieve the results reported above. Figure
7.8 shows typical runs for the single-solution and extended approaches over the
computation time for the problem case trentlB in which the population size equals 5
and the initial population is highly diverse. These graphs show the quality of the best,
average and worst individuals in the population at each time during the run. Note that
since the population size is 5, the processing time shown for the extended approaches
is five times longer (Bnq) than the processing time shown for the single-solution
methods. However, as explained in section 7.5.1 the total time spent by each variant
to process the whole population is the same because in each run, the single-solution
method was applied to each individual in the initial population. Only the graphs of
typical runs for one problem case are shdwere, but similar sults were observed

for all problems in runs with different population sizes and different initial

diversities.

130

Multiobjective Approaches

Figure 7.8.b shows that the single-solution variant of iterative improvemgit (Il
achieves its best performance very quickly in slightly less than 20 seconds. For the
population-based variant of the same algorithmg)licomparable high quality
solutions are found after 100 seconds, although further improvement and the best
average are achieved after 250 seconds (figure 7.8.a). In other words, it takes about
275 seconds for the extended approach to find the best values for the best, average
and worst statistics in this population of 5 solutions. For the single-solution variant it

takes about 20 seconds to achieve its best statistics for each of the individuals in the

population.
F(X) a) "PB F(X) b) "53
6000 6000
Worst Worst
5500 - Average 5500 Average
Best Best
5000 - 5000
4500 - 4500 —
4000 - 4000
3500 - ‘ 3500
3000 T T T T T T 3000 -+ T T T T T T
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70
CPU Time (secs) CPU Time (secs)
F(x) c) Sheg F(x) d) Shss
6000 6000
Worst Worst
5500 - Average 5500 Average
Best Best
5000 - 5000
4500 4500
4000 - 4000
3500 - 3500
3000 T T T T T T 3000 -+ T T T T T T
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70
CPU Time (secs) CPU Time (secs)
F(x) €) TSs F(x) f) TSss
6000 6000
Worst Worst
5500 Average 5500 - Average
Best Best
5000 5000 -
4500 4500 H
4000 4000 -
3500 3500 -
3000 -+ T T T T T T 3000 T T T T T T
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70
CPU Time (secs) CPU Time (secs)

Figure 7.8. Rate of improvement over the computation execution time on thenptoéntlB for each
algorithm. The worst, average and best solutions for a typical run are show here.

131

Multiobjective Approaches

As expected, the single-solution variant is less computationally expensive but no
further improvements can be achieved. Although the population-based approach
takes more time to produce a set of high quality solutions, even the worst solution
found here outperforms the best result obtained with the single-solution method.
Moreover, after a long processing timgglbtill improves the average quality of the
population while I§s does not produce any better result. Assuming that we need to
obtain only one good solution and that we do not have much computation time
available, then Hsis a perfectly acceptable approach. However, if 5 good solutions
are required in order to carry out comparisons and select the most appropriate one,
then it will take about 28 5 = 100 seconds for the;§to achieve this (by re-starting
the algorithm). At this time #k has already achieved a much better best solution and
the average is as good (if not better) than the one producedsbidwever, it is
clear that it is possible fordg to further improve the quality of the population after
this computation time. Similar observations can be made for the variants of the

simulated annealing and tabu search algorithms.

It could be argued that the execution times used here present an advantage for the
population-based approaches, therefore experiments were carried out to run the
single-solution variants for the same time as the corresponding population-based
approach. For example, for problem trentlBgs Mvas executed for 350 seconds
(5hg) for each individual in the population. That is, the total time spent to obtain the
set of 5 solutions was 1750 secs. These results were compared with those obtained by
Il pg after an execution time equal to 350 seconds (the same as before). In any of the
cases, the single-solution variant outperformed the extended approach even with this
advantage of longer execution time. The same was observed for the three algorithms
in all test problems, i.e. none of the single-solution methods achieved further

improvements after longer execution times.

7.6. The Best Results for All Test Instances

A single-solution hybrid metaheuristic and population-based variants of that
approach were presented and tested in chapter 5. Those population-based methods
incorporated a cooperation mechanism similar to one described in section 7.4.2. to

share information within the population during the search. However, that mechanism

132

Multiobjective Approaches

is less elaborate and effective than the one proposed in this chapter. The focus in
chapter five was on implementing a common annealing schedule to control the
evolution of the whole population. This section compares the performance of the
hybrid evolutionary algorithms presented in this paper and the PMHM approach
described in chapter five. In addition, the single-solution hybrid metaheuristic
presented in chapter five is also extended as proposed here using the scheme of
figure 7.3. That is, this extended variant MHliffers from the PMHM approach

with respect to the cooperation mechanism, which was enhanced in this chapter by

incorporating a more ‘intelligent’ heavy mutation operator.

Two goals were pursued in the experiments carried out here. First, to further
assess the performance of the various hybrid evolutionary metaheuristics developed
in this thesis and second, to report on the best produced results for all the test
instances of the space allocation problem described in section 2.5. Ten repetitions of
the experiments (as described next) were carried out. For each test instance, a
population of 20 initial solutions were generated usingAthecate-Rnd-BestRnd
heuristic described and tested in chapter 4. Then, each of the population-based hybrid
algorithms was applied to that initial population pii,q computation time. That is,
ten different initial populations were generated for each test instance and in each
repetition, the same initial solutions were used for all the algorithms. After collecting
all the solutions obtained by each hybrid evolutionary algorithm on each test
instance, the overall best and average solutions are reported in table 7.4. The best
results among all the algorithms for eachihefse test instances are indicated in bold.
Also as a reference, table 7.4 shows the quality of the manually constructed solution

for each test instance.

The first observation that can be made is that the wolverl test problem is easily
solved by all the algorithms and the solutions produced are far better than the
manually contructed allocation. It is also observed that for this problem, the average
solution quality obtained by the PMHM and the MHhlgorithms is the same as the
best solution found, i.e. these algorithms are capable of finding the best solution in
all the runs. As it was noted in previous chapters, this test problem seems easy to

solve because of the low number of constraints that it contains.

133

Multiobject

ive Approaches

nottl nottla nottlb nottlc trentl wolverl
plilhg = 2400 | plfhg=1600 | plg=1200 | plq =600 plthg = 1400 plthg = 500
Best Aver Best Aver| Best Aver Best Aver Best Aver Best Aver
Manual | 599.56| ----- 592.22 ----- 538.44 337.04 3873.56 1141.0 -
llpg |[568.13] 728.42 574.53 731.61 46847 544.02 348.27 424.69 3439.12 3I/EH2N| 821.41
SAs | 543.78| 687.00 575.716 704.53 470[72 57%.38 342.55 418.73 2724.47 J*c®H4D| 697.24
TSpg |491.25| 680.14 558.40 684.F9 432(69 547.76 323.82 3P1.46 2682.98 3IJHABAGKD| 669.58
PMHM |[525.93| 647.74 540.65 693.56 458,06 50%.84 334.91 378.54 3217.40 36ABI7P| 634.15
MHpg |482.21| 621.56| 521.91| 648.05|417.16| 479.50| 315.41] 392.16| 2531.41] 3104.01) 634.19| 634.13

Table 7.4. Comparing the performance of the hybrid evolutionary metaheuristios st instances
of the space allocation problem.

For the rest of the test problems, it can be observed from table 7.4 that the new
population-based variant of the hybrid metaheuristic gMHoutperforms the
previous extended version (PMHM). That is, the enhanced cooperation mechanism
proposed in this chapter permits this hybrid evolutionary algorithm to produce even
better results. With the exception of test instance nottla, the population-based tabu
search approach also produces better results than those obtained with the PMHM
algorithm. The I#g and the SAs approaches produce competitive results overall but
are clearly outperformed by the other three algorithms. Only on test instance nottlc,
the population-based variants of the iterative improvement and simulated annealing
algortihms do not match the quality of the manually constructed solution. In the rest
of the cases, all algorithms are capable of finding allocations with higher quality than
the reference solution. Table 7.4 shows that, in all the test problems used in this
thesis, the best solutions are also produced with thggMlgorithm, i.e. the hybrid
evolutionary approach obtained from extending the single-solution hybrid

metaheuristic presented in chapter 5.

7.7. Summary and Final Remarks

This chapter has reported results from a range of experiments on extending four
single-solution techniques: iterative improvement, simulated annealing, tabu search
and a hybrid algorithm, towards population-based approaches in order to illustrate
the concept otooperative local searckthat was proposed here. The cooperation

mechanism implemented consists of adding an information sharing scheme and a

heavy mutation operator that allows individuals in the population to share good and

134

Multiobjective Approaches

bad parts of solutions during the evolution process. This cooperating local search
scheme can be seen as an alternative to the design of elaborate recombination or
repairing operators for highly constrained optimisation problems. Also, since each
individual in the population uses mainly local search, no specific mechanism is
required to maintain diversity (in the solution space) within the population. This way

of approaching hybridisation seems to be a good alternative for improving upon the
performance of other single-solution metaheuristics when a set of solutions is
required. Other alternatives as discussed throughout the chapter are: designing a
sophisticated version of the algorithm, fine-tuning the parameters, designing

specialised heuristics and operators, hybridising using other schemes, etc.

From the experiments carried out here, it is clear that the performance of the
extended versions of the four metaheuristics, when solving the set of tests instances
of the space allocation problem, is better than the performance of the corresponding
single-solution algorithm. It also appears that population size and diversity in the
initial population does not decrease the effectiveness of the extended variants. This is
an attractive feature of the scheme proposed here since other population-based
approaches such as genetic algorithms usually require larger populations in order to
operate or they tend to converge prematurely unless mechanisms to maintian
diversity are added (Horn, 1997). Note that the implementations described here are
relatively simple and not a lot of parameter tuning was necessary. However, it would
be important to evaluate the effect on the sensitivity to parameter tuning of the
population-based variants with respect to the original single-solution methods, but

this is left for future work.

The main purpose of this chapter was to propose and illustrate the concept of
cooperative local search towards the design of hybrid evolutionary metaheuristics. In
addition, this chapter also justifies the effectiveness of the method by presenting the
best available results on a set of test instances of the space allocation problem. It is
shown that the best results overall are produced by the hybrid evolutionary
metaheuristic Mids and that very competitive results are obtained with thes TS
approach. The research and results presented here summarise the work carried out by
the author over the last few years on the application of metaheuristics to the solution

of the space allocation problems in academic institutions.

135

Conclusions and Future Work

Chapter 8. Conclusions and Future Work

8.1. Conclusions

In order to draw some conclusions from the investigation presented in this thesis, it is
important to consider the aims and scope that were established when this research
programme was started. The overriding aim was to carry out an investigation on the
suitability of applying metaheuristic techniques to tackle the space allocation
problem in academic institutions. The complete construction of allocations was
considered here. That is, we were concerned with allocating a set of entities into the
available room space so that the space misuse and the satisfaction of soft constraints
are minimised. The emphasis was in obtaining a set of high quality (i.e. not
necessarily optimal) allocations that are also structurally non-similar (i.e. diverse
with respect to the solution space) so that the decision-makers can select the most
appropriate solution. Since very few publications in the literature have approached
the space allocation problem, an additional aim here was to give a detailed

description and appropriate formulation of this problem.

8.1.1. Description and Formulation of the Problem

The overall space allocation process in UK universities was well described in (Burke
and Varley, 1998). The present thesis focused on the construction of allocations and
this problem was described and formulated here. A metric to measure the non-
similarity between allocations was proposed. This is a meaningful metric for
decision-makers because it directly reflects how different the allocations are between
them. Also, test data sets were prepared from real data provided by some UK
universities (available from http://www.cs.nott.ac.uk/~jds/research/spacedata.html).
All this work, will help researchers and practitioners to obtain a better understanding

of this problem for future research in this area.

8.1.2. Design of Basic Operators

Flexible data structures based on linked lists were proposed to represent the problem
instance being solved and the allocation or solution. Using this representation was

beneficial in three aspects. First, the elateristics of the problem instance and the

170

Conclusions and Future Work

allocation can be easily updated. Second, fast solution evaluation routines can be
implemented. And third, considering the highly constrained nature of the problem,
the flexibility of the data structures assisted the implementation of the local search
and genetic operators. A number of heuristics for initialising solutions were designed
and the best are thdllocateRnd-BestRnd and the AllocateCsrt-BestRnd
heuristics, which generate sets of solutions with a good compromise between quality
and diversity. Three neighbourhood structures were desigakxtate swap and
interchange The heuristic K, s) designed to choose the neighbourhood to explore
takes into consideration the current status of the allocation and the history of the
search. Several heuristics were designed to explore the neighbourhood structures. It
was found that the best strate@®n(l-BestRnd) is to choose one of the elements of

the move (entity or room) at random and then to explore a subset to choose the
second element of the move (entity or room). Various genetic operators were
implemented including two for the recombination of solutions that were specifically
designed for the space allocation problem. Even with these tailored operators,
maintaining the feasibility of allocations while recombining solutions proved to be a

difficult task in the space alloction problem.

8.1.3. Suitability of Metaheuristics

To the best knowledge of the author, this thesis presents the first investigation on the
application of metaheuristic techniques to the space allocation problem in academic
institutions. It was shown that metaheuristics can produce good solutions in much
shorter time than required when constructing allocations manually. Four well-known
metaheuristics were implemented in the first step of this research: iterative
improvement, simulated annealing, tabu search and a genetic algorithm. The methods
were reasonable adapted to the problech lzenchmark results were provided. Tabu
search and iterative improvement performed the best, simulated annealing produced
acceptable results while the genetic algorithm exhibited a poor performance. The
strong intensification feature of iterative improvement and tabu search and the
memory structures for genes collection in the latter, helped these two algorithms to
produce the best results among the four metaheuristics. The difficulty of recombining
solutions and maintaining feasibility in this problem, contributed to the failure of the

genetic algorithm which performed well only in the less constrained test instance.

171

Conclusions and Future Work

8.1.4. The Hybrid Algorithms Proposed

The single-solution hybrid metaheuristic designed in this thesis, surpassed the
performance of the other four methods previously implemented. Although this hybrid
produced solutions of better quality than the manually constructed allocation in the
test problems, this is because the obtained allocations have less space misused than
the reference solutions but the satisfaction of soft constraints is higher. This confirms
the difficulty of solving the space allocation problem due to the high number of
constraints present. The population-based hybrid metaheuristic (extended variant of
the single-solution hybrid) designed in this thesis permitted us to obtain sets of good
quality allocations that are also highly diverse. It was shown that the shared memory
structures and heavy mutation operator are crucial components of this approach

because without them, the performance of the algorithm deteriorates considerably.

8.1.5. The Two-Objective Problem

Although multiple objectives can be considered when tackling the space allocation
problem, experimental justification was provided in this thesis for approaching it as a
two-objective minimisation problem. It was also shown that the hybrid algorithms

developed are suitable for generating good sets of non-dominated solutions without
the need to incorporate complex mechanisms to maintain diversity. From these

hybrids, the PHMM algorithm produced the best non-dominated fronts.

8.1.6. Influence of Fitness Evaluation in Pareto Optimisation

The problem tackled here is highly constrained and the recombination of solutions
while maintaining feasibility is difficult. The algorithms that performed well are
based on the self-adaptation of solutions. Given these circumstances, it was shown
that the method used to evaluate solutions during the search in Pareto optimisation
has an impact on the performance of the algorithm. The aggregation of objectives
and relaxed forms of dominance can be more beneficial than the standard dominance
relation. This is because they allow detriments in some objectives in order to achieve
improvements in others, facilitating the generation of promising candidate solutions.
A tunable (for the trade-off between objectives) form of relaxed dominance which is

very intuitive and simple to compute was also proposed in this thesis.

172

Conclusions and Future Work

8.1.7. Cooperative Local Search

The concept of cooperative local search for the hybridisation of metaheuristics was
proposed and illustrated here. It was shown that by adding elements of population-
based techniques to algorithms based on local search, effective hybrid evolutionary
approaches are created. A crucial element for this type of hybridisation is the design
of a cooperation mechanism that permits the population of explorers to share the
information gained during the search. The cooperation mechanism implemented here
consisted of collecting good and bad genes (parts of solutions) in shared memory
structures. Four single-solution algorithms were extended using the cooperative local
search scheme and the population variants produced much better results than the
single-solution methods. This hybridisation scheme is simple to implement and is
particularly appropriate when the recombination of solutions requires considerable
extra effort. The performance of the hybrid evolutionary approaches is not affected
by the size and diversity of the initial population. For all the test data sets used in this
investigation, the best known solutions are also reported which are obtained by the

MH pg hybrid evolutionary algorithm.

8.1.8. Scope of the Conclusions

Since the investigation presented in this thesis was focused on the space allocation
problem in academic institutions, it should be kept in mind that the conclusions given
above are within this context. However, the experiences of this study can also be
beneficial for research in related areas such as space planning, shelf space allocation,
academic timetabling, constrained knapsack problems, etc. Also, the algorithms
described and tested here can be the starting point for the development of a fully
automated system for the space allocation process (Burke and Varley, 1998).

8.2. Future Work

8.2.1. From the Space Allocation Perspective

The obvious suggested future step is the incorporation of the work presented here
into a fully automated system and test it with a comprehensive range of data sets
from as many different universities as possible. Another suggested step is to consider

other aspects of the problem besides the complete construction of allocations. For

173

Conclusions and Future Work

example, the modification of allocations given a change on the conditions of the
problem (number of entities, number of room@nstraints, etc.). It is also interesting
to consider the situation in which construction work (for the modification of rooms)

is required so that alternative layouts can be automatically generated.

8.2.2. From the Metaheuristics Perspective

Given the similarity of the space allocation problem with multiple knapsack
problems, some heuristics proposed i fiterature were tried in preliminary
experiments (Abdelaziz et al., 1999; Jaszkiewicz, 2001). However, dissapointing
results were obtained due to the existence of many constraints in the problem tackled
here. Applying the hybrid metaheuristics developed in this thesis to problem domains
which are similar to the space allocation problem, would permit us to assess their
suitability and robustness. Another research direction is to compare the parameter
sensitivity (also for assessing robustness) between the single-solution approaches and
the extended variants. Further validation of the cooperative local search scheme can
be achieved by extending other single-solution approaches based on local search (e.g.
guided local search, iterated local search, variable neighbourhood search, etc.).
Forms of relaxed dominance can be used to evaluate solutions in Pareto optimisation
of other multiobjective combinatorial optimisation problems in order to investigate if
the performance of recombinative methods can also be improved. Moreover,
different fitness evaluation methods can be used to assess the fitness of different
individuals within the same population. The evaluation of solutions in the population
can be adapted in order to exploit the phenomengtobil convexitywhich implies

that local optima can be concentrated in different small areas of the solution space
(Borges and Hansen, 1998). An interesting way to evaluate solution fitness that can
be investigated iextremal optimisationwhich is based on successively eliminating
extremely undesirable parts of near-to-optimal solutions instead of successively

improving the quality of poor initial solutions (Boettcher and Percus, 2000).

174

References

REFERENCES

Aarts, E. and Korst, J. (eds.) (1998)m8lated Annealing and Boltzman Machines.
Wiley.

Aarts, E. and Lenstra, J.K. (eds.) (1997). Local Search in Combinatorial
Optimisation Wiley.

Abboud, N. Inuiguchi, M. Sakawa, M. and Uemura, Y. (1998). Manpower
Allocation Using Genetic Annealingeuropean Journal of Operational
Research111(3), 405-420.

Abdelaziz, F.B. Krichen, S. and Chaouachi, J. (1999). A Hybrid Heuristic for
Multiobjective Knapsack Problems. In: Voss S., Martello S., Osman |.H.,
Roucairol C. (eds.)Meta-Heuristics: Advances and Trends in Local Search
Paradigms for OptimizatigrKluwer Academic Publishers, 205-212.

Abramson, D. (1991). Constructing School Timetables Using Simulated Annealing:
Sequential and Parallel Algorithmdanagement Sciencd7(1), 98-113, 1991.

Aickelin, U. and Dowsland, K.A. (2000). Exploiting Problem Structure in a Genetic
Algorithm Approach to a Nurse Rostering Probleiournal of Scheduling
3(3), 139-153.

Alves, M.J. and Climaco, J. (2000). An Interactive Method for 0-1 Multiobjective
Problems Using Simulated Annealing and Tabu Sedalrnal of Heuristics
6(3), 385-403.

Baase, S. (1998)Computer Algorithms: Introduction to Design and Analysis
Addison Wesley.

175

References

Back, T. (1996)Evolutionary Algorithms in Theory and Practig@xford University

Press.

Back, T. Fogel, D. and Michalewicz Z. (eds.) (199%andbook of Evolutionary

Computation Institute of Physics Publishing and Oxford University Press.

Bagchi, T.P. (1999)Multiobjective Scheduling By Genetic Algorithm€uwer

Academic Publishers.

Baykasoglu, A. Owen, S. and Gindy, N. (1999). A Taboo Search Based Approach to
Find the Pareto Optimal Set in Multiple Objective Optimisatiéngineering
Optimization 31, 731-748.

Belton, V. and Stewart, T.J. (2002)ultiple Criteria Decision Analysis - An

Integrated ApproachKluwer Academic Press.

Benjamin, C. Ehie, I. and Omurtag, Y. (1992). Planning Facilities at the University
of Missoury-RollaJournal of Interfaces22(4), 95-105.

Bentley, P.J. and Corne, D.W. (eds.) (20@kative Evolutionary Systemigorgan
Kaufmann Academic Press.

Bland, J.A. (1999). Layout of Facilities Using an Ant System Approach.
Engineering Optimizatigr32, 101-115.

Bland, J.A. (1999b). Space-Planning By Ant Colony Optimisatiaternational
Journal Of Computer Applications In Technolp@®(6), 320-328.

Blum, C. and Roli, A. (2001). Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparisdmrechnical Report TR/IRIDIA/2001-13,
IRIDIA, Belgium.

Boettcher, S. and Percus, A. (2000). Nature's Way of Optimizugficial
Intelligence 119, 275-286.

176

References

Borges, P.C. and Hansen, M.P. (1998). A Basis for Future Success in Multiobjective
Combinatorial OptimizationTechnical Report IMM-REP-1998-&echnical

University of Denmark.

Bremmermann, H. (1962). Optimisation Through Evolution and Re-Combination.
In: Yovits, M. Sawbi, G. and Goldstein, G. (eds), Self-Organising Systems,
Washington DC, Spartan Books.

Brizuela, C. Sannomiya, N. and Zhao, Y. (2001). Multi-objective Flow-Shop:
Preliminary Results.Proceedings of the 1st International Conference on
Evolutionary Multi-Criterion Optimization EMO 2001, Lecture Notes in
Computer Scien¢d993, Zurich Switzerland, Springer, 443-457.

Burke, E.K. Cowling, P. De Causmaecker, P. and Vanden Berghe, G. (2001). A
Memetic Approach to the Nurse Rostering Probléxpplied Intelligence
15(3), 199-214.

Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001b). On the Performance of
Population-Based Metaheuristics for the Space Allocation Problem: An
Extended AbstractProceedings of the 2001 Metaheuristics International
Conference MIC 20Q1Porto Portugal, 579-583.

Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001c). Hybrid Population-Based
Metaheuristic Approaches for the Space Allocation Probkraceedings of
the 2001 Congress on Evolutionary Computation CEC 2@&bul Korea,
232-239.

Burke, E.K. Cowling, P. Landa Silva, J.D. and McCollum, B. (2001d). Three
Methods to Automate the Space Allocation Process in UK Universities. In:
Burke, E.K. and Erben, W. (eds.) The Practice and Theory of Automated
Timetabling Ill: Selected Papers from th@ Biternational Conference on the
Practice and Theory of Automated Timetabling PATAT 20@%ture Notes in
Computer Scieng®079, Springer, 254-273.

177

References

Burke, E.K. Cowling, P. Landa Silva, J.D. McCollum, B. and Varley, D. (2000a). A
Computer Based System for Space Allocation Optimisaftwaceedings of
the 27th International Conference on Computers and Industrial Engineering
ICC&IE 2000 Beijing China.

Burke, E.K. Cowling, P. Landa Silva, J.D. and Petrovic, S. (2001e). Combining
Hybrid Metaheuristics and Populations for the Multiobjective Optimisation of
Space Allocation ProblemBroceedings of the 2001 Genetic and Evolutionary
Computation Conference GECCO 20&hn Francisco USA, 1252-1259.

Burke, E.K. De Causmaecker, P. Petrovic, S. and Vanden Berghe, G. (2002). A
Multi Criteria Meta-heuristic Approach to Nurse ScheduliRgoceedings of
the 2002 Congress on Evolutionary Computation CEC 26f2vaii USA,
1197-1202.

Burke, E.K. Elliman, D.G. and Weare R. (1995). Specialised Recombinative
Operators for Timetabling Problenf3roceedings of the Artificial Intelligence
and Simulation of Behaviour Workshop on Evolutionary Computing AISB
1995 University of Sheffield UK, Springer, 75-85.

Burke, E.K. and Landa Silva, J.D. (2002b). Improving the Performance of
Multiobjective Optimisers by Using Relaxed DominanPeoceedings of the
4th Asia-Pacific Conference on Simulated Evolution and Learning SEAL 2002
Singapore, 203-207.

Burke, E.K. and Landa Silva, J.D. (2003). The Influence of the Fitness Evaluation
Method on the Performance of Multiobjective Optimise@abmitted to the

European Journal of Operational Researéiebruary 2003.

Burke, E.K. and Landa Silva, J.D. (2003b). Hybrid Evolutionary Metaheuristics
Based on Cooperative Local Sear8ubmitted to the IEEE Transactions on

Evolutionary Computation JournaMarch 2003.

178

References

Burke, E.K. and Newall J.P. (1999). A Multi-Stage Evolutionary Algorithm for the
Timetable ProblemIEEE Transactions on Evolutionary Computatid@{l),
1085-1092.

Burke, E.K. Newall, J.P. and Weare R.F. (1996). A Memetic Algorithm for
University Exam Timetabling. In: Burke, E.K. and Ross, P. (eds.) The Practice
and Theory of Automated Timetabling: Selected Papers from the 1st
International Conference on the Practice and Theory of Automated
Timetabling PATAT 1995, Lecture Notes in Computer Sciencgl53,
Springer, 241-250.

Burke, E.K. Newall, J.P. and Weare R.F. (1998). Initialisation Strategies and
Diversity in Evolutionary TimetablingEvolutionary Computatign6(1), 81-
103.

Burke, E.K. and Smith, A.J. (1999). A Memetic Algorithm to Schedule Planned
Maintenance for the National GridACM Journal of Experimental
Algorithmics 4(1), 1084-1054.

Burke, E.K. and Smith, A.J. (2000). Hybrid Evolutionary Techniques for the
Maintenance Scheduling ProbletrEEE Transactions on Power Systems
15(1), 122-128.

Burke, E.K. and Varley, D.B. (1998). Space Allocation: An Analysis of Higher
Education Requirements. In: Burke, E.K. and Carter, M.W. (eds.) The Practice
and Theory of Automated Timetabling Il: Selected Papers from the 2nd
International Conference on the Practice and Theory of Autometed
Timetabling PATAT 1997,Lecture Notes in Computer Scienc&408,
Springer, 20-33.

Burke, E.K. and Varley D.B. (1998b). Automating Space Allocation in Higher
Education. Selected Papers from the 2nd Asia Pacific Conference on Simulated

Evolution and Learning SEAL 98,ectures Notes in Atrtificial Intelligence

179

References

1585, Springer, 66-73.

Calegari, P. Coray, G. Hertz, A. Kobler, D. and Kuonen, P. (1999). A Taxonomy of
Evolutionary Algorithms in Combinatorial OptimizationJournal of
Heuristics 5(2), 145-158.

Chambers, Lance (ed.) (200I)he Practical Handbook of Genetic Algorithms
Applications Chapman&Hall/CRC.

Chen, W.H. and Lin, C.S. (2000). A Hybrid Heuristic to Solve a Task Allocation
Problem.Computers and Operations Resear2h, 287-303.

Chu, P.C. and Beasley J.E. (1997). A Genetic Algorithm for the Generalised
Assignment ProblenComputers and Operations Resear2i(1), 17-23.

Chu, P.C. and Beasley, J.E. (1998). A Genetic Algorithm for the Multidimensional
Knapsack Problemlournal of Heuristics4(1), 63-86.

Coello Coello, C.A. (1999). A Comprehensive Survey of Evolutionary Based
Multiobjective Optimization TechniqueKnowledge and Information Systems
1(3), 269-308.

Coello Coello, C.A. (1999a). An Updated Survey of Evolutionary Multiobjective
Optimization Techniques: State of the Art and Future TrelRdsceedings of
the 1999 Congress on Evolutionary Computation CEC 1%98shington
USA, 3-13.

Coello Coello, C.A. (2000). Treating Constraints as Objectives for Single-Objective
Evolutionary OptimizationEngineering Optimizatigr32, 275-308.

Coello Coello, C.A. (2001). A Short Tutorial on Evolutionary Multiobjective
Optimization.Proceedings of the 1st International Conference on Evolutionary
Multi-Criterion Optimization EMO 2001, Lecture Notes in Computer Scijence
1993, Zurich Switzerland, Springer, 21-40.

180

References

Coello Coello, C.A. Van Veldhuizen, D.A. and Lamont, G.B. (20&2plutionary
Algorithms for Solving Multi-Objective ProblemsKluwer Academic

Publishers.

Coley, D.A. (1999).An Introduction to Genetic Algorithms for Scientists and
Engineers World Scientific Publishing.

Colorni, A. Dorigo, M. and Maniezzo, V. (1998). Metaheuristics for High School
Timetabling.Computational Optimization and Applicatiqrés 275-298.

Cook, S.A. (1971). The Complexity of Theorem-proving Proced@es. 3¢ Ann.
ACM Symp. on Theory of Computirgssociation for Computing Machinery,
New York, 151-158.

Corne, D. Ross, P. and Fang, H.L. (1994). Fast Practical Evolutionary Timetabling.
Selected Papers from the AISB Workshop on Evolutionary Computation,

Lecture Notes in Computer Scien8é5, Springer, 220-263.

Corne, D. and Ross P. (1995). Some Combinatorial Landscapes on which a GA
Outperforms Other Stochastic Iterative Metho#8solutionary Computing:
Lecture Notes in Computer Science, Selected Papers of the AISB Wprkshop
993, Springer, 1-13.

Corne, D. and Ross P. (1996). Peckish Initialisation Strategies for Evolutionary
Timetabling. In: Burke, E.K. and Ross, P. (eds.) The Practice and Theory of
Automated Timetabling: Selected Papkeosn the 1st International Conference
on the Practice and Theory of Automated Timetabling PATAT 1R66ture
Notes in Computer SciencEl53, Springer, 227-240.

Corne, D. Dorigo, M. and Glover, F. (eds.) (1999w Ideas in Optimisation
McGraw Hill.

Costa, Daniel (1994). A Tabu Searchgaidithm for Computing an Operational

Timetable.European Journal of Operational Resear@b, 98-110.

181

References

Czyzak, P. and Jaszkiewicz, A. (1998). Pareto Simulated Annealing - a
Metaheuristic for Multiple-Objective Combinatorial Optimizatidurnal of
Multi-Criteria Decision Analysis7(1), 34-47.

Dasgupta. P. Chakrabarti, P.P. and Desarkar, S.C. (19e@&)objective Heuristic
Search: An introduction to Intelligent Search Methods for Multicriteria

Optimization Computational Intelligence — Vieweg.

Davis, Lawrence (ed.) (1991Handbook of Genetic Algorithmd/an Nostrand
Reinhold.

Dawande, M. Kalagnanam, J. Keskinocak, P. Ravi, R. and Salman, F.S. (2000).
Approximation Algorithms for the Multiple Knapsack Problem with
Assignment Restrictionslournal of Combinatorial Optimizatiord(2), 171-

186.

Deb, K. (1999). Multi-objective Genetic Algorithms: Problem Difficulties and
Construction of Test ProblemiSyvolutionary Computatign/(3), 205-230.

Deb, K. (2001).Multi-Objective Optimization Using Evolutionary Algorithms
Wiley.

Di Caspero, L. and Schaerf, A. (2001). Tabu Search Techniques for Examination
Timetabling. In: Burke, E.K. and Erben, W. (eds.) The Practice and Theory of
Automated Timetabling Ill: SelectedPapers from the 3rd International
Conference on the Practice and Theory of Automated Timetabling PATAT
2000,Lecture Notes in Computer Scien2879, Springer, 104-117.

Diaz, J.A. and Fernandez, E. (2001). A Tabu Search Heuristic for the Generalized
Assignment Problenturopean Journal of Operational Researd32, 22-38.

Diminnie, C.B. and Kwak, N.K. (1986). A Hierarchical Goal-programming
Approach to Reverse Resource Allocation in Institutions of Higher Learning.
Journal of the Operational Research Soci&y, 1, 59-66.

182

References

Dorigo, M. Maniezzo, V. and Colorni, A. (1996). The Ant System: Optimization by
a Colony of Cooperating AgentdseEE Transactions on Systems, Man, and
Cybernetics - Part B26(1), 1-13.

Dowsland, K.A. (1996). Simulated Annealing Solutions for Multi-Objective
Scheduling and Timetabling. In: Rayward-Smith V.J., Osman |.H., Reeves
C.R., Smith G.D. (eds.Modern Heuristic Search Methaddohn Wiley &
Sons, 155-166.

Dowsland, K.A. (1998). Off-the-peg or Mafe-to-measure? Timetabling and
Scheduling with SA and TS. In: Burke, E.K. and Carter, W. (eds.) The Practice
and Theory of Automated Timetabling Ill: Selected Papers from e 2
International Conference on the Pracatice and Theory of Automated
Timetabling PATAT 1997,Lecture Notes in Computer Scienc&408,
Springer.

Ehrgott, M. and Klamroth K. (1997). Connectedness of Efficient Solutions in
Multiple Criteria Combinatorial Optimization.European Journal of
Operational Researcl®97, 159-166.

Ehrgott, M. and Gandibleux, X. (2000). A Survey and Annotated Bibliography of
Multiobjective Combinatorial OptimizationOR Spectrum?22(4), Springer,
425-460.

Elmohamed, M.A.S. Coddington, P. and Fox, G. (1998). A Comparison of
Annealing Techniques for Academic Course Scheduling. In: Burke, E.K. and
Carter, M.W. (eds.) The Practice and Theory of Automated Timetabling Il
Selected Papers from thé&®2nternational Conference on the Practice and
Theory of Automated Timetabling PATAT 199Zecture Notes in Computer
Science 1408, Springer, 92-112.

Erben, Wilhelm (2001). A Grouping Genetic Algorithm for Graph Colouring and
Exam Timetabling. In: Burke, E.K. and Erben, W. (eds.) The Practice and

183

References

Theory of Automated Timetabling Ill: Selected Papers from tfe 3
International Conference on the Practice and Theory of Automated
Timetabling PATAT 2000, Lecture Notes in Computer Scienc2079,
Springer, 132-156.

Erickson, M. Mayer, A. and Horn, J. (2001). The Niched Pareto Genetic Algorithm 2
Applied to the Design of Groundwater Remediation Systénsceedings of
the 1st International Conference on Evolutionary Multi-Criterion Optimization
EMO 2001 Lecture Notes in Computer SciencE93, Springer, Zurich
Switzerland, 681-695.

Falkenauer, E. (1994). A New Representation and Operators for Genetic Algorithms
Applied to Grouping Problemg&volutionary Computatigr2(2), 123-144.

Falkenauer, E. (1996). A Hybrid Grouping Genetic Algorithm for Bin Packing.
Journal of Heuristics2(1), 5-30.

Fonseca, C.M. and Fleming, P.J. (1993). Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and GeneralizatRmoceedings of the
Fifth International Conference on Genetic Algorithrsan Mateo USA, 416-
423.

Fonseca, C.M. and Fleming, P.J. (1995). An Overview of Evolutionary Algorithms
in Multiobjective OptimizationEvolutionary Computatior3(1), 1-16.

Fonseca, C.M. and Fleming, P.J. (1996). On the Performance Assessment and
Comparison of Stochastic Multiobjective OptimizeRroceedings of the
Parallel Problem Solving From Nature |Berlin Germany, 584-593.

Fox, B.L. (1993). Integrating and Accelerating Tabu Search, Simulated Annealing
and Genetic AlgorithmsAnnals of Operations Researethl, 47-67.

Francis, R.L. McGinnis Jr., L.F. and White J.A. (199Fgcility Layout and
Location: An Analytical ApproactPrentice-Hall.

184

References

Gandibleux, X. and Freville, A. (2000). Tabu Search Based Procedure for Solving
the 0-1 MultiObjective Knapsack Problem: The Two Objectives Clsenal
of Heuristics 6(3), 361-383.

Garey, M.R. and Johnson, D.S. (197@pmputers and Intractability - A Guide to
the Theory of NP-Completene¥8.H. Freeman.

Giannikos, J. El-Darzi, E. and Lees, P. (1995). An Integer Goal Programming Model
to Allocate Offices to Staff in an Academic Institutiodournal of the
Operational Research Socie#6(6), 713-720.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial
Intelligence. Computers and Operations Research, 13, 533-549.

Glover, F. Kelly, J.P. and Laguna, M. (1995). Genetic Algorithms and Tabu Search:
Hybrids for Optimization.Computers and Operations Researdl2(1), 111-
134.

Glover, F.W. and Kochenberger, G.A. (eds.) (2006&ndbook of Metaheuristics
Kluwer Academic Publishers.

Glover, F. and Laguna, M. (1997abu SearchKluwer Academic Publishers.

Glover, F. Talllard, E. and De Werra, D. (1993). A User's Guide to Tabu Search.
Annals of Operations Researetl, 3-28.

Goicoechea, A. Hansen, D.R. and Duckstein L. (198R)ltiobjective Decision

Analysis with Engineering and Business Applicatiéhigey.

Goldberg, D. E. (1989)Genetic Algorithms in Search, Optimisation and Machine
Learning Addison Wesley.

Hanafi, S. Freville, A. and El Abdellaoui, A. (1996). Comparison of Heuristics for
the 0-1 Multidimensional Knapsack Problem. In: Osman I.H., Kelly J.P. (eds.),

185

References

Meta-Heuristics: Theory and Applicatignsluwer Academic Publishers, 449-
465.

Hansen, P. (1986). The Steepest Ascent Mildest Descent Heuristic for Combinatorial
Programming. Congress on Numerical Methods in Combinatorial

Optimization, Capri, Italy.

Hansen, M.P. (1997). Tabu Search for Multiobjective Optimization: MOTS.
Technical Report Presented at 13th International Conference on MCDM

Technical University of Denmark.

Hansen, P. and Mladenovic, N. (2001), Variable Neighbourhood Search: Principles
and Applications.European Journal of Operational ReseardB80(3), 449-
467.

Hasan, M. AlKhamis, T. and Ali, J. (2000). A Comparison Between Simulated
Annealing, Genetic Algorithm and Tabu Search Methods for the
Unconstrained Quadratic Pseudo-Boolean Funcfioatnal of Computers and
Industrial Engineering38, 323-340.

Hertz, A. and Klober, D. (2000). A Framework for the Description of Evolutionary
Algorithms. European Journal of Operational Researd6(1), 1-12.

Higgins, A.J. (2001). A Dynamic Tabu Search for Large-Scale Generalised
Assignment ProblemsComputers and Operations Resear@8(10), 1039-
1048.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of

Michigan Press, Anna Arbor.

Horn, J. Nafpliotis, N. and Goldberg, D.E. (1994). A Niched Pareto Genetic
Algorithm for Multiobjective Optimization.Proceedings of the First IEEE
Conference on Evolutionary ComputatiolEEE World Congress on

Computational Intelligence, 1, Piscataway USA, 82-87.

186

References

Horn, J. (1997). Multicriteria Decision Making and Evolutionary Computation. In:
Back, T. Fogel, D.B. and Michalewicz, Z. (ed$idandbook of Evolutionary
Computation Institute of Physics, 1997.

Ingber, Lester (1996). Adaptive Simulated Annealing (ASA): Lessons Learned.
Control and Cybernetic225(1), 33-54.

Ishibuchi, H. Murata, T. and Tomioka, S. (1997). Effectiveness of Genetic Local
Search AlgorithmsProceedings of the Seventh International Conference on
Genetic Algorithms505-512.

Ishibuchi, H. and Mutara, T. (1998). A Multi-Objective Genetic Local Search
Algorithm and its Application to Flowshop SchedulilgEE Transactions on
Systems, Man and Cybernetics - Part C: Applications and Re\28(&), 392-
403.

Ishibuchi, H. Yoshida, T. and Murata, T. (2002). Selection of Initial Solutions for
Local Search in Multiobjective Genetic Local Seaietoceedings of the 2002
Congress on Evolutionary Computation CEC 208@waii USA, 950-955.

Ishibuchi, H. Yoshida, T. and Murata, T. (2002a). Balance Between Genetic Search
and Local Search in Hybrid Evolutionary Multi-Criterion Optimization
Algorithms. Proceedings of the 2002 Genetic and Evolutionary Conference
GECCO 2002New York USA, 1301-1308.

Jaszkiewicz, A. (2001). Comparison ofdad Search-based Metaheuristics on the
Multiple Objective Knapsack Problenfoundations of Computing and
Decision Science26(1), 99-120.

Jaszkiewicz, A. (2002). Genetic Local Search for Multi-objective Combinatorial

Optimization.European Journal of Operational Researd@37(1), 50-71.

Jones, D.F. Mirrazavi, S.K. and Tamiz, M. (2001). Multiobjective Meta-heuristics:
An Overview of the Current State-of-the-ArtEuropean Journal of

187

References

Operational Researcii37(1), 1-9.

Julstrom, B.A. (1995). What Have You Done for Me Lately? Adapting Operator
Probabilities in Steady-Sate Genetic Algorithroceedings of the Sixth

International Conference on Genetic Algorithr8-87.

Kallarath, J. and Wilson, J.M. (199 Business Optimisation Using Mathematical

Programming Macmillan.

Kellerer, H. and Pferschy, U. (1999). Cardinality Constrained Bin-packing Problems.
Annals of Operations Researd@2, 335-348.

Kennedy, J. and Eberhart, R.C. (1999). The Particle Swarm: Social Adaptation in
Information-Prcessing Systems. In: Corne, D. Dorigo, M. and Glover, F. (eds.),

New Ideas in OptimisatigiMcGraw Hill.

Kim, J.G. and Kim, J.D. (1998). A Space Partitioning Method for Facility Layout
Problems with Shape Constraini& Transactions30, 947-957.

Kirkpatrick, S. Gelatt, M. and Vecchi, M.P. (1983). Optimization by Simulated
Annealing, Science, 220, 671-380.

Knowles, J.D. (2001). Local-Search and Hybrid Evolutionary Algorithms for Pareto
Optimization. PhD Thesis Department of Computer Science, University of
Reading, UK.

Knowles, J. and Corne D.W. (2000). Approximating the Nondominated Front Using
the Pareto Archived Evolution Stratedgvolutionary Computation8(2), 149-
172.

Knowles, J.D. and Corne, D.W. (2000b). M-PAES A Memetic Algorithm for
Multiobjective Optimization. Proceedings of the 2000 Congress on
Evolutionary Computation CEC 200Biscataway USA, 325-332.

188

References

Knowles, J. and Corne, D. (2002). On Metrics for Comparing Nondominated Sets.
Proceedings of the 2002 Congress on Evolutionary Computation CEC2002
Hawaii USA, IEEE Press, 711-716.

Knowles, J.D. Watson, R.A. and Corne, D.W. (2001). Reducing Local Optima in
Single-Objective Problems by Multi-objectivizatioRroceedings of the 1st
International Conference on Evolutionary Multi-Criterion Optimization EMO
2001, Lecture Notes in Computer Scierk®93, Springer, 269-283.

Kokolo, I. Hajime, K. and Shigenobu, K. (2001). Failure of Pareto-based MOEAs,
Does Non-dominated Really Mean Near to OptimBI®ceedings of the 2001
Congress on Evolutionary Computation CEC 208édoul Korea, 957-962.

Kumar, R. and Rockett, P. (2002). Improved Sampling of the Pareto-Front in
Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto

Converging Genetic AlgorithniEvolutionary Computatignl0(3), 283-314.
Kusiak, A. (2000)Computational Intelligence in Design and Manufacturiigley.

Laguna, M. (2002). Scatter Search. In: P. M. Pardalos and M. G. C. Resende (eds.)
Handbook of Applied Optimizatip@xford University Press, 183-193.

Larson, N. and Kusiak, A. (1995). Work-in-progress Space Allocation: a Model and
an Industrial ApplicationllE Transactions27, 497-506.

Laumanns, M. Zitzler, E. and Thiele, L. (2001). On the Effects of Archiving,
Elitism, and Density Based Selection in Multi-objective Optimization.
Proceedings of the 1st International Conference on Evolutionary Multi-
Criterion Optimization EMO 2001, Lecture Notes in Computer Scjer8@3,
Zurich Switzerland, Springer, 281-196.

Laumanns, M. Thiele, L. Deb, K. and Zitzler, E. (2002). Combining Convergence
and Diversity in Evolutionary Multiobjective OptimizatiorEvolutionary
Computation 10(3), 263-282.

189

References

Liggett, R.S. (2000). Automated Facilities Layout: Past, Present and Future.
Automation in Constructigrd, 197-215.

Liu, J. (1999). The Impact of Neighbourhood Size on the Process of Simulated
Annealing: Computational Experiments on the Flowshop Scheduling Problem.
Computers & Industrial Engineerin@7(1-2), 285-288.

Man, K.F. Tang, K.S. and Kwong, S. (199%enetic Algorithms: Concepts and
Design Springer.

Marett, R. and Wright, M. (1996). A Comparison of Neighbourhood Search
Techniques for Multi-Objective Combinatorial ProblenSomputers and
Operations Resear¢l23(5), 465-483.

Martello, S. and Toth, P. (1990Knapsack Problems - Algorithms and Computer

ImplementationsWiley.

Menczer, F. Degeratu, M. and Street, W.N. (2000). Efficient and Scalable Pareto
Optimization by Evolutionary Local Selection Algorithmg&volutionary
Computation8(2), 223-247.

Metropolis, N. Rosenbluth A.W., Rosenbluth, M.N., Teller A.H. and Teller, E.
(1953). Equation of State Calculations by Fast Computing Machines. Journal
of Chemical Physics, 21(6), 1087-1092.

Michalewicz, Zbigniew (1999)Genetic Algorithms + Data Structures = Evolution

Programs 3rd. Ed., Springer.

Michalewicz, Z. and Fogel, D.B. (2000How to Solve It: Modern Heuristics
Springer.

Miettinen, K. (2001). Some Methods for Nonlinear Multi-Objective Optimization.
Proceedings of the 1st International Conference on Evolutionary Multi-
Criterion Optimization EMO 2001, Lecture Notes in Computer Scjeifi@3,

190

References

Zurich Switzerland, Springer, 1-20.

Mlandenovic, N. and Hansen, P. (1997). Variable Neighbourhood Search.
Computers and Operations Researgi(11), 1097-1100.

Morrison, R.W. and De Jong, K.A. (2001). Measurement of Population Diversity.
Artificial Evolution: Selected Papers of the 5th International Conference on
Artificial Evolution EA 2001, Lecture Notes in Computer Scie&40, Le
Creusot France, Springer, 31-41.

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms. Report 826, Caltech Concurrent

Computation Program, California Institute of Technology, Pasadena CA, USA.

Moscato, P. (1999). Memetic Algorithms: A Short Introduction. In: Corne, D.
Dorigo, M. and Glover, F. (edsNew Ideas in OptimisatioMcGraw Hill.

Moscato, P. and Cotta, C. (2003). A Gentle Introduction to Memetic Algorithms. In:
Glover, F.W. and Kochenberger, G.A. (eds$dgndbook of Metaheuristics
Kluwer Academic Publishers.

Murata, T. Ishibuchi, H. and Tanaka, H. (1996). Multi-Objective Genetic Algorithm
and its Applications to Flowshop SchedulinGomputers and Industrial
Engineering 30(4), 957-968.

Murata, T. Ishibuchi, H. and Tanaka, (1996b). Genetic Algorithms for Flowshop
Scheduling Problems. Computers and Industrial Engineer8@f4), 1061-
1071.

Murata, T. Ishibuchi, H. and Gen, M. (2000). Cellular Genetic Local Search for
Multi-Objective Optimization. Proceedings of the 2000 Genetic and
Evolutionary Computation Conference GECCO 2R@r-314.

Murata, T. Ishibuchi, H. and Gen, M. (2001). Specification of Genetic Search

191

References

Directions in Cellular Multi-objective Genetic AlgorithmBroceedings of the
1st International Conference on Evolutionary Multi-Criterion Optimization
EMO 2001, Lecture Notes in Computer Scient®3, Zurich Switzerland,
Springer, 82-95.

Nagar, A. Haddock, J. and Heragu, S. (1995). Multiple and Bicriteria Scheduling: A

Literature SurveyEuropean Journal of Operational Researéii, 88-104.

Osman, I.H. (1995). Heuristics for the Generalised Assignment Problem: Simulated

Annealing and Tabu Search Approact@R Spektruml7, Springer, 211-225.

Osman, I.H. and Kelly J.P. (eds.) (1998)eta-Heuristics: Theory & Applications
Kluwer Academic Publishers.

Osman, I.H. and Laporte, G. (1996). Metaheuristics: A Bibliogragtmnals of
Operations Researcl®3, 513-623.

Papadimitriou, C.H. and Steiglitz, K. (1999Combinatorial Optimization:

Algorithms and Complexitypover Publications.

Pirlot, M. (1996). General Local Search Methddsropean Journal of Operational
Research92(3), 493-511.

Poole, D. Mackworth, A. and Goebel, R. (1998pmputational Intelligence - A
Logical ApproachOxford University Press.

Preux, Ph. and Talbi, E.G. (1999). Towards Hybrid Evolutionary Algorithms.

International Transactions in Operational Resear6h557-570.

Purshouse, R.C. and Fleming, P.J. (2001). The Multiobjective Genetic Algorithm
Applied to Benchmark Problems - An Analysigechnical Report No. 796
Department of Automatic Control and Systems Engineering, University of
Sheffield, UK.

192

References

Randall, M. and Abramson, D. (2001). A rigeal Meta-Heuristic Based Solver for
Combinatorial Optimisation ProblemsComputational Optimization and
Applications 20, 185-210.

Rayward-Smith, V.J. (1986A First Course in ComputabilityBlackwell.

Rayward-Smith, V.J. Osman, |I.H. Reeves, C.R. and Smith, G.D. (eds.) (1996).
Modern Heuristic Search Methadd/iley.

Reeves, C.R. (ed.) (1995Modern Heuristic Techniques for Combinatorial

Problems McGraw-Hill.

Reeves, C. (1996). Hybrid Genetic Algorithms for Bin-packing and Related
ProblemsAnnals Of Operations Researd8, 371-396.

Reeves, C. (1996b). Integrating Local Search into Genetic Algorithms. In: Rayward-
Smith V.J., Osman |.H., Reeves C.R., Smith G.D. (edl4ogern Heuristic
Search MethodsJohn Wiley & Sons.

Reynolds, R.G. (1999) . Cultural Algorithms: Theory and Applications. In: Corne,
D. Dorigo, M. and Glover, F. (edsNew Ideas in OptimisatigiMcGraw Hill.

Ritzman, L. Bradford, J. and Jacobs, R. (1980). A Multiple Objective Approach to
Space Planning for Academic Facilitieournal of Management Science
25(9), 895-906.

Romero, D. and Sanchez-Flores, A. (1990). Methods for the One-dimensional Space

Allocation ProblemComputers and Operations Researth(5), 465-473.

Rosenthal, Richard E. (1985). Principles of Multiobjective Optimizatixecision
Sciencesl6, 133-152.

Salman, F.S. Kalagnaman, J.R. Murthy, S. and Davenport A. (2002). Cooperative
Strategies for Solving Bicriteria Sparse Multiple Knapsack Problenrnal of

193

References

Heuristics 8, 215-2309.

Schaerf, A. (1999). A Survey of Automated Timetablidgtificial Intelligence
Review 13, 87-127.

Schaerf, A. (1999b). Local Search Techniques for Large High School Timetabling
Problems.IEEE Transactions on Systems, Man and Cybernetics- Part A:
Systems and Humar9(4), 368-377.

Schaffer, J.D. (1985). Multiple Objective Optimization with Vector Evaluated
Genetic AlgorithmsGenetic Algorithms and Their Applications: Proceedings

of the First International Conference on Genetic Algorith@8100.

Serafini, Paolo (1992). Simulated Annealing for Multiobjective Optimization
Problems.Procceedings of the 10th International Conference on Multiple

Criteria Decision MakingTaipei Taiwan, 87-96.

Srinivas, N. and Deb, K. (1995). Multiobjective Optimization Using Nondominated
Sorting in Genetic AlgorithmdEvolutionary Computatigri2(3), 221-248.

Steuer, Ralph E. (1986Multiple Criteria Optimization: Theory, Computation and
Application Wiley.

Strenski, P.N. and Kirkpatrick, S. (1991). Analysis of Finite Length Annealing
SchedulesAlgorithmicg 6, Springer, 346-366.

Suppapitnarm, A. Seffen, A. Parks, G.T. and Clarkson P.J. (2000). A Simulated
Annealing Algorithm for Multiobjective Optimisation, Engineering
Optimization 33(1), 59-85.

T’kindt, V. and Billaut, J.C. (2002Multicriteria Scheduling: Theory, Models and
Algorithms Springer.

Taillard, E.D. Gambardella, L.M. Gendreau, M. and Potvin, J. (2001). Adaptive

194

References

Memory Programming: A Unified View of Metaheuristiésuropean Journal

of Operational Resear¢ghi35, 1-16.

Talbi, E.G. (2002). A Taxonomy of Hybrid Metaheuristidsurnal of Heuristics8,
541-564.

Tan, K.C. Lee, T.H. and Khor E.F. (2001). Evolutionary Algorithms for Multi-
Objective Optimization: Performance Assessments and Comparisons.
Proceedings of the 2001 Congress on Evolutionary Computation CEG 2001
Seoul Korea, 979-986.

Thiel, J. and Voss, S. (1994). Some Experiences on Solving Multiconstraint Zero-
one Knapsack Problems with Genetic Algorithih&zOR, 32(4), 226-242.

Thompson, J.M. and Dowsland, K.A. (1996). General Cooling Schedules for a
Simulated Annealing Based Timetabling System. In: Burke, E.K. and Ross, P.
(eds.) The Practice and Theory of Automated Timetabling: Selected Papers
from the £ International Conference on the Practice and Theory of Automated
Timetabling PATAT 1995, Lecture Notes in Computer Sciencél53,
Springer, 345-363.

Thompson, J.M. and Dowsland, K.A. (1996b). Variants of Simulated Annealing for
the Examination Timetabling ProblerAnnals of Operations Researc3,
105-128.

Tuson, A. and Ross, P. (1998). Adapting Operator Settings in Genetic Algorithms.
Evolutionary Computatiaro(2), 161-184.

Ulungu, E.L. and Teghem, J. (1994). Multi-objective Combinatorial Optimization
Problems: A Surveydournal of Multi-Criteria Decision AnalysiS, 83-104.

Ulungu, E.L. Teghem, J. Fortemps, P.H. and Tuyttens, D. (1999). MOSA Method: A
Tool for Solving Multiobjective Combinatorial Optimization Problems.

Journal of Multicriteria Decision Analysis8, 221-236.

195

References

Vaessens, R.J.M. Aarts, E.H.L. and Lenstra, J.K. (1998). A Local Search Template.
Computers and Operations Researgb(11), 969-979.

Van Veldhuizen, D.A. and Lamont, G.B. (2000). Multiobjective Evolutionary
Algorithms: Analyzing the State-of-the-ArEvolutionary Computatign8(2),
125-147.

Van Veldhuizen, D.A. and Lamont, G.B. (2000b). On Measuring Multiobjective
Evolutionary Algorithms Performanc@roceedings of the 2000 Congress on
Evolutionary Computation CEC 200Biscataway USA, 204-211.

Varela, R. Vela, C.R. Puente, J. Gomez, A. and Vidal, A.M. (2001). Solving Job-
shop Scheduling Problems by Means of Genetic Algorithms. In: Chambers, L.
(ed.) The Practical Handbook of Genetic Algorithms Applicatjons
Chapmané&Hall/CRC, 275-294

Vasquez, M. and Hao, J.K. (2001). A "Logic-Constrained" Knapsack Formulation
and a Tabu Search Algorithm for the Daily Photograph Scheduling of an Earth
Observation Stellite Computational Optimization and Applicatign20(2),
137-157.

Voss, S. Martello, S. Osman, I.H. and Roucairol C. (eds.) (198&p-Heuristics:
Advances and Trends in Local Search Paradigms for Optimizakimmwer

Academic Publishers.

White, G.M. and Xie, B.S. (2001). Examination Timetables and Tabu Search with
Longer-Term Memory. In: Burke, E.K. and Erben, W. (eds.) The Practice and
Theory of Automated Timetabling Ill: Selected Papers from th& 3
International Conference on the Practice and Theory of Automated
Timetabling PATAT 2000, Lecture Notes in Computer Scienc2079,
Springer, 85-103.

Wolpert, D. and Macready, W. (1995). No Free Lunch Theorems for Search.

196

References

Technical Report SFI-TR-95-02-Q1%anta Fe Institute, Santa Fe, NM, USA.

Wolpert, D. and Macready, W. (1997). No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computatid(l), 67-82.

Wren, A. (1996). Scheduling, Timetabling and Rostering, a Special Relationship?.
In: Burke, E.K., and Ross, P. (eds.) The Practice and Theory of Automated
Timetabling: Selected Papers from the 1st International Conference on the
Practice and Theory of Automated Timetabling PATAT 19%gture Notes in
Computer Scien¢e 153, Springer, 46-75.

Wright, M.B. and Marett, R.C. (1996). A Preliminary Investigation into the
Performance of Heuristic Search Methods Applied to Compound
Combinatorial Problems. In: Osman I.H., Kelly J.P. (eddgta-Heuristics:

Theory and ApplicationKluwer Academic Publishers, 299-317.

Yamada, T. and Futakawa, M. (1997). Hstic and Reduction Algorithms for the
Knapsack Sharing Probleif@omputers and Operations Resear2#(10), 961-
967.

Yang, M.H. and Chen, W.C. (1999). A Study on Shelf Space Allocation and

Managementinternational Journal of Production Economj@&0-61, 309-317.

Yang, M.H. (2001). An Efficient Algorithm to Allocate Shelf Spa&giropean
Journal of Operational Research31, 107-118.

Youssef, H. Sait, S.M. and Adiche, H. (2001). Evolutionary Algorithms, Simulated
Annealing and Tabu Search: A Comparative Stiithgineering Applications
of Artificial Intelligence 14, 167-181.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization:
Methods and ApplicationsPhD Thesis The Swiss Federal Institute of
Technology Zurich Switzerland, Shaker Verlag.

197

References

Zitzler, E. Deb, K. and Thiele, L. (2000). Comparison of Multiobjective
Evolutionary Algorithms: Empirical ResultEvolutionary Computatign8(2),
173-195.

Zitzler, E. Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective OptimizatioAroceedings
of the EUROGEN 2001 - Evolutionary Methods for Design, Optimisation and
Control with Applications to Industrial ProblemBarcelona Spain.

Zitzler, E. and Thiele, L. (1998). Multiobjective Optimization Using Evolutionary
Algorithms - A Comparative Case StudBroceedings of the Parallel, Problem
Solving From Nature PPSN, ¥92-301.

Zitzler, E. and Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto ApproHsBE
Transactions on Evolutionary Computatj@{4), 257-271.

Zufryden, F.S. (1986). A Dynamic Programming Approach For Production Selection
And Supermarket Shelf-Space Allocatidournal of the Operational Research
Society 37(4), 413-422.

Zydallis, J.B. Van Veldhuizen, D.A. and Lamont, G.B. (2001). A Statistical
Comparison of Multiobjective Evolutionary Algorithms Including the
MOMGA-II. Proceedings of the 1st International Conference on Evolutionary
Multi-Criterion Optimization EMO 2001, Lecture Notes in Computer Scjence
1993, Zurich Switzerland, Springer, 226-240.

198

Appendix

APPENDIX - List of Publications

[Bur2000] Burke, E.K. Cowling, P. Landa Silva, J.D. McCollum, B. and

Varley, D. (2000). A Computer Based System for Space
Allocation Optimisation.Proceedings of the 27th International
Conference on Computers and Industrial Engineering (ICC&IE
2000) Beijing China, China Machine Press, ISBN 7-900043-38-
1,11-13.

[Bur2001] Burke, E.K. Cowling, P. Landa Silva, J.D. and McCollum, B.

[Bur2001b]

[Bur2001c]

[Bur2001d]

[Bur2002]

(2001). Three Methods to Automate the Space Allocation Process
in UK Universities. The Practice and Theory of Automated
Timetabling Ill: Selected Papers from the 3rd International
Conference on the Practice and Theory of Automated Timetabling
(PATAT 2000), Lecture Notes in Computer Scien2@79,
Konstanz Germany, Springer, 254-273.

Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001). Hybrid
Population-Based Metaheuristic Approaches for the Space
Allocation Problem. Proceedings of the 2001 Congress on
Evolutionary Computation (CEC 20Q8eoul Korea, IEEE Press,
232-239.

Burke, E.K. Cowling, P. and Landa Silva, J.D. (2001). On the
Performance of Population-Based Metaheuristics for the Space
Allocation Problem: An Extended Abstrad®roceedings of the
2001 Metaheuristics International Conference (MIC 20®0rto
Portugal, 579-583.

Burke, E.K. Cowling, P. Landa Silva, J.D. and Petrovic, S. (2001).
Combining Hybrid Metaheuristics and Populations for the
Multiobjective Optimisation of Space Allocation Problems.
Proceedings of the 2001 Genetic and Evolutionary Computation
Conference (GECCO 20Q1)San Francisco USA, Morgan
Kaufmann, 1252-1259.

Burke, E.K. and Landa Silva, J.D. (2002). Improving the
Performance of Multiobjective Optimisers by Using Relaxed
Dominance.Proceedings of the 4th Asia-Pacific Conference on
Simulated Evolution and Learning (SEAL 2QG&iphgapore, ISBN
981-04-7523-3, 203-207.

199

Appendix

[Bur2003] Burke, E.K. and Landa Silva, J.D. (2003). The Influence of the
Fitness Evaluation Method on the Performance of Multiobjective
Optimisers.Submitted to the European Journal of Operational
ResearchFebruary 2003.

[Bur2003b] Burke, E.K. and Landa Silva, J.D. (2003). Hybrid Evolutionary
Metaheuristics Based on Cooperative Local Seaéabmitted to
the IEEE Transactions on Evolutionary Computation Joyrnal
March 2003.

200

