

Metaheuristics for University Course
Timetabling

Rhydian Marc Rhys Lewis

A thesis submitted in partial fulfilment of the requirements of

Napier University for the degree of Doctor of Philosophy

August, 2006

 i

Abstract

The work presented in this thesis concerns the problem of timetabling at universities –

particularly course-timetabling, and examines the various ways in which metaheuristic

techniques might be applied to these sorts of problems. Using a popular benchmark version

of a university course timetabling problem, we examine the implications of using a “two-

staged” algorithmic approach, whereby in stage-one only the mandatory constraints are

considered for satisfaction, with stage-two then being concerned with satisfying the

remaining constraints but without re-breaking any of the mandatory constraints in the process.

Consequently, algorithms for each stage of this approach are proposed and analysed in

detail.

For the first stage we examine the applicability of the so-called Grouping Genetic

Algorithm (GGA). In our analysis of this algorithm we discover a number of scaling-up

issues surrounding the general GGA approach and discuss various reasons as to why this is

so. Two separate ways of enhancing general performance are also explored. Secondly, an

Iterated Heuristic Search algorithm is also proposed for the same problem, and in

experiments it is shown to outperform the GGA in almost all cases. Similar observations to

these are also witnessed in a second set of experiments, where the analogous problem of

colouring equipartite graphs is also considered.

Two new metaheuristic algorithms are also proposed for the second stage of the two-

staged approach: an evolutionary algorithm (with a number of new specialised evolutionary

operators), and a simulated annealing-based approach. Detailed analyses of both algorithms

are presented and reasons for their relative benefits and drawbacks are discussed.

Finally, suggestions are also made as to how our best performing algorithms might be

modified in order to deal with further “real-world” constraints. In our analyses of these

modified algorithms, as well as witnessing promising behaviour in some cases, we are also

able to highlight some of the limitations of the two-stage approach in certain cases.

 ii

Table of Contents

1: INTRODUCTION.. 1

1.1 TIMETABLING AND METAHEURISTICS ..1

1.2 SUMMARY OF CONTRIBUTIONS ..3

1.3 THESIS GUIDE ..4

1.4 SCIENTIFIC PUBLICATIONS IN CONNECTION WITH THESIS6

2: SOLVING UNIVERSITY TIMETABLING PROBLEMS....................................... 8

2.1 UNIVERSITY TIMETABLING AND CONSTRAINTS..8

2.2 COMPARISON TO GRAPH COLOURING ...11

2.3 ALGORITHMS FOR UNIVERSITY TIMETABLING..13

2.3.1 One Stage Optimisation Algorithms..15

2.3.2 Two-stage Optimisation Algorithms..23

2.3.3 Algorithms that allow Relaxations ...27

2.4 CONCLUSIONS ...33

3: CASE STUDY: A BENCHMARK TIMETABLING PROBLEM 35

3.1 PROBLEM DESCRIPTION AND ANALYSIS..36

3.2 SEARCH SPACE ISSUES AND PRE-PROCESSING ...39

3.3 INITIAL WORK AND THE INTERNATIONAL TIMETABLING COMPETITION.............41

3.4 REVIEW OF RELEVANT RESEARCH ..44

3.5 CONCLUSIONS ...47

4: FINDING FEASIBILITY USING A GROUPING GENETIC ALGORITHM..... 49

4.1 GROUPING PROBLEMS AND GROUPING GENETIC ALGORITHMS50

4.1.1 GGAs and the UCTP..53

4.2 ALGORITHM DESCRIPTION ..54

4.2.1 Representation and Solution Building ...54

4.2.1.1 Aside: An Alternative Rebuild Strategy ..56

4.2.2 The GGA Genetic Operators ..57

4.2.3 A Preliminary Fitness Measure ..58

4.3 EXPERIMENTAL SET-UP AND INSTANCE GENERATION ...59

4.4 INVESTIGATING THE EFFECTS OF THE GGA RECOMBINATION OPERATOR61

4.5 SCALING-UP ISSUES WITH THE GGA ..64

 iii

4.5.1 A Diversity Measure for Grouping Representations.....................................64

4.5.2 Diversity, Recombination, and Group Size..65

4.5.3 Group Size and Chromosome Length ...69

4.6 IMPROVING THE ALGORITHM ..70

4.6.1 Using more Fine-Grained Fitness Functions..70

4.6.2 Analysing the Effects of the Various Fitness Functions72

4.6.3 Introduction of a Heuristic Search Operator ...77

4.6.4 Analysing the Effects of a Heuristic Search Operator...................................79

4.7 ASSESSING THE OVERALL CONTRIBUTION OF THE GGA OPERATORS82

4.8 CONCLUSIONS AND DISCUSSION ...86

5: FURTHER INVESTIGATION: APPLICATION TO EQUIPARTITE GRAPH

COLOURING ... 90

5.1 A GGA FOR GRAPH COLOURING ...91

5.2 AN ITERATED HEURISTIC SEARCH ALGORITHM FOR EQUIPARTITE GRAPH

COLOURING...93

5.3 COMPARING THE ALGORITHMS ...95

5.4 ANALYSIS OF RESULTS ..97

5.5 CONCLUSIONS AND FURTHER DISCUSSION..100

6: SATISFYING THE SOFT CONSTRAINTS OF THE UCTP............................ 105

6.1 AN EVOLUTIONARY ALGORITHM FOR SOFT CONSTRAINT SATISFACTION..........106

6.1.1 Initial Population Generation..107

6.1.2 Defining “Useful” Recombination Operators ..107

6.1.2.1 Sector-based Recombination ...110

6.1.2.2 Day-based Recombination...111

6.1.2.3 Student-based Recombination...111

6.1.2.4 Conflicts-based Recombination...111

6.1.2.5 Random-based Recombination..112

6.1.2.6 Gene Transfer and Genetic Repair ..112

6.1.3 Mutation Operator..114

6.1.4 Experiments and Analysis ..114

6.1.5 Conclusions and Discussion ..117

6.2 AN SA ALGORITHM FOR SOFT CONSTRAINT SATISFACTION120

6.2.1 SA Phase-1: Search Space Issues ..123

6.2.2 SA Phase-1: The Cooling Schedule..124

 iv

6.2.3 SA Phase-2: Search Space Issues ..125

6.2.4 SA Phase-2: The Cooling Schedule..126

6.2.5 Performance Gains via Delta-Evaluation ...127

6.2.6 Experimental Analysis ...128

6.2.6.1 Assessing the Effects of Eliminating the End-of-Day Slots128

6.2.6.2 Results and Analysis ..130

6.3 CONCLUSIONS AND DISCUSSION ...132

7: TOWARDS REAL-WORLD TIMETABLING ... 136

7.1 UNAVAILABILITY CONSTRAINTS ...137

7.2 COPING WITH UNAVAILABILITY CONSTRAINTS WHEN ACHIEVING FEASIBILITY .138

7.2.1 Algorithm Description ..139

7.2.2 Algorithm Analysis ..142

7.3 EFFECTS OF EVENT-UNAVAILABILITY CONSTRAINTS WHEN SATISFYING SOFT

CONSTRAINTS ..146

7.4 ADDING FURTHER “REAL-WORLD” CONSTRAINTS ..149

8: CONCLUSIONS AND FUTURE RESEARCH .. 152

8.1 CONCLUSIONS ...152

8.2 DISCUSSION AND SUGGESTIONS FOR FUTURE RESEARCH155

BIBLIOGRAPHY... 159

 v

List of Figures

Fig. 2.1: Demonstrating the relationship between the graph colouring problem and a

simple timetabling problem where only the event-clash constraint is considered.......12

Fig. 2.2: Demonstrating how the specific heat can vary at different temperatures during a

run of SA, and showing how we can use this information to calculate Tpt. This

particular plot was constructed using data taken from an example run of our own SA

algorithm for timetabling that we will see later in Chapter 6; it can be seen that the Tpt

in this case is approximately 0.7..21

Fig. 2.3: Example of a Kempe chain neighbourhood operator. ...25

Fig. 3.1: Demonstrating the effects that hard constraints HC2 and HC3 have on the

relationship between the UCTP and the underlying graph colouring problem.37

Fig. 3.2: A demonstration of the matrix representation for timetables used throughout this

thesis. Here, event 11 has been assigned to room 2 and timeslot 2, event 8 has been

assigned to room 2, timeslot 11, and so on. Also indicated in this diagram is the

presence of the end-of-day timeslots (which will occur in timeslots 9, 18, 27, 36 and

45). These might be considered slightly different to the remaining forty timeslots,

because events that are assigned to these will automatically cause soft constraint SC1 to

be violated. ...40

Fig. 4.1: Pictorial description of the “traditional” two-point crossover application described

in the text. ..52

Fig. 4.2: Falkenauer’s GGA Recombination Operator..53

Fig. 4.3: Procedure for building initial solutions and also rebuilding partial solutions. In

this pseudo-code tt represents the current timetable and U is a list of unplaced events

of length | |U . The function len(tt) in the figure returns the number of timeslots

currently being used by tt. Finally, and as usual, m indicates the number of rooms

available per timeslot, and t represents the target number of timeslots = 45.55

Fig. 4.4: The four stages of GGA recombination – point selection, injection, removal of

duplicates using adaptation, and rebuilding. Note that in order to form the second

offspring, copies of the timeslots between points a and b in p1 are injected into a copy

of p2 at point c. ...57

Figs. 4.5(a) and (b): (top and bottom) Showing the behaviour of the algorithm with and

without recombination with the medium instances. Each line represents, the distance

 vi

to feasibility of the best solution in the population, averaged across 20 runs on each of

the 20 instances (i.e. 400 runs) using mr = 2, ir = 4, and ρ = 50. Figure (a) shows the

runs with regards to CPU time; figure (b) with regard to the number of evaluations

performed...62

Figs. 4.5(c) and (d): (top and bottom) Showing the behaviour of the GGA with and

without recombination for (a) the small instances, and (b) the large instances. The

meaning of “primitive recombination” is explained in the text. Each line represents, at

each CPU second, the distance to feasibility of the best solution in the population,

averaged across 20 runs on each of the 20 instances (i.e. 400 runs) using mr = 2, ir =

4, and ρ = 50. ...63

Fig. 4.6: Demonstrating how diversity and group size can influence: (a) the amount of

reconstruction needed; and (b) the number of groups that are lost, using the standard

GGA recombination operator...66

Figs. 4.7(a)-(c): (top, middle, and bottom) Example runs with a small, medium, and large

instance respectively, demonstrating (1) the close relationship between diversity and

the amount of reconstruction needing to be done with the recombination operator,

and (2) the differing ways that the two measures vary during the runs as a result of the

different sized timeslots/groups. (All runs using rr = 1.0, ir = 4, mr = 2, and ρ = 50.)

In the figures, the amount of reconstruction being done with the recombination

operator is labelled “Proportion (%)” – this refers to the percentage of events that are

becoming unplaced, on average, with each application of the recombination operator.

...68

Figs. 4.8(a)-(c): (top, middle, and bottom) The effects of the six different fitness functions

over time with the small, medium, and large instances respectively. Each line

represents, at each second, the distance to feasibility of the best solution in the

population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs), using

ρ = 50, rr = 1.0 (0.25 with 4.7(c)), mr = 2, and ir = 4. ...73

Fig. 4.9: Average number of evaluations performed during the runs shown in figure 4.8..74

Figs. 4.10(a)-(c): (top, middle, and bottom): Example runs with a small, medium, and

large instance respectively, to demonstrate the effects that the various fitness functions

have on the diversity of the population during evolution. All runs were performed

using ρ = 50, rr = 1.0, mr = 2 and ir = 4...75

 vii

Fig. 4.11: Pseudo-code description of the heuristic search procedure. Here, tt represents a

partial timetable, U a list of unplaced events, and itLimit the iteration limit of the

procedure. ..78

Fig. 4.12: Showing the influence that various amounts of heuristic search have on the

number of evaluations performed within the time limits for the different instance sets

(using ρ = 50, rr = 0.5, mr = 2, and ir = 4). ..80

Figs. 4.13(a)-(c): (top, middle, bottom) The effects of various parameter settings with the

small, medium, and large instance sets respectively. Each line represents, at each

second, the distance to feasibility of the best solution in the population, averaged

across 20 runs on each of the 20 instances (i.e. 400 runs). Note, because different

population sizes are being used, the lines may not start at the same point on the y-axis.

...81

Fig. 4.14: Pictorial description of the Iterated Heuristic Search algorithm for the UCTP. 82

Figs. 4.15(a)-(c): (top, middle, and bottom) Comparison of the GGA and the Iterated

Heuristic Search algorithm with the small, medium, and large instance sets

respectively. Each line represents, at each second, the distance to feasibility of the best

solution found so far, averaged across 20 runs on each of the 20 instances (i.e. 400

runs). Note, because the IHS algorithm starts with just one initial solution, it is likely

to have a higher distance-to-feasibility than the best candidate solution in the initial

population of the GGA, and will thus generally start at a higher point on the y-axis.84

Fig. 5.1: The Iterated Heuristic Search Algorithm for Equipartite Graph Colouring........94

Fig. 5.2: Comparison for equipartite graphs, for n = 200 and χ = 8 (thus m = 25), using a

time limit of 90 CPU-seconds. The Run Characteristics-graph (bottom right) was

made using instances where p = 0.2. ...98

Fig. 5.3: Comparison for equipartite graphs, for n = 200 and χ = 40 (thus m = 5), using a

time limit of 250 CPU-seconds. The Run Characteristics-graph (bottom right) was

made using instances where p = 0.78. ...99

Fig. 5.4: Comparison for equipartite graphs, for n = 400 and χ = 40 (thus m = 10), using a

time limit of 800 CPU-seconds. The Run Characteristics-graph (bottom right) was

made using instances where p = 0.6. ...100

Fig. 5.5: Comparison for equipartite graphs, for n = 1000 and χ = 40 (thus m = 25), using a

time limit of 1300 CPU-seconds. The Run Characteristics-graph (bottom right) was

made using instances where p = 0.4. ...101

 viii

Fig. 5.6(a)-(d): (top-left, top-right, bottom-left, bottom-right respectively) Four example

runs showing (1) the population diversity, and (2) the proportion of nodes becoming

unplaced with each application of the recombination operator, during example runs

with the GGA. Graphs (a)-(d) show runs with instances of n = 200, χ = 8, and p = 0.2;

n = 200, χ = 40 and p = 0.78; n = 400, χ = 40 and p = 0.6; and n = 1000, χ = 40, and

p = 0.4 respectively. Run-time parameters used in these runs were the same as the

described experiments. In the figures, the amount of rebuilding needing to be done

with the recombination operator is labelled Proportion (%) - this refers to the

percentage of nodes that are becoming unplaced, on average, with each application of

the recombination operator. ...102

Fig. 6.1: Demonstration of the inappropriateness of some of the more “traditional”

recombination operators with this two-stage EA for timetabling.............................108

Fig. 6.2: Demonstration of (a) Sector-based recombination, (b) Student, Conflicts and/or

Random-based recombination, and (c) the various ways that a sector can perform

wraparound. ...110

Fig. 6.3: Showing the behaviour of the algorithm with regards to the number of evaluations

performed, with the various recombination operators, and also with mutation on its

own. Each line represents the cost of the best solution found so far, averaged across 20

runs on each of the 20 instances (i.e. 400 runs). ...115

Fig. 6.4: Showing the behaviour of the algorithm over time, with the various

recombination operators, and also with mutation on its own. Each line represents the

cost of the best solution found so far, averaged across 20 runs on each of the 20

instances (i.e. 400 runs). The projection (inset) shows the effects between 10 and 50

seconds)..117

Fig. 6.5: The two neighbourhood operators used in the SA algorithm............................122

Fig. 6.6: The effects of the parameter β with the cooling scheme defined in eq. (6.3). For

this example, T0 = 10.0 and M = 100. Note also that setting β = 0.0 in this case will

produce exactly the same cool as that which would be produced by eq. (6.2).125

Fig. 6.7: Two example runs of the SA algorithm on competition instance-20. The points

marked (a) indicate where the algorithm has switched from SA phase-1 to SA phase-2.

Points (b) indicate the point in the runs where a reheating has occurred.................132

Fig. 7.1: The Build-Complete-Timetable procedure. In this pseudo-code tt represents

the timetable and U and V are lists of unplaced events (of

lengths | |U and | |V respectively). The function Heuristic-Search is already described

 ix

in figure 4.10 of Chapter 4. As usual t represents the target number of timeslots,

which in this case = 45. ..140

Fig. 7.2: Accuracy of the five algorithm variants for various p-values. Inset in grey, we show

a magnification of the graph around the values for p in which there is a slight

difference in performance due to the different extraction heuristics. All points are the

averages of 1000 runs (as explained in the text). Also note that when p = 1.0, this

means that all timeslots are unsuitable for all events, and therefore none of the 400

events can be assigned to the timetable. ..143

Fig. 7.3: Computational effort of the five algorithm variants for various p-values. Inset in

grey, we show a magnification of the graph around the values for p in which there is a

slight difference in performance due to the different extraction heuristics. All points

are the averages of 1000 runs (as explained in the text). ..144

Fig. 7.4: An example run of Build-Complete-Timetable. In this figure we show the

number of unplaced events that occur after each successive application of the

Heuristic-Search function (lines 3 and 6 of Build-Complete-Timetable, fig 7.1).

This particular run was performed using Competition instance-19 with p = 0.8, using

extraction heuristic h3. All other parameters are specified in the text.145

Fig. 7.5: Demonstrating the effects that various p-values have on the simulated annealing

algorithm’s ability to reduce the cost-function over time. Each line represents, at each

second, the cost of the best solution found so far averaged across 10 runs on each of

the 100 instances (i.e. 1000 runs). Note that the time taken to find an initial feasible

solution for this algorithm is not included in the graph; instead (time = 0) may be

considered the point at which a feasible solution was first obtained. Note also that

every instance considered in these experiments is known to have an optimal cost of

zero. ...148

Fig. 7.6: Comparison of (a) the costs of the initial feasible solutions, and (b) the percentage

reduction in cost achieved during the run, for various p-values. All points are averaged

across 1000 runs...148

Fig. 8.1: An example of clumping: no vertex in the left sub-graph conflicts with a vertex in

the right sub-graph. These two graphs might therefore be coloured separately from

one another. ...156

 x

List of Tables

Table 3.1: Description of the Main Notation used in This Thesis When Considering the

UCTP ..39

Table 3.2: Description of the Parameters Used with the UCTP Instance Generator.43

Table 4.1: The Various Event and Place Selection Heuristics Used with Build (Fig. 4.3) .55

Table 4.2: A Breakdown of the Average Results Found by the GGA and Iterated Heuristic

Search Algorithm over the Sixty Problem Instances. (Results are averaged across

twenty runs on Each Instance.) In the Three Columns Marked “P” , Some

Supplementary Information About the Instances Is Provided: a “Y” Indicates that we

Definitely Know a Perfect Solution to Exist, an “N” Indicates that we Definitely

Know there Not to be a Perfect Solution, and a “?” indicates Otherwise...................85

Table 4.3: A Breakdown of the Best Results Found by the GGA and Iterated Heuristic

Search Algorithm with the Sixty Problem Instances (Taken From Twenty Runs on

Each Instance). ...86

Table 6.1: A Breakdown of the Results Found in the Various Trials with the Twenty

Problem Instances. (Results for all instances are averaged across twenty runs.) The

Label: “Initial Pop. %” Indicates the Percentage of the Time Limit that was required

to produce the Initial Population across the Trials..118

Table 6.2: The Best Results Found from Twenty Runs on Each of the Twenty Problem

Instances in Each Trial. ..119

Table 6.3: Comparison of the Two Trial-Sets (i.e. Using Forty-Five and Forty Timeslots

Respectively) on the Twenty Competition Instances. In Each Case the Average and

Standard Deviation in Cost is Reported, as well as the Best Cost (parenthesised) from

50 Individual Runs...131

Table 7.1: The Heuristics used with the Extract-Some-Events Procedure in Fig 7.1. In This

Case, All Ties are Broken Using Rule h1. ..141

 1

1: Introduction

Timetables are ubiquitous in many areas of daily life such as work, education,

transport, and entertainment. Indeed, it is quite difficult to imagine an organized and

modern society coping without them. Yet in many real-world cases, particularly where

resources (such as people, space, or time) are not in abundance, the problem of

constructing workable and attractive timetables can be a very challenging one, even for the

experienced timetable designer. However, given that timetables will often have a large effect

on the day-to-day lives of the people who use them, timetable construction is certainly a

problem that we should try to solve as best we can. Additionally, given that timetables will

often need to be updated or completely remade (e.g. school timetables will often be

redesigned at the beginning of each academic year, bus timetables will need to be modified

to cope with new road layouts and bus stops, etc.), constructing timetables is also a

problem that people will have to face on a fairly regular basis.

1.1 Timetabling and Metaheuristics

In this thesis we will be concerning ourselves with the problem of timetabling at

universities, and in particular: course timetabling problems. As we will see, the problem of

automating timetable construction at universities is often a very challenging one. First,

from a computer-science perspective most timetabling problem-formulations belong to the

class of computationally NP-complete problems (see the work of Garey and Johnson [62]

and also Section 2.1 of this thesis); therefore implying that there is no known deterministic

polynomially-bounded algorithm for solving them in general. Second, individual

timetabling problems are also often complicated by the idiosyncratic nature of the

institution and users concerned. For example, different universities will tend to have their

own interpretation of what is a “feasible” and/or “good” timetable, and will therefore also

tend to have their own particular set of timetable constraints that they wish to impose on

 2

their particular problem. Unfortunately however, it might often be the case that an

algorithmic approach that is successful for one particular problem-version may not turn out

to be suitable for others.

In computing terms, timetabling problems are often modelled as Combinatorial

Optimisation Problems (COPs). The overall objective in a COP is to find an assignment of

discrete values to variables (e.g. timeslots for each of the events that needs to be timetabled)

so that that the solution is optimal according to some criteria. In other words, the problem

is to find the best possible solution from all possible solutions. The techniques available for

solving COPs fall into two main classes: exact algorithms and approximation algorithms.

Exact algorithms are able to prove the optimality of a solution, whereas an approximation

algorithm cannot. In the case of timetabling, however, exact algorithms will typically

constitute a brute-force style approach, and due to the exponential growth rates of the

search spaces for these problems, their application will often only be suitable for very small

problem instances. On the other hand, while approximation algorithms do not always

produce optimal solutions, they do operate in polynomial time and might be able to

produce solutions that are “good enough” for practical purposes. (Obviously, how often and

how quickly an approximation algorithm is able to produce solutions that are “good

enough” will usually be some of the criteria used to judge how effective it actually is.)

In the next chapter of this thesis we will conduct a review of the various different

works that have proposed using approximation algorithms for tackling timetabling

problems, paying close attention to those that have applied metaheuristic-based techniques.

Metaheuristic1 algorithms, which include techniques such as evolutionary algorithms,

simulated annealing, tabu search, and ant colony optimisation, are an important class of

approximation algorithm that, over the past decade-or-so, have been applied to a variety of

different COPs such as timetabling. In essence, they might be regarded as a general-purpose

algorithmic framework, applicable to various COPs, with relatively few modifications

generally needing to be made for each type of problem. Given this wide-ranging

applicability it is arguable that they are therefore quite fitting in many areas of automated

timetabling where, as we have noted, the types of constraints that are imposed will often

vary from place to place.

In this thesis, we will also present arguments as to why the employment of a two-

stage timetabling approach might sometimes be appropriate – particularly with regards to a

specific university course timetabling problem-version that we will be studying in detail

1 The term “metaheuristic” is derived from the Greek prefix “meta”, meaning in this sense “higher level”, and

“heuristic”, from the Greek “heuriskein”, meaning “to find”.

 3

here. In essence, an algorithm that uses this two-stage approach operates by first attempting

to satisfy just the mandatory constraints of the problem and, assuming this task is

completed successfully, will then go on to try and satisfy the remaining non-mandatory

constraints, but without re-breaking the mandatory constraints in the process. Consequently,

metaheuristic-based algorithms will be presented for each of these two sub-problems, and

detailed analyses will be carried out in all cases.

1.2 Summary of Contributions

As mentioned above, the majority of the scientific investigations in this thesis will be

conducted using a well-known benchmark version of the University Course Timetabling

Problem (UCTP). A detailed analysis of this particular problem-version will be presented in

Chapter 3. The majority of this thesis will then be spent examining algorithms that

constitute part of the two-stage approach for this problem. From our studies of these

algorithms, the following scientific contributions are made:

• A detailed analysis concerning the suitability of a Grouping Genetic Algorithm (GGA)

for the task of satisfying the mandatory constraints of our chosen UCTP is conducted. In

this analysis we note that there are, in fact, scaling up issues surrounding the general

GGA paradigm and, in particular, we show that it can behave in quite different ways with

different sized problem instances.

• In our examinations of the general GGA approach, we introduce a new method for

measuring population-diversity and distances between individuals with the GGA

representation. We also demonstrate the sometimes negative effects that population-

diversity can have on the behaviour of the GGA recombination operator and offer some

arguments as to why.

• Two suggestions are made as to how we might improve the performance of the GGA

for the UCTP. The first of these involves the use of various specialised, fine-grained

fitness functions with the algorithm; the second involves supplementing the algorithm

with an additional stochastic search operator. In both cases, the positive and negative

effects of these modifications are commented upon.

• A new “Iterated Heuristic Search” (IHS) algorithm is also proposed for satisfying the

mandatory constraints of our chosen UCTP version. This algorithm – which, unlike our

GGA, does not make use of a population, selection pressure, or the standard GGA

recombination operator – is shown to outperform the GGA in almost all cases. These

 4

observations serve to highlight many of the arguments that are presented concerning the

potential limitations of the GGA in general. Additionally, in order to further back-up

these arguments, a second set of experiments is also conducted on a similar combinatorial

optimisation problem – graph colouring – where comparable behaviour is observed.

• A new specialised Evolutionary Algorithm (EA) intended for satisfying the non-

mandatory constraints of our chosen UCTP version is proposed. We suggest a number of

new recombination operators that might be used with this sort of algorithm and

investigate whether any of these are able to capture the underlying building-blocks of the

problem. In experiments with a set of benchmark problem instances, we show that these

recombination operators do not actually seem to improve the search in any great deal,

and we offer some arguments as to why this is so.

• A new specialised simulated annealing-based algorithm, also for non-mandatory

constraint satisfaction, is proposed for our chosen UCTP version. In experiments we

show that by using appropriate neighbourhood operators and sensible parameter settings,

this algorithm is able to return competitive results for a number of different benchmark

problem instances. We also show how the performance of this algorithm can be improved

by treating some of the non-mandatory constraints of this problem differently to others.

• Finally, we propose methods by which the best performing algorithms from both stages

of the two-stage timetabling approach can be extended in order to cope with additional

mandatory constraints that we choose to impose on our chosen UCTP-version. First, we

show how our IHS algorithm might be modified in order to cope with these constraints

and investigate the effectiveness of this new algorithm empirically. Second, we also

demonstrate some of the potential weaknesses of our techniques by showing how the

inclusion of large numbers of extra mandatory constraints can ultimately lead to

unsatisfactory levels of performance with our chosen two-stage timetabling approach.

1.3 Thesis Guide

In order to keep this document at a reasonable length, we have written this text based

upon the assumption that the reader already has some basic knowledge of timetabling,

scheduling, and metaheuristics. A grasp of the fundamentals in complexity theory is also

preferable, particularly for earlier chapters. Readers who do not possess these prerequisites

are invited to first consult some good texts surrounding these matters. For example:

 5

• The PATAT series (The Practice and Theory of Automated Timetabling) contains

many good studies on various different timetabling problems. Details of these

publications can be found on the web at http://www.asap.cs.nott.ac.uk/patat/patat-

index.shtml. Many individual PATAT papers relevant to this work are also listed in the

bibliography at the end of this thesis.

• Good overviews on the basic principles of metaheuristics can be found at the following

site: http://en.wikipedia.org/wiki/Metaheuristic, and also on the official website of the

Metaheuristics Network: http://www.metaheuristics.org/.

• Finally, readers are invited to consult the excellent work of Garey and Johnson [62] for

information regarding algorithm complexity and NP-completeness theory.

This remainder of this thesis is structured as follows. In Chapter 2 we will begin by

providing an introduction to the problem of timetabling at universities. We will describe

what a timetabling problem actually is, will take a look at the types of constraints that can

be imposed upon them, and will discuss why these problems might often be hard to solve.

We will also provide a review of the various different algorithmic approaches that have been

proposed for these timetabling problems, concentrating our efforts mainly on metaheuristic

approaches.

In Chapter 3 we will then conduct a detailed analysis of a particular version of a

university course timetabling problem that has recently been used as a benchmark case for a

number of relevant works in the literature. These works will also be reviewed here. In this

chapter we will also make arguments as to why the two-stage timetabling approach might

be an effective way of tackling this particular problem.

Next, in Chapter 4 we will present two algorithms intended for satisfying the

mandatory constraints of our chosen university course timetabling problem-version, namely

a Grouping Genetic Algorithm (GGA), and an Iterated Heuristic Search (IHS) algorithm.

We will perform a deep analysis of these two algorithms and will also make some general

observations about the possible limitations of GGAs in general.

In Chapter 5 we will take a brief excursion from the central theme of timetabling

and, pursuing our arguments regarding the relative advantages and disadvantages of the

GGAs and IHS algorithms for timetabling, we will perform a second analysis and

comparison of these two algorithmic techniques on another combinatorial optimisation

problem: graph colouring with equipartite graphs.

Moving away from GGAs and IHS algorithms, in Chapter 6 we will then move our

attention on to the task of satisfying the non-mandatory constraints of our chosen

university course timetabling problem-version. In this chapter we will present two distinct

 6

algorithms intended for this purpose and will conduct a thorough analysis of both. Results

of these algorithms using a collection of publicly available problem instance-sets will also be

reported, and reasons for their various advantages and disadvantages will be discussed.

The penultimate chapter of this thesis, Chapter 7, is then intended to move this work

from the benchmark problem-version mainly considered in this thesis, and on towards

more “real-world” problems. Consequently, we will describe methods by which our

heuristic search-based algorithm might be modified for dealing with additional mandatory

constraints – particularly those that specify that a particular resource is not available at a

certain time (what we call “unavailability constraints”). We will also show how our

simulated annealing algorithm (Chapter 6) might be extended to cope with these new

constraints, and both of these new algorithms will then be empirically investigated. In the

final section of this chapter we will also conduct a brief discussion as to how the

algorithmic models developed during this thesis might also be extended for dealing with

other real-world timetabling features not covered in this work.

Finally, Chapter 8 closes this thesis by providing a summary of the main conclusions

that can be drawn from this work, together with some ideas about possible directions for

further research.

1.4 Scientific Publications in Connection with

Thesis

Some of the work described in this thesis is also the subject of a number of scientific

papers that the author has prepared. These papers have either already been published or are

currently in press. We will now list these in the chronological order in which they were

published and will provide details of each.

Preliminary work on the evolutionary algorithm presented in the first half of Chapter

6 can be found in the following paper (which was also awarded “Best Student Paper” at the

conference):

• R. Lewis and B. Paechter, “New Crossover Operators for Timetabling with

Evolutionary Algorithms,” presented at The Fifth International Conference on Recent

Advances in Soft Computing RASC2004, Nottingham, England, 2004.

Initial studies on the applicability of the grouping genetic algorithm for satisfying the

mandatory constraints of our chosen UCTP version can be found in:

 7

• R. Lewis and B. Paechter, “Application of the Grouping Genetic Algorithm to

University Course Timetabling,” in Evolutionary Computation in Combinatorial

Optimization (EvoCop), vol. 3448, Lecture Notes in Computer Science, G. Raidl and J.

Gottlieb, Eds. Berlin: Springer-Verlag, 2005, pp. 144-153.

Additionally, a second preliminary paper examining the suitability of this GGA has

also been produced. In this paper the various fitness functions and heuristic search operator

that are given in Chapter 4 of this thesis are introduced.

• R. Lewis and B. Paechter, “An Empirical Analysis of the Grouping Genetic Algorithm:

The Timetabling Case,” presented at the IEEE Congress on Evolutionary Computation

(IEEE CEC) 2005, Edinburgh, Scotland, 2005.

Next, in the following paper, work combining the latter two preliminary papers is

presented. This paper also contains a much more detailed examination of the GGA and its

general properties, as well as a more thorough experimental analysis. (This paper contains

much of the work that is presented in Chapter 4.)

• R. Lewis and B. Paechter, “Finding Feasible Timetables using Group Based Operators,”

(Forthcoming) Accepted for publication in IEEE Transactions of Evolutionary

Computation, 2006.

The following book chapter also contains ideas that are documented in this thesis.

The first half of this publication proposes our method of classifying timetabling

metaheuristics which we will discuss in Chapter 2 of this thesis. It also contains a literature

review, together with an abridged analysis of the UCTP version, which is given in Chapter

3. Meanwhile, the second half of this book chapter contains much of the work concerning

the simulated annealing-based algorithm for the UCTP that, in this thesis, is presented in

the second half of Chapter 6.

• R. Lewis, B. Paechter, and O. Rossi-Doria, “Metaheuristics for University Course

Timetabling,” (Currently in Press) In Evolutionary Scheduling, Lecture Notes in

Computer Science, P. Cowling and K. Dahal, Eds. Berlin: Springer-Verlag, 2006.

Finally, although not directly related to any of the work presented here, many of the

techniques regarding algorithm design and analysis used in this thesis (particularly our

simulated annealing algorithm of Chapter 5) have also been used in a recent paper that

proposes a new approach for stochastically solving Sudoku-style puzzles. The details of this

particular work are as follows:

• R. Lewis, “Metaheuristics can Solve Sudoku Puzzles,” (Forthcoming) Journal of

Heuristics, vol. 13, 2007.

 8

2: Solving

University

Timetabling

Problems

In this chapter we will be giving a general overview of timetabling problems with

regards to what they actually are, the reasons why they are often troublesome, and the ways

in which they might be solved. In the next section we will start this introduction by stating

the general definition of a timetabling problem, and will then go on to look at the different

types of problem that occur at universities, as well as the different types of rules (or

constraints) that might be imposed upon them. Next, in Section 2.2, for various purposes

that will become clear, we will provide a comparison between timetabling problems (in

their simple form) and another well known combinatorial optimisation problem: graph

colouring. After this, in Section 2.3, we will then conduct a detailed review of the current

state of this field by taking a look at some of the many different algorithms – particularly

metaheuristics – that have been proposed for the various timetabling problems put forward

in the literature. We will then conclude the chapter in Section 2.4.

2.1 University Timetabling and Constraints

The generic definition of a university timetabling problem can be considered the task

of assigning a number of events, such as lectures, exams, meetings, and so on, to a limited

 9

set of timeslots (and perhaps rooms), in accordance with a set of constraints. Generally

speaking, it is usually accepted that within this definition, university timetabling problems

can be arranged into two main categories: exam timetabling problems and course

timetabling problems. In reality, and depending on the university involved, both types of

problem might often exhibit very similar characteristics, but a common and generally

acknowledged difference is that in exam timetabling, multiple events can be scheduled in

the same room at the same time (providing seating-capacity constraints are not exceeded),

whilst in course timetabling, we are generally only allowed one event per room, per

timeslot. A second common difference between the two can also sometimes concern issues

with the timeslots: course timetabling problems will generally involve assigning events to a

fixed set of timeslots (e.g. those occurring in exactly one week), whilst exam timetabling

problems might sometimes allow some flexibility in the number of timeslots being used.

(However, as we will see later, this is not always the case.) Good surveys on exam

timetabling have been conducted by Carter and Laporte [28, 30] and Burke et al. [18, 22,

24]. Other timetabling surveys can also be found at [32, 95, 100].

With regards to the various constraints that might be imposed on a particular

timetabling problem, it is general practice to group these into two categories: the hard

constraints, and the soft constraints. Hard constraints have a higher priority than soft, and

will usually be mandatory in their satisfaction. Indeed, timetables will usually only be

considered feasible if and only if all of the hard constraints of the problem have been

satisfied. Soft constraints, meanwhile, are those that we want to obey if possible, and more

often than not they will describe what it is for a timetable to be good with regards to the

timetabling policies of the university concerned, as well as the experiences of the people

who will have to use it.

Perhaps the most common hard constraint in timetabling is the so-called “event-

clash” constraint. This constraint specifies that a person (or some other resource of which

there is only one) is required to be present in a pair of events, then these events conflict, and

must not, therefore, be assigned to the same timeslot (as obviously such an assignment will

result in this person(s)/resource(s) having to be in two places at once). This particular

constraint can be found in almost all university timetabling problems and its presence will

often cause people to draw parallels between this problem and the well-known graph

colouring problem (which we will look at in more detail in the next section). Beyond this

example constraint, however, a great many other sorts of constraints – hard and soft – can

ultimately be considered in timetabling, and in the real world it is usually the case that

most universities will have their own specific idiosyncratic set of constraints that makes

their particular timetabling problem different to most others.

 10

Despite the wide variety of different constraints (and thus timetabling problems) that

can be encountered, it has been suggested by Corne, Ross, and Fang [39] that the majority

of these can be categorised into five main classes. We will now list these and will provide

some example constraints belonging to each:

(1) Unary Constraints. These are constraints that involve just one event, such as the

constraint “event a must not take place on a Tuesday”, or the constraint “event a must

occur in timeslot b”. (Both of these examples can occur in exam and course timetabling

and can be hard or soft.)

(2) Binary Constraints. These sorts of constraints concern pairs of events, such as the

event-clash constraint mentioned earlier, or those that involve the ordering of events

such as the constraint “event a must take place before event b” (this latter example can

be common to both exam and course timetabling, and can be hard or soft).

(3) Capacity Constraints. These are constraints that are governed by room capacities, etc.

For example “All events should be assigned to a room which has a sufficient capacity”

(This particular example is common in both exam and course timetabling, and is

usually a hard constraint.)

(4) Event Spread Constraints. These are the constraints that concern requirements such as

the “spreading-out” or “clumping-together” of events within the timetable in order to

ease student/teacher workload, and/or to agree with a university’s timetabling policy

(Common in both exam and course timetabling; usually a soft constraint.)

(5) Agent Constraints: These are the constraints that are imposed in order to promote the

preferences of the people who will use the timetables, such as the constraint “lecturer x

likes to teach event a”, or “lecturer y likes to have n free mornings per week”. (This is

probably more common in course timetabling, and can be hard of soft.)

From this brief analysis, it should be appreciable that as well as different universities

usually specifying their own particular set of constraints that will need to be satisfied, the

types of constraint that can be encountered in timetabling can also vary over a wide range2.

Of course, from a practical standpoint, this is entirely understandable as different

universities are likely to have their own individual needs and timetabling policies (and

2 It should also be noted that in some cases a problem definition for one institution may directly oppose

another’s in the criteria that defines a desirable timetable. For example, some institutions might specify that it

is preferable for students’ events to be bunched together in order to aid part-time students etc. (a policy of

Napier University in Edinburgh, for example); other universities, however, may prefer the events of each

student to be spaced out within the week as much as possible.

 11

therefore set of constraints) that they need satisfied. However, from a research point-of-

view, this idiosyncratic nature of timetabling can also make it very difficult to formulate

meaningful and universal generalisations about the problem in general.

However, one important generalisation that we can make about timetabling problems

at universities is that they are NP-complete in almost all variants [100]. Cooper and

Kingston [38], for example, have shown a number of proofs to demonstrate that NP-

completeness exists for a number of different problem interpretations that can often arise in

practice. This, they achieve, by providing polynomially bounded transformations from

various well-known NP-complete problems such as graph colouring (see Section 2.2), bin

packing, and three-dimensional matching) to a number of different timetabling problem

variants. Even, Itai, and Shamir [53] have also shown a transformation of the NP-complete

3-SAT into a timetabling problem. Of course, this general NP-completeness (or NP-

hardness, if we are considering timetabling from an optimisation perspective) tells us that if

we wish to obtain anything that might be considered a workable timetable in any sort of

reasonable time, then this will depend very much on the nature of the problem instance

being tackled. Some universities, for example, may have timetabling requirements that are

fairly loose: perhaps, for example, there is an abundance of rooms, or only a very small

number of events that need to be scheduled. In these cases, maybe there are lots of good (or

at least acceptable) timetables within the total search space, of which one or more can be

found quite easily. On the other hand, some university’s requirements might be much

more demanding, and perhaps only a very small proportion of the search space (if any) will

be occupied by workable timetables. (It should also be noted that in practice, the

combination of constraints that are imposed by timetabling administrators could often

result in problems that are impossible to solve unless some of the constraints are relaxed).

Thus, in cases where “harder” timetabling problems are encountered, there seems an

implicit need for powerful and robust methods for tackling these sorts of problems.

2.2 Comparison to Graph Colouring

Before conducting a review of many of the various different heuristic timetabling

algorithms that are available in the literature, it is first useful for us (as it will certainly assist

us with various explanations within this thesis) to provide a comparison between the

timetabling problem in its simplest form, and another well known computational problem:

Graph Colouring. Given a simple and undirected graph G comprising a set of n vertices V

= 1{ ,..., }nv v and a set of edges E which join various pairs of different vertices; the NP-hard

 12

graph colouring problem involves finding an assignment of “colours” for each vertex in V

such that (a) no pair of vertices with a common edge are assigned the same colour, and (2)

the number of colours being used is minimal3.

It is straightforward to convert the most simple of timetabling problems into a graph

colouring problems (and vice-versa) by considering each event as a vertex, and then simply

adding edges between any pair of vertices that correspond to pairs of events that we do not

want assigned to the same timeslot. Each timeslot that is available in the timetabling

problem then corresponds to a colour, and the task (from a graph colouring point-of-view)

it to simply try and find a solution that uses no more colours than there are available

timeslots. (See figure 2.1, for an example.)

(1) Given a simple timetabling
problem, first we convert into its
graph colouring equivalent. (In
this example we are trying to
schedule 10 events / colour 10
vertices.)

1 2

3 4 5

6 7 8

9 10

1 2

3 4 5

6 7 8

9 10

Event
10

Event
1

Event
2

Event
8

Event
5

Event
9

Event
6

Event
7

Event
3

Event
4

54321

timeslots

(2) A solution is then found for this
instance in some way. (This
particular solution is using the
optimal number of colours for this
problem instance, which is five.)

(3) The graph colouring solution
can then be converted back into
a valid timetable, where each
colour represents a timeslot.
Notice that by doing this, no
pairs of adjacent vertices (i.e.
conflicting events) have been
assigned to the same timeslot.

Fig. 2.1: Demonstrating the relationship between the graph colouring problem and a simple timetabling
problem where only the event-clash constraint is considered.

In graph colouring, the term “chromatic number” (commonly denoted χ) is used to

refer to the minimum number of colours that are needed to feasibly colour a particular

problem instance. Obviously, in simple timetabling problems this also represents the

minimum number of timeslots that are needed for a clash-free timetable to be possible.

Identifying χ is also an NP-hard problem, however.

A second parallel that we can draw between these problems involves the identification

of features known as cliques. It is often noted that graph colouring problems that reflect

3 See the work of Garey and Johnson [62] (page 133) for further details of this problem’s NP-hardness. Also

note that the NP-complete version of this problem defines a similar task, but as usual in the form of a decision

problem: given G = (V, E) and a positive integer k < n; is it possible to assign a colour to each vertex in V such

that no pair of adjacent vertices has the same colour, and by only using k colours? (A proof of this decision

problem’s NP-completeness can be found in the work of Garey, Johnson, and Stockmeyer [61].)

 13

real-world timetabling instances will often contain fairly large cliques. (A clique is simply a

collection of vertices that are mutually adjacent, such as vertices 1, 3, 4, 6, and 7 in fig. 2.1,

which is a clique of size 5.) This is because in many timetabling problems it is typical to

encounter large collections of events that must not be scheduled together (e.g. a first year

computer science degree might feature a number of compulsory events that all first-year

computer scientists have to attend). In the equivalent graph colouring problem, the vertices

that represent these events will form a clique, and it is easy to appreciate that no two

vertices in this clique may be assigned the same colour (or equivalently, all of the

corresponding events will need to be assigned to different timeslots). It is thus easy to

deduce that if we are given a graph colouring instance (or equivalent timetabling problem

instance) that has a maximum clique size of C, then at least C colours will be needed to

colour the graph legally (that is χ ≥C). The task of identifying the maximally-sized clique

is also an NP-hard problem, however [62].

Note that this conversion to pure graph colouring problems only exists when we are

considering constraints regarding conflicting events such as the event-clash constraint

mentioned earlier. Indeed, when other sorts of constraints are also being considered, such as

the ordering of the events within a timetable, then this will add extra complications.

However, regardless of this, it is still the case that nearly all timetabling problems will still

feature this underlying graph colouring problem in some form or another in their

definitions, and it is certainly the case (as we will see) that many current timetabling

algorithms use various bits of heuristic information extracted from this underlying problem

as a driving force in their searches for a timetabling solution.

2.3 Algorithms for University Timetabling

Given the close relationship between graph colouring and university timetabling

problems, it is perhaps unsurprising that many early techniques used in timetabling

algorithms were derived directly from graph colouring-based heuristics (see the survey of

Carter [28] from 1986 for a good review on some of these). One early example of this sort

of algorithm was provided by White and Chan [112] in 1979. This particular approach was

actually used for several years at the University of Ottawa in the 1970’s, and in this study it

is shown to be capable of scheduling 390 events involving 16,000 students into 25

timeslots. Basically, this method operates by first using a “largest degree first”-type heuristic

to order the events. These events are then taken one-by-one according to this ordering and

are assigned to the earliest timeslot that does not cause an event-clash, with new timeslots

 14

being opened whenever necessary. Next, if the resultant solution is seen to be using more

timeslots than the desired amount, the algorithm then tries to move the events in these

extra timeslots into the remaining ones. If this cannot be done, then these events are simply

removed from the problem. Next, further heuristics are then used to try and find a suitable

ordering for the timeslots that minimises the soft constraints of the problem, and finally,

the events themselves are then shuffled in order to make further improvements.

Another early and commonly-cited example of this sort of algorithm is the

EXAMINE timetabling system documented by Carter, Laporte, and Lee in [31]. In this

paper, the system – which is a backtracking sequential-assignment algorithm – is applied to

a set of real-world exam timetabling problems taken from a number of different

universities. (These problem instances, which were first used in this study and which are

often referred to as the Carter Instances, have been publicly available for a number of years

now. They have also been used in a large number of exam timetabling papers, many of

which we will look at later on in this chapter.) A number of algorithm variants are then

tested and it is reported that the best performance is usually gained when two procedures

are followed: first, when the events are inserted into the timetable following an ordering

dictated by saturation degree heuristics (originally proposed by Brelaz [16], and which

involves always selecting the node which has the highest number of colours adjacent to it);

and second, when an additional algorithm is also used for trying to identify large cliques in

the problem, so that the events within these cliques can then be given priority. The

backtracking feature of this algorithm also enables the algorithm to undo previous

assignments of events to timeslots when situations are encountered when an existing

unplaced event has no feasible timeslots to which it can be assigned. In this case, the

backtracking algorithm that is used is deterministic, meaning that for a given problem

instance and ordering heuristic, the same timetable will always be produced.

Other approaches to timetabling problems have involved using constraint-based

techniques (see the work of Deris et al. [44], Lajos [70], and Boizumault et al. [14], each of

whom have applied these techniques to their own particular timetabling problems) and also

integer programming (such as the algorithms of Carter [29], and Tripathy [108] in the

1980s and, more recently, Daskalaki et al. [43] in 2004). In the past decade-or-so there has

also been a large growth of interest in the application of metaheuristic-based techniques to

timetabling problems. In essence, the term “metaheuristics” is used to denote a variety of

stochastic-based search techniques such as simulated annealing, tabu search, iterated local

search, evolutionary algorithms, and ant colony optimization. According to the website of

the Metaheuristics Network – an EU sponsored research project that was run from 2000

until 2004 [6] – a metaheuristic “… can be seen as a general algorithmic framework which

 15

can be applied to different optimization problems with relatively few modifications [being

needed] to make them adapted to a specific problem.” Given this latter characteristic, and

also considering the idiosyncratic nature of timetabling problems that we have noted, it is

perhaps unsurprising, therefore, that metaheuristics have become increasingly popular for

addressing a number of timetabling problems in recent years.

 However, when applying metaheuristic-based algorithms to timetabling problems, it

is worth noting that an important aspect separating these sorts of problems from many

other types of combinatorial optimisation problems is the presence of both hard and soft

constraints in their formulations. For any metaheuristic approach to be worthwhile in this

case there must therefore be some sort of system that is able to deal with timetabling

constraints of both types in a satisfactory way. Our own survey of the timetabling literature

with regards to this matter indicates that most metaheuristic algorithms for timetabling fall

into one of three categories:

(1) One-Stage Optimisation Algorithms: where a satisfaction of both the hard and soft

constraints is attempted simultaneously.

(2) Two-Stage Optimisation Algorithms: where a satisfaction of the soft constraints is

only attempted once a feasible timetable has been found.

(3) Algorithms that allow Relaxations: Violations of the hard constraints are disallowed

from the outset by relaxing some other feature of the problem. Attempts are then made

to try and satisfy soft constraints, whilst also giving consideration to the task of

eliminating these relaxations.

In the remainder of this section we will conduct a survey of the field of metaheuristics

and timetabling using these three categories in order to classify the various algorithms. In

each subsection we will first provide a simple and general overview of the method, and will

then provide a description of various works that have used this basic approach. Note,

however, that although this method of classification might be instructive for our reviewing

purposes, it should not be interpreted as a definitive taxonomy, and it is arguable that some

of the algorithms that will be mentioned here could belong to more than one of the

categories.

2.3.1 One Stage Optimisation Algorithms

In general, timetabling algorithms of this type will allow the violation of both hard

and soft constraints within the timetable, and the aim will be to search for a solution that

has an adequate satisfaction of both. Ordinarily, this will be achieved through the use of

 16

some sort of weighted sum function intended for giving violations of the hard constraints

much higher penalties than violations of the soft constraints. The following function is

typical. Given a problem with k types of constraint, where the penalty weighting associated

with each constraint i is wi, and where vi(tt) represents the number of constraint violations

of type i in a timetable tt, the quality of tt can be calculated using the formula:

1

() . ()k
i ii

f tt v w tt
=

= ∑ , (2.1)

There are possibly two main advantages to this sort of approach. First, because the

aim is to simply search for a candidate solution that minimises4 a single objective function,

it can, of course, be used with any reasonable optimisation technique. Second, this

approach is, in general, very flexible and easy to implement, because any sensible constraint

can effectively be incorporated into the problem provided that an appropriate penalty

weighting (which indicates its relative importance compared to others) is stipulated. This

second factor, in particular, is highly convenient for timetabling problems where, as we

have seen, we are likely to encounter an abundance of different combinations of constraints

in practice.

It is perhaps for these reasons that we have seen a large number of timetabling

algorithms of this type. Possibly, one of the earliest examples was provided by Colorni et al.

in [35-37] where an evolutionary algorithm (EA) is proposed for a timetabling problem

based on an Italian high school. In this particular approach, a number of hard and soft

constraints are considered, and a weighted sum function is used to distinguish between the

two types. Additionally, the bias introduced by the weightings is also complemented by a

genetic repair procedure (that the authors call the filtering procedure), which is used to

“fix” a particular timetable if the number of hard constraint violations is seen to rise above a

certain level (this is defined by a system constant). This particular approach also encodes

each timetable as a matrix where columns represent timeslots and each row represents a

teacher involved with the timetable, and using this representation a novel crossover

operator is then defined: taking two parent timetables p1 and p2, first, a local fitness

function 'f is used to calculate the personal cost of each row (i.e. teacher) in both parent

timetables. The crossover operator then takes the best j rows from p1 and the remaining

rows from p2 to form the first offspring. The second offspring is then constructed by

reversing the roles of the parents. (The value j is determined on the basis of the local fitness

of both p1 and p2). The authors also report that improvements are gained when this

operator is used in conjunction with a local search procedure that is used in order to try

4 Depending on the particular evaluation function being used, the aim could be to maximise instead.

 17

and move an offspring to its local optimum when it is first constructed. In [37] the authors

compare this algorithm against a simulated annealing and tabu search approach and report

that their EA produces better results (with respect to the minimal objective value found)

than simulated annealing but slightly worse results than tabu search. However, they also

note the obvious advantage that the EA possesses in that it is able to produce a large

number of different, good quality timetables in a single run.

Another approach using EAs has been reported by Corne, Ross, and Fang in [39]. In

this book chapter, weights are again used in the fitness function, but also three possible

representations for the algorithm are discussed: namely the so-called clash-rich, clash-free

and clash-sparse representations. In the first of these, a simple object-based encoding is used

whereby each event is assigned an integer that represents a particular timeslot in the

timetable. Thus a chromosome such as 9273453, for example, is interpreted as “event 1 is

to be scheduled in timeslot 9”, “event 2 is to be scheduled into timeslot 2”, “event 3 into

timeslot 7”, and so on. As the authors note, it is likely that the vast majority of

chromosomes in the search space defined by this encoding will probably have some hard

constraint violations, especially due to event-clashes (hence the name clash-rich). However,

one benefit of this approach is that because of its simplicity, the authors are able to define

various smart-mutation operators, such as their violation-directed and event-freeing mutation

operators, in which problem areas of the chromosome are identified and mutated in such a

way so that constraint violations are hopefully rectified. Such operators are reported to

improve the performance of the algorithm.

Corne et al.’s clash-free approach, meanwhile, uses a representation whereby each

chromosome is represented by a permutation of the events. The algorithm then employs a

scheme whereby timetables are formed by taking events one-by-one and assigning them to

the first timeslot that causes no conflicts with any other events already in the timeslot. If no

place exists, then new timeslots are opened accordingly. The main aim of this algorithm

therefore becomes one of reducing the number of timeslots down to an acceptable level

whilst never allowing conflicting events to be placed in the same timeslot (hence the name

clash-free). This scheme is, of course, very similar to the greedy (or first-fit) algorithm used

in graph colouring (see for example [42]). However, as is noted by the authors, this

representation’s main pitfall is that when constraints other than event-clashes are

considered in the problem (such as event spreading constraints), we cannot be sure that the

optimal timetable is actually representable. A potential solution to this latter problem is

thus suggested with the authors’ third method of encoding, that they call clash-sparse

representation. Here, a single fixed ordering of events is used and instead of putting each

into the first available slot, the event is put into the kth available slot (and where k is a value

 18

stored for each event in the chromosome). The approach is termed as clash-sparse because if

there is no available slot for an event, then it is simply placed into the kth unavailable slot.

Thus clashes are allowed, but are less common in the search space than the clash-rich

approach. In [39] the authors show the results of experiments that compare these three

approaches using a number of randomly generated test instances, as well as some real-world

problem instances taken from Edinburgh University. In general the clash-rich approach

shows the best performance.

Yet another one-stage EA approach to timetabling has been proposed Carrasco and

Pato in [27]. In this work the authors consider a particular course timetabling problem

originating from the Department of Hotel Management and Tourism at the University of

the Algarve, Portugal. They also decide that two distinct measures should be used to

evaluate a particular solution: the number of soft constraint violations from the students’

perspective (the class-oriented objective), and the number of soft constraint violations from

the point-of-view of the teaching staff (the teacher-oriented objective). As the authors note,

in their problem these two measures of quality actually conflict, and they therefore decide

to apply a multiobjective evolutionary algorithm (MOEA) to the problem, so that upon

completion of a run, a user might be provided with a range of trade-off solutions with

regards to these two competing objectives. The proposed algorithm operates as follows.

First, making use of a (room× timeslots) matrix representation, an initial population is

constructed using a constructive heuristic procedure. The resultant candidate solutions

(which may or may not also contain violations of the hard constraints) are then evaluated

according to both objective functions. Heavy penalties are then applied to both of these

measures in order to penalise any occurrences of hard constraint violations. Next, using

their own specialised evolutionary operators together with a selection pressure determined

by the Non-Dominated Sorting approach of Srinivas and Deb [104], the population is

then evolved, and all non-dominated solutions that are discovered during this process (and

which are also deemed sufficiently distinct from one another) are copied into an archive

population. Upon completion of a run, the final archive will contain a collection of

timetables that can be both feasible and infeasible. The authors report that this algorithm,

which in this case is only tested on one problem instance, is able to produce feasible

solutions that are better than the previous manually produced timetables with regards to

both of the competing objectives.

Moving away from evolutionary algorithms, various other authors including

Abramson [9], Melicio et al. [79], and Elmohamed et al. [51] have also reported one-stage

optimisation algorithms that make use of the simulated annealing (SA) metaheuristic. In

the approach of Elmohamed et al., for example, the authors consider the timetabling

 19

problem of Syracuse University in the USA and use a weighted-sum scoring function that

heavily penalises violations of the hard constraints. As well as using general simulated

annealing practices to optimise these timetables, the authors also point out that good results

can be gained if three modifications are made to their system: (1) the introduction of

adaptive cooling, (2) the use of a rule-based pre-processor to intelligently build good starting

solutions for the annealing phase, and (3) the use of specialised methods for choosing

neighbourhood moves. We will now take a brief look at each of these.

Firstly, adaptive cooling is basically a system by which a new temperature is

calculated based on the specific heat of the current temperature. The idea is to keep the

system close to equilibrium, by cooling more slowly at the temperatures near to which a

phase transition occurs. In other words, the goal is to make sure that the global structure is

arranged into an optimal a state as possible before moving on to resolve the finer details of

the problem. The author’s rule-based system, meanwhile, introduces a number of heuristics

and additional data structures to the algorithm (such as distance matrices and room-event

feasibility matrices) so that sensible choices are made when producing an initial solution.

These heuristics and data structures are also then used for the third method of

improvement. Here, the authors note that if the neighbourhood move applied during the

optimisation process is selected at random (as is typical in SA), then when the search starts

closing in on good regions of the search space, it will usually be the case that the vast

majority of neighbourhood moves will cause an increase in the objective function and will

thus be rejected. The authors therefore propose a system by which some bias is placed upon

the selection of moves so that moves that have a higher chance of producing positive

movements in the search space are favoured.

Another notable feature of this SA application is that the authors choose to use a

method of reheating called Reheating as a Function of Cost, which was first introduced by

Abramson et al. in [10]. The process of reheating in general SA practice can be useful,

because a rise in the temperature parameter will increase the probability of negative

movements (i.e. those that worsen a candidate solution with regards to the objective

function) in the search space being accepted, and can therefore be used to help escape local

optima if a search becomes trapped. Abramson et al. were the first authors to examine the

effect that reheating could have with regards to SA and timetabling in [10]. In this study six

separate cooling schedules are considered, of which four – namely Geometric Reheating,

Enhanced Geometric Reheating, Non-Monotonic Cooling and Reheating as a Function of

Cost – make use of reheating schemes. The latter scheme in particular deserves a special

mention here, because as well as being the method that produced the best results in the

paper, it is also, a technique that we will be making use of in Chapter 6. We will thus spend

 20

the next few paragraphs going over the theory of the technique here. (Note that this

description will refer to those problems in which the aim is to minimise an objective

function. However, the approach could, of course, also be easily modified to cope with

maximisation tasks as well).

It is generally acknowledged that in the physical process of annealing (in metallurgy)

the particular substance being cooled may experience a number of phase transitions before a

frozen state is reached. This essentially means that in each transition the substance will

undergo some sort of change in its molecular/atomic makeup that will alter the way in

which it behaves. When Kirkpatrick et al. [68] first proposed SA as a general optimisation

technique in 1983 a similar phenomenon was also proposed to occur. For instance, it is

suggested that when the temperature of the system is high, then generally it will be the gross

structure (or super-structure) of the problem that is resolved. During low temperatures,

meanwhile, it will then be the more minute, finer details of the problem that are dealt with.

We can use the term “phase transition” to thus denote the point at which the algorithm is

observed to move from the former into the latter, and such transitions have been observed

with various applications of SA [10, 68, 76]. In order to apply these concepts to a method

of reheating, in [10] Abramson et al. propose the following scheme. First, during the run

the temperature at which a phase transition occurs (Tpt) is calculated. In order to do this, it

is necessary at each temperature T to determine the specific heat of the substance, which can

be calculated using the following formula:

2

2

()C T
T

σ
 (2.2)

Here, 2 ()C Tσ represents the variance of the cost function at a particular temperature

T. A phase transition is then deemed to occur at the temperature where the specific heat is

maximal. (An example of these calculations can be seen in fig. 2.2.)

Having determined Tpt, Abramson suggests that a reheat temperature Treheat can then

be calculated using the formula:

 reheat best ptT C Tλ= + (2.3)

where Cbest represents the cost of the best timetable found so far in the search, andλ

represents a parameter that needs to be set to some value greater than zero5. The idea

5 Generally, an appropriate value for λ will depend on the range of the objective function being considered. If

the range is quite small (say, 0 to 100) then a value of between around 0.1 to 1.0 might turn out to be

appropriate. For larger ranges, however, higher settings might often be needed.

 21

behind Reheating as a Function of Cost is thus very simple: if the best solution found so far

during the run is quite poor (and, thus, Cbest is still quite high), then it is likely that the

overall global structure of the solution will need to undergo some fundamental

rearrangements, and so it is probably appropriate for Treheat to take a value that is some way

above Tpt. On the other hand, if the best solution found so far is very close to the optimal,

then the global structure of the solution probably only needs to undergo very minor

rearrangements. Consequently, Treheat will take a value that is only a very small way above

Tpt. In both [10] and [51] this method of reheating is reported to be very effective at

producing good timetables; indeed, as we will see in our own SA algorithm documented in

Chapter 6 later, it is also appropriate for our needs as well.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

sp
ec

ifi
c

he
at

temperature T

Fig. 2.2: Demonstrating how the specific heat can vary at different temperatures during a run of SA, and

showing how we can use this information to calculate Tpt. This particular plot was constructed using data
taken from an example run of our own SA algorithm for timetabling that we will see later in Chapter 6; it can

be seen that the Tpt in this case is approximately 0.7

Returning now to our review of one-stage optimisation algorithms, it is worth noting

that other metaheuristics apart from EAs and SA have also been proposed for various

timetabling problems in the literature. For example, Costa [40], Hertz [66], and Schaerf

[99] have all made use of tabu search for their timetabling problems. In the approach of

Schaerf, for example, the author suggests inserting periods of local search in-between phases

of tabu search, with the best results of each stage then being passed into the next stage, until

no further progress in the search space can be made. In this approach the author makes use

of a matrix representation in a similar manner to Colorni et al.’s encoding mentioned

 22

earlier, and also defines two neighbourhood operators. The first of these simply swaps the

values contained in two cells of the matrix on a given row, one of which can be blank.

However as Schaerf notes, this operator will often cause violations of the hard constraints,

and so he also makes use of a second neighbourhood operator which uses the concept of

double moves. Essentially, this works by making two moves simultaneously, with the second

one being specifically chosen so that it has a good chance of cancelling out any infeasibility

caused by the first one. In order to deal with other hard constraint violations that might

occur, however, weights are also used in the evaluation function. The results from this

paper (with some experiments being performed on some real data taken from some Italian

schools) show that in their cases, the algorithm is able to always produce feasible solutions

that are better than the hand-made ones originally used in the schools, and in reasonable

amounts of time. In later work Di Gaspero and Schaerf [45] have also made use of similar

methods (i.e. using tabu search, together with a weighted evaluation function) for the

examination timetabling problem. A comparison with other algorithms proposed for the

same problem, however, reveals that this approach is not always able to perform as well in

some instances; although the authors do make note of a number of possible improvements

that could be made in the future.

Di Gaspero and Schaerf [46] have also taken a look at the applicability of multi-

neighbourhood search to a course timetabling problem. In this work, the authors

investigate how various combinations of different neighbourhood operators can be

combined in order to produce effective searches through the search space (in this case only

two operators are considered). The combinations suggested are neighbourhood-union,

neighbourhood-composition and token-ring search. A so-called kick operator is also defined

which is used to provide perturbations to the search and to help it avoid getting stuck in

local optima. In this work the authors once again make use of weights in the objective

function in order to penalise the occurrence of hard constraint violations. The various

proposed algorithms are then tested on four real-world based problems from an Italian

engineering department. It is noted that timetable feasibility is found in all trials, and that

in three of the four problem instances, the best results are achieved when the search space is

explored using the neighbourhood-union operator, which basically involves randomly

choosing one of the two neighbourhoods and then simply performing a random movement

within this chosen neighbourhood to produce a new solution in each step of the algorithm.

At this point, we have reviewed a number of different algorithms that, in one way or

another, have made use of weightings in their objective functions in order to penalise more

heavily the occurrence of hard constraint violations within a candidate solution. However,

it is worth noting here that although this technique has some good points (that we noted at

 23

the beginning of this subsection); it also has some inherent disadvantages. Various authors

(e.g. Richardson et al. [91]) have argued that this sort of evaluation scheme does not work

well in problems that are sparse (i.e. where only a few solutions exist in the search space).

Also, even though the choice of weights for discriminating between different sort of

violations will often critically influence the algorithm’s navigation of the search space (and

therefore its timing implications and solution quality), there does not actually seem to be

any obvious method for choosing them. (Note that different instances of the same problem

will usually require different weightings as well.) This means that a rather unsatisfactory

amount of ad hoc reasoning is therefore usually required. Some authors (e.g. Salwach [98])

have also proposed that a weighted sum function can often introduce much more

discontinuity into the fitness landscape of a problem, meaning that we will be presented

with a situation in which small changes to a candidate solution may actually result in overly

large changes to the fitness function.

With regards to timetabling, however, it is worth noting that some of the algorithms

that we have reviewed above have had automated methods built into them in order to try

and alleviate some of these problems. For example, in both [45] and [99] Schaerf and Di

Gaspero have used a method by which the penalties awarded to hard constraint violations

can actually be altered dynamically during the search. For example, in [99], Schaerf uses a

weighting value W that is initially set to 20. However, at certain points during the search,

the algorithm is able to increase W when it is felt that the search is drifting into search-

space regions that are deemed too infeasible. Similarly, W can also be reduced when the

search consistently finds itself in feasible regions. It is proposed that such a scheme allows a

better quality search than simply keeping W fixed throughout the run. The Tatties

timetabling system of Paechter et al. [86] (which we will also look at in Section 2.3.3) also

allows weights to be altered during a run. However, this time the adjustment is performed

manually by the users themselves rather than being done automatically by the algorithm.

The user is thus presented with a graphical interface that allows him-or-her to specify a

target and a weight for the various different problem measures that are considered. The user

is then able to change these values as they see fit during a run of the algorithm.

2.3.2 Two-stage Optimisation Algorithms

The operational characteristics of two-stage optimisation algorithms for timetabling

may be summarised as follows: in stage-one, the soft constraints are generally disregarded

and only the hard constraints are considered for optimisation (i.e. only a feasible timetable

is sought). Next, assuming feasibility has been found, attempts are then made to try and

 24

minimise the number of the soft constraint violations, using techniques that only allow

feasible areas of the search space to be navigated.

Obviously, one immediate benefit of this technique is that it is no longer necessary to

define weightings in order to distinguish between hard and soft constraints, because we no

longer need to directly compare feasible and infeasible timetables. In practical situations,

such a technique might also be more fitting when achieving timetable feasibility is the

primary objective, and where we only wish to make allowances towards the soft constraints

if this feasibility is definitely not compromised. Indeed, there are two main reasons why the

use of a one-stage optimisation algorithm might turn out to be inappropriate in a situation

such as this. First, whilst searching for a feasible timetable, a weighted-sum evaluation

function will always take the soft constraints into account to some extent, and therefore it

might provoke the adverse effect of leading the search away from attractive (i.e. in this case

fully feasible) regions of the search space. Second, the operational characteristics of the one-

stage optimisation approach also suggest that these sorts of algorithm will often allow a

timetable to move away from feasibility in order to eliminate some soft constraint

violations. However, in this particular case this strategy might be unwise, because there

would, of course, be no guarantee that feasibility could then be re-established at a different

point in the search space later on.

An early example of the two-stage approach was provided by Thompson and

Dowsland in [107]. In this study, the authors consider a simple exam timetabling problem

in which a feasible timetable is deemed one that contains no event-clashes and that obeys

all of the capacity constraints. However, soft constraints are also considered in this

problem, which concern the desirability of having each student’s exams spread out within

the pre-specified exam period in order to decrease student stress and to aid revision. In

[107], Thompson and Dowsland choose to relate their exam timetabling problem directly

to the underlying graph colouring problem and suggest a two-phase approach whereby a

feasible colouring/timetable is first obtained, and then various neighbourhood operators

that always preserve feasibility (but, at the same time, are still able to alter the other

characteristics of solution) are explored. Although, as we noted earlier, the graph colouring

problem is NP-hard, the authors state that the instances they use (data taken from the exam

requirements at the University of Wales, Swansea, as well as some other universities) are

loose enough such that feasible colourings can always be found fairly easily using standard

graph-colouring algorithms which have been modified slightly to take into account capacity

constraints of each timeslot.

A feasible colouring (exam timetable) having been found, Thompson and Dowsland

then attempt to satisfy the soft constraints of their problem by making use of simulated

 25

annealing. In their tests, three different neighbourhood operators are proposed, each which

is specially designed to only allow movements from one feasible timetable to another:

(1) The Standard Neighbourhood: whereby the colour of a particular vertex is changed to

a new colour (i.e. an event is moved to a new timeslot) in such a way so that feasibility

is preserved.

(2) Kempe Chain Neighbourhood: whereby the colours of all the vertices contained in a

randomly selected Kempe chain are switched. (See fig. 2.3.)

(3) S-chain neighbourhood: which is, in essence, very similar to the Kempe chain

neighbourhood above, but which involves more colours. Thus S > 2 colours are

identified, and using an ordered list of these S colours together with a recursive

procedure to produce the S-chain, we are able to identify various sub-graphs whose

colours, when swapped, will result in a different but still feasible solution. (In this case

only 3-chain neighbourhoods are considered. For further reference see the work of

Morgenstern [82].)

1 2

3 4 5

6 7 8

9 10

1 2

3 4 5

6 7 8

9 10

1 2

3 4 5

6 7 8

9 10

(1) Select two adjacent nodes at
random. (In this case we have
selected vertices 5 and 8). Assuming
that the graph contains no colour
conflicts then these two vertices will,
of course, be different in colour.

(2) Next, determine the corresponding
Kempe chain of these vertices. This is
done by identifying all of the connected
vertices that are reachable from vertices
5 and 8 and which are assigned either of
the two selected colours.

(3) Swapping all of the colours
within this (and indeed any) Kempe
chain will result in a different
feasible colouring that uses no
more colours than the original.

Fig. 2.3: Example of a Kempe chain neighbourhood operator.

The conclusions of Thompson and Dowsland’s work in [107] is that the Kempe

chain neighbourhood, when used in conjunction with SA, is able to produce significantly

better results than the standard neighbourhood, and this is probably due to its increased

flexibility over the standard neighbourhood operator. Additionally, they also state that in

their case the standard neighbourhood operator often displays an unfavourable sampling

bias, as not all colours are usually available for each vertex. They also note that there is little

difference in the results between Kempe chain neighbourhoods and 3-chain

neighbourhoods.

 26

In [114], Yu and Sung have also proposed a two-stage course-timetabling algorithm

and choose to follow an evolutionary approach. This algorithm starts with an initial

population of totally feasible timetables (the input used is easy enough to allow this), and

then attempts to optimise these with respect to a set of soft constraints, whilst always

maintaining feasibility. A direct representation similar to that used by Colorni et al. [35-37]

is also used, and because this method only considers feasible timetables, the evaluation

function is only concerned with the number of soft constraint violations. This paper also

introduces an interesting recombination operator called Sector Based Partially Mapped

Crossover, in which a sector of one timetable is injected into another timetable as a means

of crossover. The term “partially mapped” is applied in this case because a sector is rarely

transformed in its entirety because of infeasibilities/illegalities arising in the resultant

offspring. Instead, genes that do cause a problem when being transferred are dealt with by

an appropriate genetic repair routine that enforces feasibility of the timetable at all times.

Unfortunately, however, the authors carry out only limited experimentation with this

algorithm and provide few details on the problem instances that are used.

A two-stage style approach for exam timetabling has also been proposed by Casey and

Thompson in [33]. This particular algorithm is based upon a Greedy Randomised

Adaptive Search Procedure (GRASP) and operates as follows. In stage-one, a feasible, clash-

free timetable is first gained using a probabilistic-based constructive algorithm that works

by taking events one at a time (based, to some extent, on some ordering heuristics derived

from graph colouring-based algorithms) and attempts to place these into feasible timeslots,

using backtracking when necessary [31]. Once feasibility has been achieved, the algorithm

then moves onto the second phase in which a satisfaction of the soft constraints is

attempted, whilst always remaining in feasible areas of the search space (this is achieved

using Kempe chain interchanges and SA and is similar to the work of Thompson and

Dowsland [107] mentioned above). After a period, the algorithm then returns to stage one,

using the information gained in the pervious iteration to aid the constructive algorithm.

This then continues for a set number of iterations. This algorithm is tested on the Carter

Instances [1], and the results reported are generally promising.

Having now looked at a number of two-stage timetabling algorithms for this

problem6 it should be clear that for this approach to work effectively, it is essential that two

6 It is worth noting that a number of two-stage timetabling algorithms have also recently been proposed for

the benchmark timetabling problem that we will be studying in later chapters here. However, we will not

discuss these algorithms at this point in the thesis; instead we will leave their examination for the next chapter

where we will be looking at this particular problem-version (and the algorithms proposed for it) in much

more detail.

 27

criteria are met. First, feasibility must be obtainable in a reasonable amount of time.

Second, a practical amount of movement within the resultant feasible-only search space

must be achievable. With regards to the latter requirement, if the search space of the

problem is quite unconstrained and a reasonable part of this space is made up of feasible

solutions, then this may be so. However, it is also possible that if the “constrainedness” of

the search space is quite high, then searches of this kind could also turn out to be extremely

inefficient and/or ineffective at times, because it might simply be too difficult for the

algorithm to move about and explore the feasible parts search space in any sort of useful

way (this matter will be examined in more detail in Chapter 7); indeed, in these cases,

perhaps, a method that allows the search to take “shortcuts” across infeasible parts of the

search space might allow a better search to be conducted in some cases.

Additionally, whether this technique will be appropriate in a practical sense also

depends largely on the user requirements: if a completely feasible timetable is an absolute

necessity and the user is only interested in satisfying the soft constraints if this feasibility is

assured, then this approach may well be fitting. On the other hand, if, for example, we were

to be presented with a problem instance where feasibility was very difficult (or impossible)

to achieve, then it may be the case that users might actually prefer to be given a solution

timetable in which a suitable compromise between the number of hard and soft constraint

violations has been achieved (suggesting that, perhaps one of the other two types of

algorithm might be more appropriate instead).

2.3.3 Algorithms that allow Relaxations

Our final category of metaheuristic timetabling algorithm contains those methods in

which some aspect of the problem has been relaxed so that the algorithm is able to make

attempts in satisfying the soft constraints, but not at the expense of violating any of the

hard constraints. Typically these “relaxations” will be achieved in one of two ways:

(1) Events that cannot be feasibly assigned to any place in the current timetable will be left

to one side unplaced. The algorithm will then attempt to satisfy the soft constraints

and will hope to assign these unplaced events to somewhere in the timetable at a later

stage.

(2) Extra timeslots will be opened in order to deal with events that have no existing feasible

timeslot available. If necessary, efforts will then be made to try and reduce the number

of timeslots down to the required amount, whilst also taking into consideration the

satisfaction of the soft constraints.

 28

An early example of the second type above was proposed by Burke, Elliman, and

Weare [19] and followed an evolutionary-based approach applied to exam timetabling. In

this method each individual in the initial population is first created by a random

permutation of the exams. These permutations are fed into a greedy graph colouring-style

algorithm which takes each event in turn and places it into the first timeslot where no clash

occurs and where capacity constraints are not exceeded. Extra timeslots are then opened for

exams that cannot be placed into existing timeslots. (Note that building an initial

population in this way will produce a collection of timetables that will contain no hard

constraint violations, but which may well be using a variable number of timeslots.) The

algorithm is then concerned with meeting two requirements: lowering the number of

timeslots being used to a suitable level; and spreading the exams of each student within the

timetable in a similar manner to Thompson and Dowsland [107] mentioned earlier (the

latter is referred to as the secondary objective in the paper). In their approach, the authors

choose to combine these two objectives into a single numerical function using weights.

Knowledge augmented evolutionary operators specially designed to produce offspring that

also contain no hard constraint violations are also used to evolve the population. The

authors present results of the algorithm using various different weightings in their fitness

function, and their results indicate the following trade-off: if, in the fitness function, a large

emphasis is placed upon keeping the timetable short, then this will usually be to the

detriment of the secondary objective, because there will be less opportunity for events to be

spread out. Conversely, if a larger emphasis is placed upon the secondary objective this will

likely mean that a longer timetable will be produced.

In [20] Burke, Elliman, and Weare have continued this work, this time with their

research being directed towards the design of more specialised recombination operators for

the problem. The authors define a basic scheme for recombination, and then experiment

with various heuristics used in conjunction with this scheme in order to identify the most

effective one. Good results to a real-world timetabling problem taken from Carter’s

problem instance set [1] are claimed.

A similar strategy of using variable length exam timetables has also been presented by

Erben in [52], who chooses to use a modified version of his Grouping Genetic Algorithm

(GGA) for graph colouring which is presented in the same paper (we will be looking at this

particular graph colouring algorithm in much more detail in Chapter 5). In this case, an

initial population of feasible exam timetables is made in a very similar way to Burke et al.

above; however, this time the population is evolved using GGA-based operators instead (see

the work of Falkenauer [54, 58] and also Chapter 4 of this thesis). As with Burke et al.,

Erben then concerns himself with satisfying two objectives: shortening the timetable (i.e.

 29

decreasing the number of timeslots), and spreading the exams to ease student workloads.

Once again, these two objectives are combined into one fitness function, with heavier

weightings being placed upon the former objective.

It is noticeable that in the exam timetabling problems tackled by Burke et al. [19, 20]

and Erben [52], a compromise will usually have to be struck between (a) keeping the

timetable short and (b) spreading-out each of the students’ events within the timetable. In

other words, this problem features two conflicting objectives, because if we wish to increase

the average time that students are given between exams, then this will generally require

larger numbers of timeslots; and conversely, if we reduce the number of timeslots being

used by the timetable, then the potential for events to be spread-out will also diminish. In

this sense, this formulation of the exam timetabling problem might be considered a type of

Multiobjective Problem (MOP). As we have noted, in the work of both Burke et al. [19,

20] and Erben [52], the authors have chosen to cope with these two conflicting objectives

by using pre-specified weightings in order to combine both into a single evaluation

function. However, as is often noted in MOP literature, there is actually an inherent

problem in using a single evaluation function for these sorts of problems, because in many

cases the criteria used for measuring the different objectives might be incommensurable.

For example, in this case it might be appropriate to ask whether it is wholly appropriate to

combine a figure that represents the number of timeslots being used (similarly the number

of unplaced events) with a figure that reflects how spread-out each of the students’ events

are. Other criticisms of using a single objective function are also often noted due to the fact

that, from a user’s perspective, the task of manually specifying weightings for these sorts of

problems before a run is usually highly complex, and that the effects that these weights will

have on the search will often be hard to predict7.

For these reasons Cote, Wong, and Sabourin [41] have chosen to make use of

multiobjective optimisation techniques for this particular bi-objective version of the exam

timetabling problem. In essence, their approach involves the use of a hybrid multiobjective

EA, which operates by ranking each member of the population using the concepts of Pareto

Strength used in the SPEA-II multiobjective EA of Zitzler et al. [115]. The algorithm

operates by first randomly producing a population of timetables that use various numbers

of timeslots between some fixed bounds, and which may or may not be feasible. During a

run the population is then evolved using two local search procedures which are used to

7 We have mentioned some potential problems with weights in Section 2.3.1. Note also that are various other

issues that surround the use of single objective functions in MOPs as well. However, we will not go into these

here; instead, further information can be found in some good texts such as the work of Eiben and Smith [49]

and Landa Silva, Burke, and Petrovic [71].

 30

eliminate timetable infeasibilities and to make improvements on the spreading of the

events. No form of recombination is used. The algorithm then stores any non-dominated

solutions that are found in an archive population and, upon completion of a run, the user is

presented with a number of alternative timetables of different length and differing levels of

event spread. In practical applications this latter feature might be considered an advantage,

because the user will be able to choose from a variety of solutions along the Pareto front,

without there being any need for the manual specification of weights beforehand.

(Presumably the process of manually choosing one of these timetables is easier than

manually defining the weights in the first place.) In their experiments, for each run of the

algorithm the authors choose to allow five separate timetable lengths to be stored in the

archive and very good results are reported when the algorithm is allowed to run for long

periods.

Given the fact that so many different criteria can ultimately be used to evaluate a

particular timetable (due to the large number of constraints, hard and soft, that might be

imposed on a particular problem) it seems that there is a large potential for conflicting

objectives to actually occur in practical timetabling. However, apart from the bi-objective

examples of Cote et al. [41] and Carrasco and Pato [27] (the latter which we saw in Section

2.3.1), there does not seem to have been a great deal of applications of multiobjective

metaheuristics to university timetabling problems in general. Indeed, to our knowledge the

only other notable examples from this field are provided by Burke, Bykov, and Petrovic in

[21]; Petrovic and Bykov in [88]; and in an extended abstract by Paquete and Fonseca in

[87]. In the first two of these works, the authors consider exam timetabling problems, and,

again, the problem instances used in experiments are taken from Nottingham University

and Carter instance set. In both cases the authors choose to impose nine different soft

constraints on these problems, which deal with factors concerning room capacities, the

spreading-out of exams, and the ordering of exams. Additionally, neighbourhood search

techniques then are used in order to try and optimise these constraints and, in the case of

Petrovic and Bykov, weights that are adjusted automatically during the run are used in

order to help influence the direction of the search. (See [21] and [88] for further details.)

Moving away from the field of multiobjective metaheuristics, another evolutionary-

based approach to exam timetabling, which uses methods that are slightly different to those

discussed thus far, has also been proposed by Burke, Newall, and Weare in [25]. In this

case the number of timeslots that are to be used in the timetable is defined explicitly in

advance, and events that cannot be inserted into a timeslot are then deliberately kept to one

side unplaced. Consequently, an evaluation function is then used that reflects (a) the

number of unplaced events (to which a large weighting is applied) and (b) how spread-out

 31

each student’s exams are in the timetable. During a run of the algorithm the authors then

make use of three operators in order to evolve this population: their so-called light and

heavy mutation operators and a deterministic hill-climbing procedure. (Again no

recombination is used.) In particular, the latter operator, as well as attempting to optimise

the spreading of exams, also places a special preference on inserting the unplaced exams if

this is possible. The authors then test this algorithm using an instance from Nottingham

University and the Carter problem instances [1], over a range of timeslot limits. In all cases,

the algorithm is reported to eventually schedule all of the unplaced exams, as well as

making significant improvements in the spread of the exams in the timetable.

Further work has also been carried out using this algorithm by Burke and Newall

[26]. In this paper, however, the authors choose to investigate the idea of problem

decomposition. Given a particular problem instance, the algorithm first splits the event set

into a number of subsets E1 to En. The method then attempts to schedule each of these

groups, in turn, using the evolutionary-based algorithm just mentioned [25]. In other

words, at each stage, the algorithm is only applied to one subset Ei of events at a time, and

once timeslots have been found for each of the events in this subset (and a suitable

compromise with regards to the spreading of events has been reached) these events are then

fixed in place, and the algorithm then moves on to the next subset. It is hoped then, that at

each stage of this algorithm the evolutionary-based approach will be able to schedule all of

the events of a given subset Ei into the timetable on top of those groups E1 to Ei-1 that have

already been scheduled, before going on to schedule the remaining subsets of events Ei+1 to

En. As the authors note, however, the obvious pitfall of this method is that by fixing events

into timeslots like this, it may be impossible to schedule events later on in the process. They

therefore experiment with a number of different heuristics for partitioning the event set,

and also incorporate a look-ahead feature which allows two subsets to be considered at the

same time, but which only fixes the events of the first subset at the end of each stage. The

results indicate that this method of decomposition allows good results to be gained in much

less time than when using the same evolutionary-based algorithm on the entire event set in

one go.

The same decomposition method for the same exam timetabling problem has also

been used with Batenburg and Palenstijn in [12]. In their own implementation of Burke

and Newall’s algorithm [26], they note that, in actual fact, the evolutionary-based

algorithm used for scheduling each subset of events tends to converge quite quickly.

Consequently, they choose to use their own parallel tabu search-based approach for

optimising the population of partial timetables at each stage instead. According to results

 32

on one problem instance (the only one tested), the authors claim this approach ultimately

brings better results, but at the expense of extra run time.

Merlot et al. have also looked at exam timetabling in [80]. Here the authors suggest a

three stage approach involving constraint programming, simulated annealing and then hill

climbing. In the first stage the constraint programming part of the algorithm is used to try

and construct a feasible timetable. However, if events cannot be placed, these are placed

into a so-called dummy slot at the end of the timetable. In the next two stages attempts are

then made to try and improve the timetable (with regards to satisfying the soft constraints

and also trying to deal with the events in the dummy slot) through a use of SA and a hill-

climber, using Kempe chain interchanges. An evaluation function that places a large

emphasis on emptying the dummy slot (through weights) is also used. In experiments the

algorithm is tested using real-world problem instances from the University of Melbourne

(to which it finds substantially better results than the university’s existing methods) and

also various benchmark problem instances such as the Carter instance set, the results of

which compare well to other methods.

Finally, another evolutionary approach – this time for university course timetabling –

has been proposed by Paechter et al. in [86]. Here, the authors describe a memetic

approach whereby an evolutionary algorithm is supplemented with an additional local

search routine that aims to improve each timetable when it is being built, with the results

then being written back into the chromosome (i.e. it is a Lamarckian approach).

Additionally in this algorithm, rather than break any hard constraints, events that cannot

be feasibly assigned to any of the available timeslots are left to one side unplaced. Soft

constraint violations are then also penalised through the use of weightings that can be

adjusted by the user during the search (as we mentioned in Section 2.3.1). This algorithm

has been successfully used for module timetabling at Napier University – a problem that

typically involves trying to schedule around 2000+ events into 45 timeslots and around 180

rooms.

One interesting aspect of this approach is the authors’ use of sequential evaluation.

When this algorithm is run, the user is given a choice as to whether he-or-she wants to give

special priority to the task of inserting the unplaced events into the timetable. If this option

is not taken, then unplaced events are simply treated as an additional soft constraint by the

algorithm; however, if it is taken, then when two candidate timetables are compared, the

algorithm always deems the one with the least number of unplaced events as the fitter.

However, ties are then broken by then looking at the penalties caused by each of the

timetable’s soft constraint violations. This particular approach means that many of the

problems encountered when judging a timetable’s quality through a single numerical value

 33

alone (as is the case with one-stage optimisation algorithms for timetabling – see Section

2.3.1) can be avoided. Note, however, that this method of evaluation is only useful for

algorithms where it is sufficient to know the ordering of a set of candidate solutions, rather

than an explicit numerical quality-score for each (in this case, the authors use binary

tournament selection with their evolutionary algorithm); it is thus perhaps less well suited

to other types of optimisation algorithms.

2.4 Conclusions

Concluding this chapter, it should be clear to the reader that timetabling problems

can be – and indeed have been – addressed using a variety of different computational

approaches. In our review of the literature, we have devoted the majority of our discussion

towards the application of metaheuristics to these problems, and have taken special note of

the different ways in which these sorts of algorithm might be adapted for dealing with and

distinguishing between the hard and soft constraints of a particular problem. Consequently,

we have suggested that metaheuristic algorithms for timetabling can be separated into three

main classes – one stage optimisation algorithms, two-stage optimisation algorithms, and

algorithms that allow relaxations – although it is worth noting again that this classification

method is not concrete, and it could well be the case that some algorithms might fit into

more than one of the classes. It is also worth stressing that although each of these schemes

will each have their relative advantages and disadvantages; it is probably not the case that

any particular approach is universally superior to any other. Instead, it is more likely that

certain approaches might be more suited to certain types of problem-situations and certain

types of user requirements. It would thus seem reasonable to assume that when choosing a

particular approach for one’s own timetabling problem, these issues should therefore be

given the most consideration, especially bearing in mind that the solutions to practical

problems will inevitably have to be used by real people. It goes without saying, however,

that it is also desirable for an algorithm to be fast, reliable and robust whenever possible.

Another noticeable trait from our review is the fact that in many cases, algorithms

that have been proposed to solve a particular timetabling problem will have only been

tested on a small number of benchmark instances and/or on the authors’ own problem

instances. This is particularly noticeable in the case of course-timetabling where, unlike

exam timetabling, there has not been the adoption of a commonly-used set of benchmark

problem instances. (That is, arguably, until recently – see the next chapter). From a

practical perspective, this situation is perhaps understandable, because if a timetabling

 34

problem needs to be solved at the authors’ own institution(s), they will, of course, be more

motivated in solving this problem, rather than spending their time trying to solve other

people’s. However, from a research point of view, this characteristic will often make it very

difficult to assess how well an algorithm is capable of performing in comparison to others,

as no real benchmarking criteria will exist. Also, in many cases, other researchers will have

no idea whether or not the instances used in a particular study are actually “hard” or not.

These difficulties are in contrast to many other types of problems faced in operations

research (such as the travelling salesperson problem and the bin packing problem, for

example) where we will often have standardised problem definitions, together with an

abundance of different problem instance libraries available for benchmarking algorithms

(see for example [3, 5]).

As we have seen, it is also quite common – particularly in course timetabling

applications – for authors to state that their algorithm was able to produce better timetables

than the manually-produced solutions previously used by the institution. However, there

are actually a number of potential pitfalls when using an argument such as this to justify an

algorithm. First, this sort of claim involves making the explicit assumption that the

university’s criteria of measuring timetable “goodness” (whatever these might be) have all

been effectively captured by the algorithms objective function. However, it could be the

case that often, the people who construct timetables by hand may well make certain choices

subconsciously and, consequently, may not explicitly described these processes and criteria

to the algorithm designer. Secondly – and perhaps more obviously – the statement that an

algorithm is better than a human-designed timetable is, of course, only actually meaningful

when the reader is also given some indication of the skill-level of the human in question.

This information is not normally provided, however.

It seems, therefore, that in this field there is a real need for some standardised course

timetabling problem instances that can be used for the effective analysis and comparison of

various different timetabling algorithms. In the next chapter we will look at a particular

version of a timetabling problem that is intended for just this purpose.

 35

3: Case Study: A

Benchmark

Timetabling

Problem

For the majority of this thesis we will be focussing our attentions on a specific

benchmark version of the university course timetabling problem. This problem-version was

originally defined in 2001 so that it could be used for various research purposes by the

Metaheuristics Network [6], and was intended to overcome some of the common

ambiguities and inconsistencies that currently exist in the study of automated course

timetabling. However, in 2002, it was also used for the International Timetabling

Competition [2], of which further details will be given later. Formulated by Ben Paechter,

the actual problem is closely based on many typical real-world timetabling problems, but is

also slightly simplified. Although, from the outset, it was acknowledged that such

simplifications were not wholly ideal, there were a number of reasons why this was done.

Firstly, as we have just mentioned, the problem was intended for research purposes,

particularly with regards to analysing what actually happens in algorithms designed to solve

these sorts of problems. (In many cases, real problems are often too complicated and messy

to allow researchers to study these processes in sufficient detail.) Second, the large number

of hard and soft constraints that are often found in real-world problems will usually make

the process of writing code (or updating existing programs to be suitable) a very long and

arduous process for timetabling researchers. Third, as we saw in the last chapter, typically

many of the constraints encountered in real-world problems are idiosyncratic and will only

 36

relate to one-or-two institutions. Thus, their inclusion in a particular problem set will not

usually allow us to learn much about timetabling problems in general terms.

What is important to note, therefore, is that the timetabling problem-version that we

are choosing to study is offering a compromise: a variety of common real-world aspects of

timetabling are included (as we will see), yet for ease of scientific investigation, many of the

messy fine-details found in practical problems have been removed.

In this chapter we will conduct a detailed case study of this particular timetabling

problem-version and will look at various algorithms that have been proposed for it. In the

following section we will first describe this particular problem and will also go over some of

the various terms and notations that will be used throughout this thesis. Next, in Section

3.2 we will then provide a description and rationale of some of the data structures and

encoding methods that we will be used in our own algorithms for this problem-version, to

be described in later chapters. In sections 3.3 and 3.4 we will then review the various

research papers that have already been proposed for this problem-version in the literature.

Finally, note that for convenience, throughout this chapter we will the acronym

UCTP (University Course Timetabling Problem) to exclusively refer to this particular

problem-version. Indeed, unless explicitly stated otherwise, this notation will also apply for

the remainder of the thesis.

3.1 Problem Description and Analysis

A problem instance of the UCTP consists of a set E of n events that are to be

scheduled into a set of timeslots T and a set of m rooms R, each with an associated seating

capacity. We are also given a set of students S, and each student in S is required to attend

some subset of E. (Pairs of events are said to conflict when a student is required to attend

them both.) Finally, we are given a set of rooming features F, which are intended to

represent real-world features such as wheel-chair access, computing facilities etc. Certain

features are required by each event and are satisfied by certain rooms.

In this problem, in order for a timetable to be feasible, it is necessary that every event

e1,…,en is assigned to exactly one room r1,…,rm and exactly one of t timeslots (where in all

cases t ≤ 45, which is to be interpreted as five days of nine timeslots), such that the

following three hard constraints are satisfied:

HC1: No student is required to attend more than one event at any one time (or, in other

words, conflicting events should not be assigned to the same timeslot);

 37

HC2: All events are to be assigned to suitable rooms. That is, all of the features required by

an event are satisfied by its room, which must also have an adequate seating capacity;

HC3: Only one event is assigned to any one room in any timeslot (i.e. no double-booking of

rooms is allowed).

Note that the presence of the HC1 – the usual event-clash constraint – makes the task

of finding a feasible timetable similar to the graph colouring problem, as mentioned in the

previous chapter. However, as we demonstrate in fig. 3.1, in this case the presence of HC2

and HC3 now add some further issues. First, we must now also ensure that no more than m

events are assigned to any one timeslot (i.e. colour class); secondly, we need to make sure

that every event in a given timeslot can also be given the rooming resources that it requires.

From a pure graph colouring perspective, the addition of these extra constraints means that

many feasible colourings that use t or fewer colours might still not actually correspond to

feasible timetables.

1 2

3 4 5

6 7 8

9 10

Event
10

Event
1

Event
2

Event
8

Event
5

Event
9

Event
6

Event
7

Event
3

Event
4

54321

Event
10

Event
1

Event
2

Event
8

Event
5

Event
9

Event
6

Event
7

Event
3

Event
4

54321

timeslots
In this top example, although the graph
has been coloured optimally (in that it
is only using five colours), if only two
rooms were available per-timeslot in
the corresponding timetabling problem,
then the timetable solution could not be
feasible.

Event
5

Event
1

Event
7

Event
8

Event
10

Event
4

Event
2

Event
3

Event
6

Event
9

54321

Event
5

Event
1

Event
7

Event
8

Event
10

Event
4

Event
2

Event
3

Event
6

Event
9

54321

1 2

3 4 5

6 7 8

9 10

This second graph colouring solution,
on the other hand, could represent a
feasible timetable providing that the
events in each timeslot could also be
granted the rooming features and
seating capacities that they require.

Fig. 3.1: Demonstrating the effects that hard constraints HC2 and HC3 have on the relationship between the
UCTP and the underlying graph colouring problem.

It is worth noting that hard constraints HC2 and HC3 do, however, provide us with

some additional clues about lower bounds that are not necessarily present in general graph

colouring problems. First, it is easy to see that no feasible timetable using fewer than

/n m⎡ ⎤⎢ ⎥ timeslots (colours) can possibly exist, because to use less than this figure would

imply that either too many events have been assigned to one or more of the timeslots, or

that some of the events have not been assigned to the timetable at all. Additionally, and in a

similar vein, we can also deduce that if ()n m t> × , then a problem instance will definitely

 38

not be solvable because this will obviously mean that there are not enough places8 for all the

events to be assigned. There are also various other pieces of information that we can infer

from a UCTP instance: for example if we have some subset of events G that all require

some combination of room features (or a room capacity) that only one room r R∈ actually

satisfies, then it is easy to see that the instance can only be solvable if | |G t≤ .9

In addition to the hard constraints outlined above, in this problem there are also

three soft constraints to be considered. These are as follows:

SC1: No student should be required to attend an event in the last timeslot of a day;

SC2: No student should sit more than two events in a row;

SC3: No student should have a single event in a day.

Note that each of these soft constraints is slightly different (indeed, this was done

deliberately by the problem formulator): violations of SC1 can be checked with no

knowledge of the rest of the timetable; violations of SC2 can be checked when building the

timetable; and violations of SC3 can only be checked once all events have been assigned to

the timetable.

Formally, we work out the number of soft constraint violations in the following way.

For SC1, if a student has a class in an end-of-day timeslot, we count this as one penalty

point. (Naturally, if there are x students in this class, we consider this as x penalty points.)

For SC2 meanwhile, if one student has three events in a row we count this as one penalty

point. If a student has four events in a row we count this as two, and so on. Note that

adjacent events occurring over two separate days are not counted as a violation. Finally,

each time we encounter a student with a single event on a day, we count this as one penalty

point (two for two days with single events etc.). Our soft constraint evaluation function is

simply the total of these three values.

For reference purposes, in Table 3.1 we outline the notation that will be used in our

analysis of the UCTP throughout this thesis. When referring to a specific timetable we will

use the term “feasible” to strictly denote a timetable in which all of the n events have been

assigned to one of the m rooms and one of the t timeslots, so that none of the hard

constraints has been violated. As we will see, however, in some of the later chapters we will

8 For convenience, at various points in this thesis we will use the term “place” to denote a room/timeslot pair.

(More formally, the set of all places P T R= ×)
9 It is likely that various other lower bounds can be identified for any given UCTP instance with regards to

both the hard and the soft constraints. Although we have provided some examples here, however, the

identification of such bounds is not the main purpose of this thesis. Indeed as we will see, in almost all

experiments conducted in this work we will make use of instances where we know feasibility to be obtainable.

 39

also be using algorithms that allow some flexibility in the number of timeslots being used

by a timetable. An extra variable s is thus also included in the table with an attached

description. Finally, in this thesis we will use the term “perfect” to describe a timetable that

is both feasible and which has no violations of the soft constraints.

Table 3.1: Description of the Main Notation used in This Thesis When Considering the
UCTP

Name Description

n Number of events in the problem instance

m Number of rooms in the problem instance
t Maximum number of timeslots permitted in a feasible

timetable (in all cases t is a constant 45, comprising five
days of nine timeslots).

s Variable used in some later chapters to denote the number
of timeslots being used by a particular timetable

P The set of places (i.e. room/timeslot pairs), where P = R ×T

3.2 Search Space Issues and Pre-processing

In simple terms, the total number of ways of assigning n events to p places

(remembering that a place refers to each room/timeslot pair) is pn. In anything but trivial

problem instances, however, the vast majority of these assignments are likely to contain

some level of infeasibility. In particular, it is worth noting that due to the presence of HC3

above, only assignments in which all events have each been assigned to their own unique

place even have the possibility of being feasible. For this reason, throughout this thesis, we

therefore choose to encode all timetables using a matrix representation. In this scheme each

timetable is represented by a two-dimensional matrix (i.e. grid) in which rows represent

rooms and columns represent timeslots. Each cell in the matrix (i.e. place in the timetable)

can then be blank or can contain at most one event. (See fig. 3.2 for an example). Note

then, that this method of encoding a timetable allows us to disregard the third hard

constraint of the UCTP altogether because, due to the latter characteristic above, it is now

impossible to double-book a room. Additionally, beyond trivial instances this method of

encoding will also drastically reduce the size of the search space that any algorithm will

need to navigate.

In order to demonstrate this latter claim, it is necessary to take note of the fact that

the number of ways of assigning n events to the p cells of a matrix in the manner we have

described, is exactly:

 40

!

()!
p

p n−
 (3.1)

Hence, assuming that p and n are positive integers such that p≥n, it is sufficient to

show that np ≥ (eq. (3.1)). This can be easily demonstrated by noting that:

()() ()()() ()()
() ()()

()() ()()

1 2 1 1 *2*1!
()! 1 *2*1

1 2 1

p p p p n p n p np
p n p n p n

p p p p n

− − − − − − +
=

− − − +

= − − − −

… …
…

…

. (3.2)

Hence, we are asking if:

 ()() ()()1 2 1np p p p p n≥ − − − −… , (3.3)

which it clearly is.

1918
139517

610
204161

53
14212

15811
7

1918
139517

610
204161

53
14212

15811
7

timeslots
1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

rooms

1
2

m-1
m

Day 1 Day 2
An “end-of-
day” timeslot

Fig. 3.2: A demonstration of the matrix representation for timetables used throughout this thesis. Here, event

11 has been assigned to room 2 and timeslot 2, event 8 has been assigned to room 2, timeslot 11, and so on.
Also indicated in this diagram is the presence of the end-of-day timeslots (which will occur in timeslots 9, 18,

27, 36 and 45). These might be considered slightly different to the remaining forty timeslots, because events

that are assigned to these will automatically cause soft constraint SC1 to be violated.

As well as making use of a two-dimensional matrix representation in this thesis, in all

of our algorithms (that we will see in later chapters) we also choose to carry out some useful

pre-compilation steps that are intended to help speed up each of the algorithms’ remaining

procedures. These steps involve the construction of two additional matrices: the event-room

matrix and the conflicts matrix. The Boolean (n × m) event-room matrix is used to indicate

which rooms are suitable for which events and can easily be calculated for an event i by

 41

simply identifying which rooms satisfy both the seating capacity and the features required

by i. Thus if, room j is deemed suitable for i, then element (i, j) in the matrix is marked as

true, otherwise it is marked as false. Meanwhile, the (n × n) conflicts matrix can be

considered very much like the standard adjacency matrix used for representing graphs and,

for our purposes, indicates which pairs of events conflict (i.e. that cannot be scheduled into

the same timeslot). Thus, if event i and event j have one of more common student, then

elements (i, j) and (j, i) in the matrix are marked as true, otherwise they are marked as false.

Additionally, as a final step in this procedure (and following the suggestions of Carter [28]),

we are also able to add some further information to the conflicts matrix: note that if two

events i and j do not conflict, but both can only be assigned to the same single room r, then

it is easy to deduce that there can also exist no feasible timetable in which i and j are

assigned to the same timeslot. Thus, we may also mark elements (i, j) and (j, i) as true in

the conflicts matrix as well.

When encoding timetables using the matrix representation, the presence of the event-

room and conflicts matrices makes it very easy and inexpensive to check for violations of the

remaining two hard constraints of the UCTP. In order to check whether a timetable

contains a violation of HC1, for example, it is simply necessary to check each column (i.e.

timeslot) of the timetable matrix in turn, and identify whether any pair of events within it

correspond to a positive entry in the conflicts matrix. Checking for violations of HC2 is also

simple as we only need to ensure that every event i in the timetable matrix has been

assigned to a row r such that the corresponding entry in the event-room matrix – i.e.

element (i, r) – is true.

3.3 Initial Work and the International

Timetabling Competition

It was Rossi-Doria et al. who conducted one of the first studies into the UCTP in

2002 [97]. In this research paper, the authors proposed five different metaheuristic-based

algorithms (namely, evolutionary algorithms, ant colony optimisation, iterated local search,

simulated annealing, and tabu search) for the UCTP and then attempted to provide an

unbiased comparison between them. In some of these algorithms, the satisfaction of both

hard and soft constraints was attempted simultaneously; for example, in the case of the

evolutionary algorithm the following weighted sum function was used:

 () () ()f tt h tt s ttα= + . (3.4)

 42

 Here h(tt) indicates the number of hard constraint violations in a timetable tt, s(tt)

indicates the number of soft constraint violations, and α is a constant that, in the case of

Rossi-Doria et al., was always set to a figure larger than the maximum possible number of

soft constraint violations. Meanwhile, other algorithms in the study, such as the iterated

local search and simulated annealing approaches, made use of a two-stage timetabling

approach (see Section 2.3.2), whereby once feasibility was obtained, no further violations of

the hard constraints were allowed to take place.

Upon conducting a thorough comparison of these five metaheuristic algorithms, it

was observed by Rossi Doria et al. that in the cases where feasibility was generally achieved,

the two-stage algorithms tended to produce results that were significantly better than the

remaining metaheuristic approaches. This feature, along with some other observations

made during the comparison, caused the authors to offer two interesting conclusions about

the particular problem-version being studied. These were as follows:

• “The performance of a metaheuristic [with the UCTP], with respect to satisfying hard

constraints and soft constraints may be different”;

• “Our results suggest that a hybrid algorithm consisting of at least two phases, one for

taking care of feasibility, the other taking care of minimizing the number of soft

constraint violations, is a promising direction.”

Following this work, the International Timetabling Competition [2] was then

organised and run in 2002-3. The idea of this competition was for participants to design

algorithms for this timetabling problem, which could then be compared against each other

using a common set of benchmark instances and a fixed time limit, measured in elapsed

time. The time limit was determined separately for each of the participants’ computers

using a program that measured various characteristics of their machine during execution,

and the effectiveness of this benchmarking program was then later verified by running the

best competition entries on a single standard machine. (A number of points regarding the

pros and cons of using a time limit for this purpose will be discussed later in Chapter 6.)

Upon the close of the competition, the participant whose algorithm was deemed to perform

best across these instances (and checked against a number of unseen instances that were

only available to the organisers) was awarded a prize. The exact criteria for choosing the

winning algorithm when judged across all of the problem instances can be found on the

competition’s web site [2].

The twenty problem instances used for the competition were made using an instance

generator designed by Ben Paechter. This generator requires eight command line

parameters to be defined (listed in Table 3.2) together with a random seed. When run, the

 43

generator then produces a problem instance-file together with a corresponding solution-file.

Additionally, the generator also offers the user the choice of (a) producing a problem

instance with a corresponding perfect solution, or (b) producing a problem instance only

with a corresponding feasible solution. If the second option is chosen, then obviously it will

not always be known if the produced problem instance will have an obtainable perfect

solution. For the International Timetabling Competition the problem instances consisted

of between 200 and 300 students, 350 to 440 events, and 10 or 11 rooms, and all were

ensured to have at least one perfect solution10. As usual, the number of timeslots was fixed

at 45. Additionally, in 13 of the 20 instances the number of events n was made equal to the

number of rooms multiplied by 40, meaning that optimal solutions to these instances had

to have 40 timeslots completely filled with events (as, obviously, perfect solutions would

not have any events assigned to the five end-of-day timeslots).

Table 3.2: Description of the Parameters Used with the UCTP Instance Generator.

 Parameter Description

(1) Number of events

(2) Number of rooms

(3) Number of room-features

(4) Approximate average number of features
per room

(5) Approximate average percentage of features
required by events

(6) Number of students

(7) Maximum number of events per student

(8) Maximum number of students per event

Another important aspect of the competition was the way in which the organisers

chose to evaluate the timetables. The official rules of the competition stated that timetable

quality would only be measured by looking at the number of soft constraint violations.

Thus, if a timetable (a) contained any hard constraint violations, (b) used any extra

timeslots, or (c) left any events unplaced, then it would immediately be considered

worthless (the same judging criterion was also used when comparing various metaheuristics

in the earlier work of Rossi-Doria et al. [97]). Indeed, the organisers imposed a strict rule

10 Note, in fact, that in this case if a UCTP instance is known to have at least one perfect solution, then we

actually know that there are at least 5! = 120 perfect solutions, because the soft constraints defined for this

problem do not actually carry across different days. Thus, we can permute the days of any perfect timetable

and the result is also guaranteed to be perfect.

 44

that stated that participants would only be allowed to submit an entry to the competition if

their algorithms could find feasibility on all twenty instances. Given this criterion, and also

taking into consideration the conclusions of Rossi-Doria et al. [97] quoted above, it is

perhaps unsurprising then, that many of the entrants to this competition therefore elected

to use the two-stage timetabling approach.

The competition, which ended in March 2003, eventually saw a total of 21 official

entries, plus 3 unofficial entries (the latter three were not permitted to enter the

competition because they were existing members of the Metaheuristics Network). The

submitted algorithms used a variety of techniques including simulated annealing, tabu

search, iterated local search, ant colony optimisation, hybrid approaches, and heuristic

construction with backtracking. As it turned out, according to the competition criteria,

many of the best algorithms, including the top three, made use of a two-stage metaheuristic

approach. These operated by using various methods to first find feasibility, followed by

assorted neighbourhood search algorithms (such as simulated annealing, tabu search, and so

on) to then deal with soft constraints. The winning algorithm, for example, was a two-

stage, simulated annealing-based algorithm by Philipp Kostuch of Oxford University and

details of this algorithm, plus many of the others submitted can be found at the official

competition web page [2].

3.4 Review of Relevant Research

Since the running of the International Timetabling Competition, a number of good

papers have been published regarding this particular timetabling problem, some of which

have described modifications to algorithms that were originally entered into the

competition. In this subsection we will now review some of the most notable and relevant

works on this problem.

In [11], Arntzen and Løkketangen have described a two-stage tabu search-based

approach. In the first stage, their algorithm uses a constructive procedure to build an initial

feasible timetable and operates by taking events one by one, and assigning them to feasible

places in the timetable, according to some specialised heuristics that also take into account

the potential number of soft constraint violations that such assignments might cause. The

order that events are inserted is determined dynamically, and decisions are based upon the

state of the current partial timetable. The authors report that these heuristics successfully

build feasible timetables in over 90% of runs with the competition instances. Next, with

feasibility having been found, Arntzen and Løkketangen opt to use tabu search in

 45

conjunction with simple neighbourhood operators in order to optimise the soft constraints.

In the latter stage, feasibility is always maintained by making use of neighbourhood

operators that are restricted so as never to break any of the hard constraints.

Cordeau, Jaumard, and Morales (available at [2]) have also used tabu search to try

and satisfy the soft constraints of the UCTP. However, this method is slightly different to

Arntzen and Løkketangen above, because, when dealing with the soft constraints, the

algorithm also allows a small number of hard constraints to be broken from time to time.

The authors achieve this by using the same weighted sum function given in eq. (3.4) above.

In this case, however, and rather like the methods used by Schaerf [99], the parameter α

(which, we remember, is used to penalise violations of the hard constraints) is allowed to

vary so that when the number of hard constraint violations in the timetable rises above a

fairly small amount, α is increased to a value so that further infeasibilities will generally

not be allowed. It is hoped then, that such a mechanism will help to control the level of

infeasibility in the timetable, and it is claimed by the authors that such a scheme allows

freer movement about the search space.

Another approach similar to these has also been proposed by Burke, et al. in [23]. In

this paper the authors make use of the Great Deluge algorithm of Dueck [48] in order to

try and reduce the number of soft constraint violations. Again, this is done whilst always

remaining in feasible areas of the search space. In contrast to other neighbourhood search

algorithms such as simulated annealing or tabu search, however, one advantage of this

approach is that only a single parameter needs to be defined before running the algorithm:

the amount of available search time. Given this value, the algorithm is then able to adapt

the intensity of the search so that it will only start to converge on local (or global) optima

when this time limit is being approached. As can be expected, in general the algorithm is

reported to return better quality results when the amount of available search time is

increased, and the algorithm is reported to return good results on the competition

benchmark instances.

Socha, Knowles, and Sampels have also suggested ways of applying the ant colony

optimisation metaheuristic to this problem. In [102, 103], the authors have presented two

ant-based algorithms – an Ant Colony System and a MAX-MIN system – and have

provided a qualitative comparison between them. At each step in both of the algorithms,

every ant first constructs a complete assignment of events to timeslots using heuristics and

pheromone information (the latter which is accumulated in previous iterations of the

algorithm). Timetables are then further improved by way of a local search procedure,

originally proposed in [96]. The only major differences between the two approaches are, in

fact, the way that heuristic and pheromone information is interpreted, and the approaches

 46

used for updating the pheromone matrix. However, tests using a range of problem

instances indicate that the MAX-MIN system generally achieves better results. A

description of the latter algorithm – which was actually entered unofficially to the

timetabling competition – can also be found at [2], where good results are reported.

Another good study looking at this problem is offered by Chiarandini et al. in [34].

In this research paper, which also outlines an unofficial competition entry, the authors

present a broad study and comparison of various different heuristics and metaheuristics for

the UCTP. After experimenting with a number of different approaches and also parameter

settings (the latter which was done automatically using a tuning method proposed by

Birattari et al. [13]), their decided method is a two-stage, hybrid algorithm that uses a

variety of different search methods. In the first stage, constructive heuristics are initially

employed in order to try and find a feasible timetable, although, as the authors note, these

were usually unable to find complete feasibility unaided. Consequently, local search and

tabu search schemes are also included to try and help eliminate any remaining hard

constraint violations. Feasibility having been achieved, the algorithm then moves onto

satisfying the soft constraints and conducts its search in exclusively feasible areas of the

search space. It does this first by first using variable neighbourhood search and then by

using simulated annealing. The annealing phase is reported to use more than 90% of the

available run time of the total algorithm, and a simple reheat function for this phase is also

implemented (this operates by resetting the temperature to its initial starting value when it

is felt that the run is starting to stagnate). Extensive use of delta evaluation [92] is also made

in order to try and speed up the algorithm, and according to the authors the final algorithm

achieves results that are significantly better than the official competition winner.

Kostuch has also used simulated annealing as the main construct in his timetabling

algorithm, described in [69]. Based upon his winning entry to the timetabling competition,

this method works by first gaining feasibility via simple graph colouring heuristics (plus a

series of improvement steps if these heuristics prove inadequate) and then uses simulated

annealing to try and satisfy the soft constraints, first by ordering the timeslots, and then by

swapping events between timeslots. One of the interesting aspects of Kostuch’s approach is

that when a feasible timetable is first being constructed, efforts are made to try and schedule

the events into just forty of the available forty-five timeslots. Indeed, as the author notes,

five of the available timeslots will automatically have penalties attached to them (due to the

soft constraint SC1) and so it could be a good idea to try and eliminate these from the

search altogether from the outset. The author then only allows the five end-of-day timeslots

to be opened if feasibility using forty timeslots cannot be achieved in reasonable time. (In

reported experiments using the twenty competition instances the events in nine of the

 47

instances were always scheduled into forty timeslots.) Another interesting aspect of this

approach is the way in which the cooling schedule for the SA stage is determined: in this

case, the algorithm’s time limit is used in order to calculate a temperature decrement rule

that will allow a cooling that is as slow as possible, but that will also still spend enough time

at low temperatures for sufficient movement towards the optimal to be possible. (This way

of determining the search’s characteristics according to the amount of computation time

that is available is similar to the Great Deluge approach of Burke et al. [23] that we

mentioned earlier.) Finally, the author also uses a slight “trick” by making note of the fact

that in some of the competition instances, there are a small number of events that are

actually empty (i.e. with no students). Thus, because these do not ultimately have any

bearing on the number of soft constraint violations in a particular candidate solution, the

author chooses to remove these from the timetable altogether before starting the SA

process, and only reinserts them again at the end of the run (usually into the five end-of-

day slots). The author suggests that such a “trick” helps to free up the timetable’s resources

and thus allows a better search to be performed during the SA phase.

3.5 Conclusions

From the review presented in this chapter, and in particular, bearing in mind the

suggestions of Rossi-Doria et al. mentioned in Section 3.3, it should be appreciable that the

two-stage timetabling approach seems to offer some promise for the UCTP; indeed, as we

have seen it is certainly the case that many of the best algorithms currently available in the

literature have used it in some form or another. However, it is also noticeable that one of

the critical requirements of this type of approach is that in the first stage of such an

algorithm, we still obviously require a reliable method of achieving feasibility – if indeed

feasibility is achievable. Looking at the results that have been reported for the twenty

competition instances, it would seem that this requirement is fairly easy to meet in most

cases. (Note again that these problems were deliberately constructed with soft constraints in

mind and were not intended to be too difficult to solve with regards to finding feasibility.)

However, as a natural consequence of this characteristic, this has also meant that the vast

majority of work conducted so far on the UCTP has pertained to the analysis of algorithms

specialised in satisfying the soft constraints of the problem. But, of course, this still leaves a

major issue of concern. How we can ensure that we will also be able to find feasibility when

other, “harder” problems are encountered? As we saw earlier in this chapter, even the

problem of finding a feasible timetable is NP-hard in this case, and it should not therefore

 48

be treated too lightly. Thus we believe that there are justifications and needs for more

powerful search algorithms that specialise in finding feasible timetables, which can also

cope across a much wider range of problem instances. An algorithm looking to achieve this

will be the main aim of the next chapter.

 49

4: Finding

Feasibility Using a

Grouping Genetic

Algorithm

In this chapter, we will concern ourselves with the task of producing an effective

algorithm for the first stage of the two-stage timetabling strategy: that is, an algorithm that

ignores the soft constraints of the UCTP and simply tries to find a feasible solution by

satisfying all of the hard constraints of the problem. For this purpose, we will mainly be

examining the applicability of the so-called “Grouping Genetic Algorithm” (GGA) – a

fairly well-known type of evolutionary algorithm that has been successfully applied to a

number of different computational problems. In our analysis of this algorithm, however, we

will actually see that when applied to this timetabling problem, there are, in fact, a number

of scaling-up issues; in particular, we will see that the GGA can actually produce

unsatisfactory performance in some cases, and we will offer a detailed description of why

this might be so.

As a by-product of these investigations, we will also introduce a method for

measuring population diversities and distances between individuals with the “grouping

representation” used with this algorithm. We also look at how such an algorithm might be

improved: first, by investigating the effects that various different fitness functions have on

the algorithm, and second by introducing an additional heuristic search operator (making

in effect a type of grouping memetic algorithm). Although we will see that the addition of

such mechanisms can improve the performance of the GGA in some cases; eventually we

 50

will see that, in many cases, better results can actually be achieved when we remove the

grouping genetic operators from the algorithm altogether. This latter observation, in

particular, will serve to highlight some of the issues raised in this chapter concerning

possible limitations of the general GGA approach.

4.1 Grouping Problems and Grouping Genetic

Algorithms

Grouping genetic algorithms (GGAs) may be thought of as a special type of

evolutionary algorithm specialised for grouping problems. Such problems are those where the

task is to partition a set of items U into a collection of mutually disjoint subsets (or groups)

ui of U, such that:

 and ,i i ju U u u i j∪ = ∩ =∅ ≠ . (4.1)

As well as this definition, it is also usual for grouping problems to feature some

problem-specific constraints that define valid and legal groupings. For example, the bin

packing problem requires that a set U of items of varying sizes be packed (grouped) into a

minimal number of bins of a fixed capacity, such that no bin is overfilled. Another example

is the graph colouring problem – in this case the task is to partition the set U of nodes (of a

graph) into a minimal number of groups (i.e. colours), ensuring that none of these groups

contains a pair of nodes with a common edge. Further examples of grouping problems

include:

• The Bin Balancing (Equal Piles) Problem [56];

• The Edge Colouring Problem [67];

• Various versions of the Frequency Assignment Problem [8];

• The k-way Graph Partitioning Problem [111];

• The Economy of Scales Problem [58];

• The Pick-up and Delivery Problem [90];

• The Cell Formation Problem [17].

From an optimisation point-of-view, many grouping problems, including all of the

above examples, are NP-hard. Given this fact, there is therefore scope for the application of

 51

approximation algorithms – such as evolutionary algorithms and other metaheuristics – to

these sorts of problems.

In [54] and [58], Emanuel Falkenauer – the creator of the GGA – argues

convincingly that when considering grouping problems like those just mentioned, the so-

called “traditional” genetic operators and representations often used in evolutionary

computation can actually be highly redundant, not least due to the fact that the usual sorts

of operators are item-oriented rather than group-oriented. The upshot is a general tendency

for these operators to recklessly break up the building-blocks that we might otherwise want

promoted.

As an example, consider the traditional item-based encoding scheme, where a

chromosome such as 31223 represents a solution where the first item is to appear in group

three, the second in group one, the third is in group two, and so on. (As a point of interest,

this has been used with timetabling in [39], [93] and [97].) First of all, when used with a

grouping problem, such a representation immediately brings disadvantages because it goes

against one of the fundamental design principles for evolutionary algorithms: The Principle

of Minimum Redundancy [89], which states that each member of the search space should

be represented by as few distinct chromosomes as possible. To expand upon this point,

note that the ordering or naming of groups is not actually important in a typical grouping

problem (e.g. the ordering/naming of the colours in a candidate solution for the graph

colouring problem does not have any influence on the actual quality of the solution being

represented); instead what is important is how the items are grouped. However, using this

particular encoding, given a candidate solution that uses s groups (in the example

chromosome above, s = 3), there are, in fact, another (s! – 1) distinct chromosomes that

represent exactly the same grouping of items, due to the various ways in which the groups

can be permuted. Of course, this means that the degree of redundancy will grow

exponentially with the number of groups being used; meaning that the search space will

generally be a lot larger than it needs to be.

 Next, if we were to make use of a traditional recombination operator with this

encoding, we would generally see that context-dependant information would actually be

passed out-of-context and, as a result, the resultant offspring would rarely resemble either of

its two parents (with respect to the solutions that they represent). For example, let us apply

a standard two-point crossover to two chromosomes: 3|12|22 crossed with, say, 1|23|12

would give, as one of the offspring, 32322. Firstly, this offspring no longer has a group 1

and, depending on the problem being dealt with, this may mean that it is invalid or illegal.

Secondly, in this case it can be seen that the groupings that occur in the resultant offspring

seem to have very little in common with either parent, and in fact this operation has

 52

resulted in more of random jump-style movement in the search space. Obviously, such

features go against the general aim of a recombination operator (see fig. 4.1).

3, 4, 5

1
2

2, 5

3
1, 4

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3

Parent 1 Parent 2 Offspring

1, 3

2, 4, 5

3, 4, 5

1
2

2, 5

3
1, 4

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3

Parent 1 Parent 2 Offspring

1, 3

2, 4, 5

Fig. 4.1: Pictorial description of the “traditional” two-point crossover application described in the text.

Similar observations to these are also made by Falkenauer with regards to the

standard sorts of mutation operators that are used with these sorts of encodings, and also

with the typical genetic operators that work with permutation based encodings, such as the

Partially Mapped Crossover [64], where similar problems are observed ([58], pages 85-96).

On the whole, the arguments that Falkenauer presents leads him to the following

conclusion: when considering grouping problems, it is essentially the groups themselves

that are the underlying building-blocks of the problem and not, for example, the particular

states of any of the items individually. Thus, if we are to use evolutionary computation to

try to solve these problems then appropriate representations and genetic operators that

allow these groups to be propagated effectively during evolution are advisable. In particular,

Falkenauer argues that a successful recombination operator for these sorts of problems

should allow entire groups to be transmitted from parent to offspring.

With this in mind, a standard GGA scheme has been proposed by Falkenauer in [54,

58]. In essence, he suggests using a specialised encoding in which the individual genes of a

chromosome are represented by the groups, with the evolutionary operators then operating

on these groups. (Note that the former point implies that a chromosome’s length is

determined solely by the number of groups that it is using. The implications of this fact

will be examined later in the chapter.). For clarity, in fig. 4.2 we give a pictorial example of

a typical GGA recombination operator. Notice that this sort of operation does indeed allow

entire groups from both parents to be transmitted into the offspring. With regards to

mutation, meanwhile, Falkenauer suggests that such an operator should also work with

groups, and suggests three general strategies: the creation of a new group; the elimination of

an existing group; or shuffling a small number of randomly selected objects among their

respective groups.

 53

Chrom2 = {{1, 4, 5}, {2, 7, 3}, {6, 8}}

Chrom1 = {{3, 7}, {1, 4}, {2, 5}, {6, 8}} Offspring = {{3, 7}, {1, 4}, {1, 4, 5}, {2, 5}, {6, 8}}

Offspring = {{3, 7}, {1, 4}, {1, 4, 5}, {2, 5}, {6, 8}}

Offspring = {{3, 7}, {1, 4, 5}, {2}, {6, 8}}Offspring = {{3, 7, 2}, {1, 4, 5}, {6, 8}}

Injection Point

Selected Group
(2) To form an offspring, inject a copy of the
selected group(s) from the second parent into
a copy of the first parent.

(1) Given two parent chromosomes,
randomly select an injection point in
the first parent and one or more
groups in the second parent.

(3) Next, remove the resulting duplicate items
from the groups that came from the first parent.

(4) (Optional Step) If needed, adapt
any modified groups using heuristics
suited to the problem at hand.

Group Eliminated Group Modified

Item 2 removed and reinserted

Fig. 4.2: Falkenauer’s GGA Recombination Operator.

Since the time when Falkenauer first made these suggestions in 1994 there have been

a number of applications of these techniques to various grouping problems such as the bin

packing and bin balancing problems by Falkenauer in [54, 56-58]; the graph colouring

problem by Eiben, van der Hauw, and van Hermert in [50], and also Erben in [52]; the

edge colouring problem by Khuri, Walters and Sugono in [67]; and also the exam-

timetabling problem in [52]. Other example applications have also been suggested by

Brown and Sumichrast [17] for the Cell Formation Problem, Rekiek et al. [90] for the

Pickup and Delivery Problem, and Falkenauer again [58] for the Economies of Scale

problem.

4.1.1 GGAs and the UCTP

It should be clear from the problem description given in Section 3.1 that the task of

finding a feasible timetable for a given instance of this UCTP also constitutes a grouping

problem: in this case, the “items” are the events themselves, and the “groups” are defined by

the timeslots. Thus, in order for a timetable to be feasible, the events need to be grouped

into at most t timeslots (remembering that, in this case, t represents the target number of

timeslots = 45) such that all of the hard constraints are satisfied. (From a grouping

perspective we may consider the same task to be one of partitioning the events into at most

t groups such that (a) no group contains a pair of events that conflict, and (b) events in

every group can each be assigned to their own feasible room.)

In the next section we will give a detailed description of a GGA specialised for the

UCTP. The remainder of this chapter will then continue as follows: in Section 4.3 we will

provide some general details of the experimental set-up used in this chapter and, using this

framework, will go on to look at the effects that the various genetic operators seem to have

 54

on the quality of the search (positive and negative) in Section 4.4. Next, in Section 4.5, we

will then go on to introduce a new way of measuring population diversities for this sort of

representation, and will make some other general comments regarding this sort of

algorithmic approach. In Section 4.6 we will then attempt to improve the algorithm: first,

through the use of some new fitness functions and, second, via the introduction of a

heuristic search operator. In particular, we will examine both the good and bad effects that

this additional search operator might have. Next, in Section 4.7 we will investigate the

consequences of actually removing the evolutionary parts of the algorithm altogether, by

introducing a new algorithm that only makes use of this heuristic search operator. Finally,

in Section 4.8 we outline the main conclusions of this chapter and, will present some

further discussion on some of the issues raised.

4.2 Algorithm Description

4.2.1 Representation and Solution Building

For this algorithm, each timetable will be encoded using the two-dimensional matrix

representation discussed in Section 3.2. Also, in addition to only allowing a maximum of

one event to be assigned to a particular place (matrix-cell) as discussed, in this case we also

choose to disallow any event from being inserted into a place where it causes a violation of

any of the remaining hard constraints. Instead, and following a fairly typical GGA scheme

[50, 52, 54, 58], we choose to open up extra timeslots (i.e. add columns to the matrix) in

order to cope with events that cannot be feasibly assigned to any existing place in the

current timetable. (Similar strategies have also been used in other timetabling algorithms

such as Burke, Elliman and Weare’s evolutionary approach in [19, 20]; and Socha and

Sampels ant-based algorithm in [102, 103]). For this UCTP, it is thus easy to see that the

overall aim of the GGA is to simply try and find a solution that uses no more that t

timeslots.

As we will see, a scheme for building full solutions from empty or partial solutions is

vital in the GGA algorithmic approach, not just for building members of the initial

population, but also for use with the grouping genetic operators described below. A

procedure, that we call Build, for achieving just this is outlined in fig. 4.3. As arguments

the procedure Build takes an empty or partial timetable tt and a non-empty list of

currently unplaced events U. Then, using the sub-procedure Insert-Events, the events in

U are taken one-by-one (according to some heuristics, defined in Table 4.1) and are

 55

inserted into places in the timetable that are between timeslots l and r and that are feasible.

Events for which there are no feasible places are ignored. Eventually then, U will be empty

(in which case we have a complete timetable that may or may not be using the required

number of timeslots), or U will only contain events that cannot be inserted anywhere in the

current timetable tt. In the latter case, a number of new timeslots are therefore opened, and

the process is repeated on these new timeslots. The number of timeslots that are opened is

calculated in line 7 of Insert-Events in fig. 4.3. Note that the result of this calculation

represents a lower bound, because we know that a maximum of m events can be assigned to

a particular timeslot, and therefore at least | | /U m⎡ ⎤⎢ ⎥ extra timeslots will be needed to

accommodate the remaining events in U.

Build (tt, U) .
1. if (len(tt) < t)
2. Open (t – len(tt)) new timeslots;
3. Insert-Events (tt, U, 1, len(tt));

Insert-Events (tt, U, l, r) .
1. while (there are events in U with feasible places in tt
 between timeslots l and r)
2. Choose an event e from U that has feasible places in tt;
3. Pick a feasible place p for e;
4. Move e to p;
5. if (U = ∅) end;
6. else
7. Open | | /U m⎡ ⎤⎢ ⎥ new timeslots;
8. Insert-Events (tt, U, r, len(tt));

Fig. 4.3: Procedure for building initial solutions and also rebuilding partial solutions. In this pseudo-code tt
represents the current timetable and U is a list of unplaced events of length | |U . The function len(tt) in the

figure returns the number of timeslots currently being used by tt. Finally, and as usual, m indicates the

number of rooms available per timeslot, and t represents the target number of timeslots = 45.

Table 4.1: The Various Event and Place Selection Heuristics Used with Build (Fig. 4.3)

Heuristic Description
H1 Choose the unplaced event with the smallest number of possible

places to which it can be feasibly assigned in the current timetable.
H2 Choose the unplaced event that conflicts with the most other events.
H3 Choose an event randomly.
H4 Choose the place that the least number of other unplaced events

could be feasibly placed into in the current timetable.
H5 Choose the place that defines the timeslot with the fewest events in.
H6 Choose a place randomly.

 56

In order to form an initial population for the GGA, the procedure Build is called for

each individual. (Note that when an initial solution is being built, to start with U will

contain the entire set of events.) At each step of Insert-Events, an event is chosen

according to heuristic H1 with ties being broken by H3 (see Table 4.1). Next, a place is

chosen for the event using heuristic H4, with ties being broken by H5 and further ties with

H6. Note that in our case the use of heuristics H3 and H6 (random choices) in the initial

population generator provides us with enough randomisation to form a diverse initial

population.

With regards to other heuristics described in Table 4.1, note that the rules that are

used for determining the order in which events are to be inserted into the timetable are

somewhat akin to the rules for determining the order in which nodes are to be coloured in

Brelaz’s classical Dsatur algorithm for graph colouring [16]. However, in this case we

observe that H1 also takes the issue of room allocation into account. Heuristic rule H1

therefore selects events based on the state of the current partial timetable tt, and prioritises

those with the least remaining feasible options. Meanwhile, rule H2 (which we will use

later), prioritises those events that have the highest conflicts degree, which – as a rule of

thumb – are often the more problematic events to insert.

 Our reasons for choosing the described place selection heuristics, on the other hand,

are as follows: by using rule H4 we are making the seemingly sensible choice of choosing the

place that will have the least effect on the future place-options of the remaining unplaced

events. Rule H5, meanwhile, encourages events to be put into timeslots that already have

large numbers of events assigned to them. This is done in the hope that the timeslots will

be filled more effectively in general, thereby requiring fewer timeslots on the whole.

4.2.1.1 Aside: An Alternative Rebuild Strategy

 Finally, it is also worth mentioning at this point, that during our initial experiments

with this algorithm we also implemented and tested a second building scheme that used the

same heuristics as just discussed, but which operated in the slightly more “traditional”

manner of opening timeslots in tt one-by-one, on the fly as soon as any event in U (due to

preceding insertions) became unplaceable. However a detailed comparison of the two

schemes revealed that the quality of the individual timetables produced by this second

method was usually worse, and that the cost of this process was significantly higher. This

second issue is particularly important in this case because, as we will see in the next section,

a rebuilding procedure is also an integral part of the grouping genetic operators. We believe

that this greater extra expense is due to the fact that, whilst looking for places for events in

 57

U, the whole timetable (which would be continually growing) needs to be considered by

the heuristics, whilst in our proposed building scheme, while U remains non-empty, the

problem is actually being split into successively smaller sub-problems.

4.2.2 The GGA Genetic Operators

Because, as we have discussed, we have decided to consider the individual timeslots as

the principal building-blocks of the problem in this case (Section 4.1), it follows that

appropriate genetic operators should now be defined so that these “groups of events” can be

propagated effectively during the evolutionary process. We choose to use the standard GGA

recombination method (proposed in [54, 58]) modified to suit our particular needs and

representation.

Fig. 4.4 depicts how we go about forming the first offspring timetable using parents

p1 and p2 with four randomly selected crossover points a, b, c, and d. A second offspring is

then formed by switching the roles of the parents and the crossover points. What is

important to note about this operator is that it allows the offspring to inherit complete

timeslots (the structures that we consider to be the underlying building-blocks of this

problem) from both parent timetables.

(2) Injection. Inject copies of the
timeslots between points c and d into
a copy of p1 at point a.

(3) Removal of Duplicates using Adaptation.
Remove all timeslots from the parts that came
from p1 (i.e. the white part) that contain duplicate
events. Keep track of any other events that
become unplaced as a result

+
U

U

(4) Reconstruction. Reinsert any
unplaced events using the BUILD
procedure.

(1) Point Selection. Given two timetables, p1
and p2, randomly select four crossover points
a, b, c, and d such that a != b and c != d.

p1 p2

a b c d

(2) Injection. Inject copies of the
timeslots between points c and d into
a copy of p1 at point a.

(2) Injection. Inject copies of the
timeslots between points c and d into
a copy of p1 at point a.

(3) Removal of Duplicates using Adaptation.
Remove all timeslots from the parts that came
from p1 (i.e. the white part) that contain duplicate
events. Keep track of any other events that
become unplaced as a result

+
U

U

(3) Removal of Duplicates using Adaptation.
Remove all timeslots from the parts that came
from p1 (i.e. the white part) that contain duplicate
events. Keep track of any other events that
become unplaced as a result

+
U

U

(4) Reconstruction. Reinsert any
unplaced events using the BUILD
procedure.

(1) Point Selection. Given two timetables, p1
and p2, randomly select four crossover points
a, b, c, and d such that a != b and c != d.

p1 p2

a b c d

(1) Point Selection. Given two timetables, p1
and p2, randomly select four crossover points
a, b, c, and d such that a != b and c != d.

p1 p2

a b c d

Fig. 4.4: The four stages of GGA recombination – point selection, injection, removal of duplicates using
adaptation, and rebuilding. Note that in order to form the second offspring, copies of the timeslots between

points a and b in p1 are injected into a copy of p2 at point c.

During recombination, notice that as a result of stage-two (injection), there will be

duplicate events in the offspring timetable, thus making it illegal. In order to correct this,

we could, for example, simply go through the timetable and remove all duplicate events

from the timeslots that came from p1. However, although such an operation would result in

a valid and complete offspring timetable, it is likely that the offspring would actually be of

very poor quality because it would almost certainly be using more timeslots than either of

 58

its two parents, thus going against the main aim of the algorithm. Instead, we therefore

choose to use the additional step of adaptation [59] in order to try to circumvent this issue.

This process is described in stage-three of fig. 4.4 and, indeed, the same procedure has also

been used in various other GGAs applications (see [50, 52, 54, 58], for example).

Finally, in the forth stage of recombination, events that have become unplaced as a

result of this adaptation step are reinserted using the Build procedure (fig. 4.3) with

heuristic H1 being used to define the order in which events are reinserted (breaking ties

with H2 and any further ties with H3). Places for events are then selected using the same

heuristics as the initial population generator.

Our mutation operator also follows the typical GGA scheme: a small number of

randomly selected timeslots are removed from the timetable and the events contained

within these are reinserted using the rebuild procedure. (In our experiments the number of

timeslots to remove was defined by the parameter mr, such that between one and mr

distinct timeslots were always chosen.) Additionally, because we want this mutation

operator to serve its normal purpose of adding diversity to the search, the order in which

the events are reinserted is completely randomised (by only using heuristic H3), with places

being chosen using heuristic H4, breaking ties with H6.

Finally, in this GGA we also make use of an inversion operator. Similarly to other

GGAs (e.g. [50, 54, 58]), this works by selecting two timeslots in a timetable at random,

and then simply reverses the order of the timeslots contained between them. Note that

inversion does not actually alter the number of timeslots being used, or indeed the packings

of events into these timeslots. However, it may assist recombination if promising timeslots

are moved closer together, as this would improve their chances of being propagated

together later on11.

4.2.3 A Preliminary Fitness Measure

Finally, for this algorithm, we need a way of measuring a timetable’s quality. In our

case, since we are only interested in finding feasibility, a suitable measurement need only

reflect the timetable’s distance-to-feasibility. As we have seen in Section 2.3, when applying

metaheuristic techniques to timetabling problems, this can be measured by taking various

factors into consideration such as the number of broken constraints, the number of

11 It is probably worth noting that we could have actually implemented a uniform grouping crossover operator

here as opposed to the two-point variant explained in this section. However, in this case we decided to keep

all the genetic operators within the GGA design-guidelines specified by Falkenauer in [54, 58].

 59

unplaced events, and so on. Of course, the criteria that are chosen will usually depend on

the representation being used, and on user and/or algorithmic preference.

In the case of this GGA, because we explicitly prohibit the violation of hard

constraints and, instead, open up extra timeslots as and when needed, we could therefore

simply use the number of extra timeslots as a distance-to-feasibility measure. However, it is

likely that such a method would hide useful information about a candidate solution,

because it would not tell us anything about the number of events packed into these extra

timeslots. We therefore use a more meaningful measure that we calculate by carrying out

the following steps. As usual, let s represent the current number of timeslots being used in a

particular timetable and let t represent the target number of timeslots (i.e. 45):

(1) Calculate the number of extra timeslots t' being used by the timetable (where t' = s – t);

(2) Identify the t' timeslots with the fewest events in them;

(3) Total up the number of events in these t' timeslots.

We may also think of this measure as the minimum number of events that would

need to be removed from the timetable in order to reduce the number of timeslots to the

required amount t. Obviously, a fully feasible timetable will have a distance-to-feasibility of

zero.

4.3 Experimental Set-Up and Instance

Generation

As it turned out, our initial tests with this algorithm showed that existing benchmark

instances (on the web and otherwise) could easily be solved by this algorithm. For example,

with the twenty competition benchmark instances, feasible solutions using a maximum of t

timeslots were actually found in the initial populations of the GGA in most cases (in over

98% of our trials). Although this highlights the strength of our constructive heuristics, of

course, it unfortunately tells us very little about the other operational characteristics of the

algorithm. We therefore set about making some new problem instances, using the same

instance generator that was used for the International Timetabling Competition. All in all,

we made sixty instances, arranged into three sets of twenty: the small set, which contained

instances of approximately 200 events and 5 rooms; the medium set, containing instances of

approximately 400 events and 10 rooms; and the large set, containing instances using

approximately 1000 events and 25 rooms. These instances were created with no reference

 60

to this algorithm, but were deliberately intended to be more troublesome for finding

feasibility. This latter characteristic was achieved by conducting simple experiments

whereby instances were created and run on two existing constructive algorithms, reported

in [11] and [74]. Only instances that both of these algorithms struggled with were then

considered for inclusion in the instance set. Indeed, given excess time, these two algorithms

were generally unable to place around 20% to 40% of the events. Further details, including

a description of how the instances were generated, plus the instances themselves, can be

found online at [7]. However, it is worth mentioning here that all instances have at least

one solution where the events can be feasibly packed into the target number of forty-five

timeslots, and for some of them there is also a known perfect solution. However, for the

remaining instances, some are known to definitely not have perfect solutions12, whilst in

other cases, whether or not a perfect solution exists still remains undetermined.

We also imposed certain time limits on our algorithm during testing that we

considered fair for these sizes of problem. These were 30, 200 and 800 seconds of CPU

time for the small, medium and large sets respectively. The hardware used for these

experiments (and indeed for all experiments described in this thesis) was a Pentium IV

2.66Ghz processor with 1GB RAM under a Linux operating system.

For all experiments with the GGA, a steady-state population (of size ρ) using binary

tournament-selection was used. The population was then evolved in the following manner:

at each step of the algorithm, two offspring were produced by either recombination or

replication, dictated by a recombination rate rr. (Note: an offspring made via replication is

simply a copy of its first parent.) Next, the two offspring were mutated (according to the

mutation rate mr – see Section 4.2.2), and evaluated. Finally the two offspring were

reinserted into the population, in turn, over the individuals with the worst fitness. If at this

point there was more than one least-fit individual, a choice between these was made at

random. Finally, at each step a small number (ir) of randomly chosen individuals were also

selected to undergo inversion.

12 We were able to determine that an instance had no perfect solution when n > 40m. In these instances we

know that at least (n – 40m) events will have to be assigned to the end-of-day slots, where they will cause a

violation of soft constraint SC1.

 61

4.4 Investigating the Effects of the GGA

Recombination Operator

For our first set of experiments with this algorithm, we will examine the general

effects that the recombination operator has on the algorithm, by comparing runs that

always use recombination to produce offspring (i.e. with a rate rr = 1.0) against runs that

use none at all (rr = 0.0). The results of these experiments are depicted in figs. 4.5(a)-(d). If

we consider first the results for the medium instances in fig. 4.5(a), we can see that after an

initial lag period of around 20 seconds (where using no recombination seems to provide

quicker movements through the search space on average) the use of this recombination

operator benefits the search significantly13.

Note however, that such a simple comparison on its own is not completely fair

because, as the reader may have noticed, the heuristics used for rebuilding with our

recombination operator are different from those used with mutation, and therefore it might

be the heuristics doing the work, and not the fact that the recombination operator is doing

its job of successfully combining useful parts of different solutions. Thus, in figs. 4.5(a)-(d)

we also include a third line that again uses recombination with a rate 1.0, but also uses the

more primitive heuristics used by the mutation operator when rebuilding timetables after

stage (3) of recombination. This line is labelled “primitive recombination” in the figures. In

fig. 4.5(a) we can see that, in this case, the presence of this primitive recombination

operator actually seems to hinder the search slightly with regards to CPU time. However, it

might also make sense to observe this behaviour from a second perspective: in timetabling,

due to the large number of possible constraints that can be imposed on a particular

problem, it can often be the case that the evaluation function becomes the most costly part

of the algorithm, particularly when soft constraints are also being considered. If we now

look at these same runs, but with regards to the number of evaluations (fig. 4.5(b)), we can

see that according to this criterion, use of this more primitive recombination, up until

around 150,000 evaluations, is clearly beneficial. We also see once more that the more

advanced recombination operator provides the best search (this difference was also

significant).

13 In the experimental analyses appearing in this thesis we will use the word “significant” to indicate that a

Wilcoxon signed-rank test performed on the results found at the time limit came from a different underlying

distribution with a probability ≥ 95%.

 62

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (sec)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

evaluations (x10)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

Figs. 4.5(a) and (b): (top and bottom) Showing the behaviour of the algorithm with and without

recombination with the medium instances. Each line represents, the distance to feasibility of the best solution

in the population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs) using mr = 2, ir = 4,
and ρ = 50. Figure (a) shows the runs with regards to CPU time; figure (b) with regard to the number of

evaluations performed.

Moving our attention to the behaviour of this algorithm with the small and large

instance sets (figs. 4.5(c) and (d) respectively) in our experiments we actually noticed

different behaviours in each case. With the small instances, the algorithm generally

performed well across the set, and seemed quite insensitive to the various parameter settings

(and whether recombination was being used or not). Indeed, although fig. 4.5(c) indicates a

slightly better search when using recombination, this difference is small and in our

experiments it was not seen to be significant. As a matter of fact, in most trials, optimal

solutions were regularly found to over half of the instances within the time limit, making it

difficult to draw any particularly interesting conclusions other than the fact that

performance of the algorithm with these instances was generally quite good.

 63

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (sec)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

 80

 82

 84

 86

 88

 90

 0 100 200 300 400 500 600 700 800

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (sec)

using recombination (rr=1.0)
primitive recombination (rr=1.0)

no recombination (rr=0.0)

Figs. 4.5(c) and (d): (top and bottom) Showing the behaviour of the GGA with and without recombination

for (a) the small instances, and (b) the large instances. The meaning of “primitive recombination” is explained
in the text. Each line represents, at each CPU second, the distance to feasibility of the best solution in the

population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs) using mr = 2, ir = 4, and ρ =

50.

In the case of the large instances, meanwhile, the algorithm actually displayed yet

another behavioural pattern. Looking at fig. 4.5(d), we can see that the use of

recombination in these cases seems to drastically slow the search; indeed, no benefits of

recombination can actually be seen until around 500 seconds. Clearly, in these cases if we

were using shorter time limits, then a use of recombination might actually hinder rather

than help. Secondly, if we consider the scale of the y-axis in fig. 4.5(d) which, we note, is

heavily truncated, we can see that in all cases only very small improvements are actually

being achieved during the entire run. For example, when using recombination we can see

in fig. 4.5(d) that the distance-to-feasibility at the time limit is 80.7. This means that by the

time the time limit is reached, approximately (80.7/1000)×100 = 8.07% of the events

cannot be inserted into the timetable on average. In comparison, with the small instances

 64

this figure is approximately (2.0/200)×100 = 1.0% of events, and with the medium

instances, approximately (12.2/400)×100 = 3.0%. Perhaps even more telling though is the

fact that with the large instances, the GGA (using recombination) only reduces the

distance-to-feasibility by an average of 10.2% during the entire run. This compares to an

80.6% reduction with the small instances and a 66.0% reduction with the medium

instances. Considering all problem instances used in these tests are known to have at least

one optimal solution (with respect to the hard constraints) the improvements achieved with

the large instances are therefore quite disappointing.

The above observations immediately suggest that instance size is an important factor

in the run characteristics of this GGA in terms of the effects of recombination, behaviour

over time, and the general progress made through the search space. In the next section we

will present some ideas as to why this might be so.

4.5 Scaling-up Issues with the GGA

4.5.1 A Diversity Measure for Grouping Representations

Before describing some of the possible scaling-up issues of this algorithm, it is first

necessary for us to introduce a diversity measure for the grouping representation.

Additionally, in this subsection many of the concepts that we will be describing will

actually relate to grouping problems as a whole, and not just this UCTP. Therefore, in our

descriptions we will revert to the more generic terms of “groups” and “items”, as opposed to

“timeslots” and “events”, which are specific only to timetabling problems.

As we have discussed, the grouping representation used by the GGA admits two

important properties: chromosomes are variable in length (in that they can contain varying

numbers of groups), and the ordering of the groups within the chromosomes is irrelevant

with regards to the overall solution being represented. Unfortunately, these characteristics

mean that many of the usual ways of measuring population diversity, such as Hamming

distances [83] or Leung-Gao-Xu diversity [72] are rendered inappropriate. Additionally, in

the case of this timetabling problem, we believe that it would be misguided to use diversity

measures based on population fitness information (such as the standard deviation etc.),

because in our experiences it can often be the case that minor changes to a timetable might

actually result in large changes to its fitness and, inversely, two very different timetables can

often have a similar fitness.

 65

We believe that a suitable diversity measure for this representation, however, can be

obtained by using some ideas of the so-called ‘substring-count’ method of Mattiussi,

Waibel, and Floreano, recently presented in [78]. In the grouping representation, it is

worth considering that each group can only occur at most once in any particular candidate

chromosome (otherwise the solution would be illegal because it would contain duplicates).

Given a population P, a meaningful measurement of diversity might therefore be calculated

via the formula:

 () ()/div P a bρ= (4.2)

where ρ is the population size, a represents the number of different groups in the

population, and b is the total number of groups in the population. Using this

measurement, a homogenous population will therefore have a diversity of 1.0, whilst a

population of entirely distinct individuals will have a diversity of ρ .

Additionally, in agreement with [78], using these basic ideas we are also able to

define a distance measurement for a pair of individuals, p1 and p2, via the formula:

 () ()1 2, 2 / 1dist p p x y= − (4.3)

where x represents the number of different groups in p1 and p2, and y is the total

number of groups in p1 and p2. Thus, two homogenous timetables will have a distance of

zero and two maximally distinct individuals will have a distance of one.

4.5.2 Diversity, Recombination, and Group Size

During our experiments with the GGA, we often noticed that evolution (with

regards to the number of new individuals being produced over time) was quite slow at the

beginning of a run, but then gradually quickened as the run progressed. These

characteristics were particularly noticeable when dealing with the larger instances where we

saw new individuals being produced at a somewhat unsatisfactory rate for quite a large

proportion of the run (an effect of this characteristic can be seen in figs. 4.5(a) and (d),

where we can see a slight s-shaped curve formed over time when using recombination with

the GGA). Investigations into this matter revealed that this was due to the fact that the

recombination operator usually tended to be more costly at the start of a run but then

gradually became less expensive as evolution progressed. Further investigations revealed that

this added expense seemed to be influenced by two factors: (a) population diversity, and (b)

the sizes of the groups in the candidate solutions.

 66

Fig. 4.6 shows three examples of steps (1)-(3) of the GGA recombination operator in

order to illustrate these concepts. In fig. 4.6(a), the distance between candidate solutions p1

and p2 is comparatively small (i.e. 2× (6/8) – 1 = 0.5) and only one of the seven items

becomes unplaced during recombination. In fig. 4.6(b) however, although the number of

groups and items being injected is the same as fig. 4.6(a), the distance between p1 and p3 is

larger (i.e. 2× (8/8) – 1 = 1.0); consequently, the duplicate items resulting from the

injection are spread across more of the groups, meaning that a greater number of the groups

coming from p1 need to be eliminated. This also means that more items have to be dealt

with by the rebuilding process, making the overall procedure more expensive.

(c)

(b)(a)
rebuildp1

A
B

C
D

E
F G

A
B

C
D

E
F

E
F

C
G G +

A
B

E
F

C
G D

D

p2

A
B

E
F

C
G D p3p1

+ A D F
A D F

A
B

C
D

E
F G

A
B

C
D

E
F

G
B

E
C G

A
F

G
B

E
C D

G
B

E
C

A
B
C
D

B
D
F

E
F
G

+B
D
F A C G E

A C G E

p4

A
B
C
D

E
F
G

p5
A
C
E

B
D
F G

rebuild

rebuild
(c)

(b)(a)
rebuildp1

A
B

C
D

E
F G

A
B

C
D

E
F G

A
B

C
D

E
F

E
F

C
G G

A
B

C
D

E
F

E
F

C
G G +

A
B

E
F

C
G

A
B

E
F

C
G D

D

p2

A
B

E
F

C
G D

A
B

E
F

C
G D p3p1

+ A D F
A D F

A
B

C
D

E
F G

A
B

C
D

E
F G

A
B

C
D

E
F

G
B

E
C G

A
B

C
D

E
F

G
B

E
C G

A
F

G
B

E
C D

A
F

G
B

E
C D

G
B

E
C

G
B

E
C

A
B
C
D

B
D
F

E
F
G

A
B
C
D

B
D
F

E
F
G

+B
D
F A C G E

A C G E

p4

A
B
C
D

E
F
G

p5
A
C
E

B
D
F G

p4

A
B
C
D

E
F
G

p5
A
C
E

B
D
F G

A
C
E

B
D
F G

rebuild

rebuild

Fig. 4.6: Demonstrating how diversity and group size can influence: (a) the amount of reconstruction
needed; and (b) the number of groups that are lost, using the standard GGA recombination operator.

Next, in fig. 4.6(c) we illustrate the effects that larger groups can have on the

recombination operator. In this case, the size of the problem may be considered the same as

the previous two examples, because we are still only dealing with seven items. However, this

time the size of the groups is larger and, as can be seen, the injection of a group from p5 into

p4 causes a high proportion of the items to become unplaced during stage three of

recombination.

In fact, figs. 4.6(b) and 4.6(c) depict cases of what we will term a unilateral

recombination: after stage (2) of recombination (injection), all of the groups coming from

the first parent have contained a duplicate and have therefore been eliminated. Thus, the

resultant offspring does not actually end up containing building-blocks from both parents

(as is usually desirable), but will instead be made up of some groups from the second

parent, with the rest having to be formed, from scratch, by the rebuilding process. In this

sense, it might be considered more of a macro-mutation operator than anything else.

 67

In order to further illustrate these concepts, consider fig. 4.7, where we show details

of example runs with a small, medium, and large problem instance respectively. In all three

figures it can be seen that as evolution progresses, the level of diversity in the populations

generally falls. This, of course, is typical of an evolutionary algorithm. We also see in these

figures that the proportion of items (events) becoming unplaced during recombination

mirrors this fall very closely, thus highlighting the strong relationship of the two

measurements. However, the other noticeable characteristic in these figures is the way in

which high levels of both of these measures are sustained for longer periods when the

instance sizes (and therefore the number of events/items per timeslot/group) are larger.

Looking at fig. 4.7(c), for example, we can see that no real drop in either measurement

actually occurs until around 180,000 evaluations and, up until this point, over half of the

items (events) are becoming unplaced, on average, with every application of the

recombination operator.

We believe that this latter phenomenon is caused by the fact that, because in this case

the groups are larger, the potential for losing the groups coming from the first parent is

increased (as illustrated in fig. 4.6(c)). We may therefore view this as a more destructive

recombinative process. Of course, not only does this make the operation more expensive

(because a greater amount of rebuilding has to be performed), it also means that it is more

difficult for the GGA to successfully combine and pass on complete groups from one

generation to the next. Thus, it would seem that, in these cases, the recombination operator

is indeed becoming more of a macro-mutation operator, and a useful component of the

evolutionary algorithm might be being compromised.

It is also worth noting that in cases where the recombination operator is behaving in

a more destructive manner, this will generally mean that more groups in an offspring will

occur as a result of the rebuilding process, as opposed to being directly inherited from an

ancestor. Unfortunately however, this may well add extra diversity to the population,

therefore exacerbating the problem even further.

 68

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

pr
op

or
io

n
(%

)

di
ve

rs
ity

evaluations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

pr
op

or
io

n
(%

)

di
ve

rs
ity

evaluations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

pr
op

or
io

n
(%

)

di
ve

rs
ity

evaluations (x200)

proportion (%)
diversity

Figs. 4.7(a)-(c): (top, middle, and bottom) Example runs with a small, medium, and large instance

respectively, demonstrating (1) the close relationship between diversity and the amount of reconstruction
needing to be done with the recombination operator, and (2) the differing ways that the two measures vary

during the runs as a result of the different sized timeslots/groups. (All runs using rr = 1.0, ir = 4, mr = 2, and

ρ = 50.) In the figures, the amount of reconstruction being done with the recombination operator is labelled
“Proportion (%)” – this refers to the percentage of events that are becoming unplaced, on average, with each

application of the recombination operator.

 69

4.5.3 Group Size and Chromosome Length

As a final point in this subsection, it is also worth mentioning some further

characteristics of the GGA operators that relate to group size. If we refer back to fig. 4.4,

which demonstrates the standard GGA recombination operator applied to this timetabling

problem, we will see that the total number of possible values that can be chosen for

crossover points c and d (that is, the total number of group-combinations that can be

selected for injection from the second parent into the first parent) is always exactly:

 2 2(1)
2

s s −
, (4.4)

where here, s2 represents the length of the second parent p2. Additionally, the total

number of possible group-combinations that can be selected for removal by the mutation

operator is always exactly:

!

!()!
s

j s j−
, (4.5)

where j, which is in the range [1, mr], represents the number of groups that have

been chosen to be removed from the chromosome, and s represents the length of the

chromosome being mutated.

However, unlike most forms of evolutionary computation, where chromosome

length will be defined by the size of the problem instance being tackled (see, for example,

[39], [97], and [105])14, with the GGA, a chromosome’s length will actually be defined by

the number of groups it is using. This, of course, will mean that when dealing with grouping

problems of a certain size, problems that use larger groups will be represented by

proportionately shorter chromosomes, and the values returned by equations (4.4) and (4.5)

will, in turn, be lower.

The implications of these facts are particularly apparent with this timetabling

problem. Here, chromosome length is defined by the number of timeslots being used, but

it is the number of events that defines problem size. Thus, given that our aim is always to

feasibly arrange the events into t = 45 timeslots, this means that the lengths of the

chromosomes will remain more-or-less constant, regardless of problem size. Unfortunately,

in practice this means that an increase in instance size will not only cause the timeslots

(groups) to be larger (resulting in the unfavourable situations described in the previous sub-

14 In grouping problems, for example, problem size will generally be defined by the number of items to be

partitioned.

 70

subsection), it also suggests that the potential for the genetic operators to provide sufficient

exploration of the search space might also be more limited.

4.6 Improving the Algorithm

So far in this chapter we have presented a justification and description of a GGA for

the UCTP, but have also noted that in some cases – particularly for larger instances – that

the algorithm does not always seem to perform at a completely satisfactory level. In this

section we will therefore investigate two separate ways in which we might go about

improving algorithmic performance. First, we will introduce a number of new fitness

functions that could also be used with this algorithm, and will investigate whether any of

these are able to improve upon any of the results we have witnessed thus far. Second, we

will introduce an additional heuristic search operator into the GGA (to make, in effect, a

grouping memetic algorithm [84, 85]) and will examine the conditions that are needed in

order to allow this operator to also improve the GGA’s performance. These ventures will be

reported in sections 4.6.1-2, and 4.6.3-4 respectively.

4.6.1 Using more Fine-Grained Fitness Functions

A central aspect of any evolutionary algorithm is the way in which candidate

solutions in the population are evaluated against each other. Ideally, a good fitness function

should convey meaningful information about the quality of a candidate solution and will

also encourage the search into promising areas of the solution space. For many problems in

operational research, a suitable measure is suggested naturally by the problem at hand (such

as the travelling salesman problem [105]). In others, however, it is not so easy. For

example, in [58] Falkenauer looks at an application of a GGA to the bin packing problem

and suggests that while the most obvious way of measuring a candidate solution’s fitness is

to just calculate the number of bins being used (with the aim of minimisation), this is

actually unsuitable because it will likely lead to a very inhospitable fitness landscape where

“a very small number of optimal points in the search space are lost in the exponential

number of points where this purported cost is just one above this optimum. Worse, these

slightly sub-optimal points [all] yield the same cost [58]”. In practical terms this could, for

example, lead us to a situation where we might have a very diverse population, but all

members appear to have the same fitness. In this situation, not only would selection

pressure be lost, but also if all the scores were indeed one away from the optimum, any

move from near-feasibility to full-feasibility would be more-or-less down to chance.

 71

In Section 4.2.3, we mentioned two possible ways of measuring solution quality with

this problem, and then used one of these (our so-called distance-to-feasibility measure) to

perform the experiments in Section 4.4. However, there is no reason why we should

necessarily use either of these during evolution. Indeed, both measurements are fairly

coarse-grained and might well lead us to the undesirable situations described in the

previous paragraph. We therefore introduce here four further fitness functions. These, plus

the original two are defined as follows, and for simplicity’s sake, all have been made

maximisation functions:

1
1

1
f

s
=

+
 (4.6) 2

1
1

f
d

=
+

 (4.7)

3
1

1 ()f d s t=
+ + −

 (4.8)
2

1
4

()s
ii E m

f
s

== ∑ (4.9)

2
1

5
()s

ii C
f

s
== ∑ (4.10)

2
1

6
()s

ii S
f

s
== ∑ (4.11)

Here, as before s represents the number of timeslots being used by a particular

timetable, t is the target number of timeslots (i.e. 45), and m is the number of available

rooms per timeslot. In this case d represents the distance-to-feasibility measure already

discussed. Additionally, we also define some new measures: Ei represents the number of

events currently assigned to timeslot i; Si tells us how many students are attending events in

timeslot i; and, finally, Ci tells us the total conflicts-degree of timeslot i (that is, for each

event in timeslot i, we determine its degree by calculating how many other events in the

entire event set it conflicts with, and then Ci is simply the total of these values).

Essentially, fitness function f3 is the same as Eiben, van der Hauw, and van Hermert’s

fitness function for graph colouring used in [50]. It uses the observation that if two

timetables have the same value for d, then the one that uses the least number of extra

timeslots is probably better and, similarly, if two timetables have the same number of extra

timeslots, then the one with the smallest value for d is probably better.

Functions f4, f5, and f6, meanwhile, judge quality from a different viewpoint and

attempt to place more emphasis on the individual timeslots. Thus, timetables that are made

up of what are perceived to be promising timeslots (i.e. good packings of events) are usually

favoured because their fitness will be accentuated by the squaring operations. The three

functions differ, however, in their interpretations of what defines a good packing: function

f4 tries to encourage timetables that have timeslots with high numbers of events in them,

and is similar to the fitness function suggested for bin packing [54, 58]; function f5,

meanwhile, uses the well-known heuristic from graph colouring [16] that recommends

 72

colouring as many nodes (events) of high degree as possible with the same colour [52];

finally, function f6 attempts to promote timetables that contain timeslots with large total

numbers of students attending some event in them – following the obvious heuristic that if

many big events are packed into one timeslot, then other smaller (and presumably less

troublesome) events will be left for easier packing into the remaining timeslots.

As a final point, it is worth noting that unlike the remaining four functions,

functions f2 and f3 need to know in advance the target number of timeslots. If this is

undefined, the task of calculating the minimum number of timeslots needed to

accommodate the events of a given instance is equivalent to calculating the chromatic

number in graph colouring. However, computing the chromatic number is itself an NP-

hard problem [62]. In practical course timetabling, however, this detail is probably not so

important because it is typical for the university to specify a target number of timeslots in

advance.

4.6.2 Analysing the Effects of the Various Fitness Functions

To investigate the effects of these six fitness functions, we performed tests using the

same steady-state population scheme as before (Section 4.3), and simply altered the fitness

functions for each trial-set. Note then, that the only actual change to the algorithm’s

behaviour for each set of trials in this case is (a) the criterion used for choosing tournament

winners during selection, and (b) the criterion used for picking which individuals to

replace. Note also, that the computational costs of the fitness functions are roughly

equivalent, as all require just one parse of the timetable.

Figures 4.8(a)-(c) show how the algorithm responds to the six fitness functions over

time with the three different instance sets. If we first draw our attention to figs. 4.8(a) and

(b), we can see that with regards to the small and medium instances, f5, and then f6, clearly

give the best searches (on average), with respect to both the speed of the search and the best

solutions that are found within the time limits. As expected, we can also see that functions

f1 and then f2, also seem to provide the worst performance. We believe these differences in

performance are due to the reasons mentioned above: when using f5 and f6 (and to a lesser

extent, f3 and f4) the algorithm is able to distinguish between solutions that, according to f1

or f2, might be valued the same. Thus, it is possible to maintain selection pressure for a

greater duration of the run. Furthermore, it would appear that the heuristic criteria that f5

and f6 use to make these distinctions (described above), is indeed conducive to the search.

In both cases, the improvements that f5 and f6 provided were significant.

 73

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

f1
f2
f3
f4
f5
f6

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

f1
f2
f3
f4
f5
f6

 78

 80

 82

 84

 86

 88

 90

 0 100 200 300 400 500 600 700 800

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

f1
f2
f3
f4
f5
f6

Figs. 4.8(a)-(c): (top, middle, and bottom) The effects of the six different fitness functions over time with the

small, medium, and large instances respectively. Each line represents, at each second, the distance to feasibility

of the best solution in the population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs),
using ρ = 50, rr = 1.0 (0.25 with 4.7(c)), mr = 2, and ir = 4.

Interestingly, we see that the algorithm responds differently to the fitness functions

when considering the large instances (fig. 4.8(c)). As before, we see that f1 is clearly the

 74

worst performer, but we also see that the characteristics of the remaining five fitness

functions is now more-or-less reversed, with f2 providing the best performance. This could

be because the squaring functions used with f4, f5, and f6 cannot accentuate the

characteristics of a good timeslot as much as when used with the other instances (which

have a smaller number of events per timeslot). However, most importantly one has to look

again at the scale of the y-axis of fig. 4.8(c) to appreciate that the algorithm, again, actually

performs fairly badly with all of the fitness functions on the large instances. Additionally, if

we disregard f1, the differences between the remaining five fitness functions were not

actually seen to be significant.

 0

 50000

 100000

 150000

 200000

 250000

 300000

f6f5f4f3f2f1

ev
al

ua
tio

ns

small
medium

large

Fig. 4.9: Average number of evaluations performed during the runs shown in figure 4.8.

Figure 4.9 also shows some intriguing results of these experiments. As can be seen,

when considering the medium and large instance sets, the number of evaluations performed

(i.e. the number of new individuals produced) within the time limits alters drastically

depending on which fitness function the algorithm is using. (This pattern also emerges with

the small instances, but the distinction is more difficult to make in the figure.) The reasons

why these characteristics occur start to become clear when we look at figs 4.10(a)-(c), where

we contrast the influences that the six different fitness functions can have on a population’s

diversity as it is evolved.

 75

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

di
ve

rs
ity

evaluations (x200)

f1
f2
f3
f4
f5
f6

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

di
ve

rs
ity

evaluations (x200)

f1
f2
f3
f4
f5
f6

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

di
ve

rs
ity

evaluations (x200)

f1
f2
f3
f4
f5
f6

Figs. 4.10(a)-(c): (top, middle, and bottom): Example runs with a small, medium, and large instance

respectively, to demonstrate the effects that the various fitness functions have on the diversity of the
population during evolution. All runs were performed using ρ = 50, rr = 1.0, mr = 2 and ir = 4.

As can be seen in all three cases, when using f1 (which is the most coarse-grained of

the six fitness functions), after an initial drop during the first few thousand evaluations, the

 76

diversity of the populations eventually persists at a higher level than when any of the other

five fitness functions are used. Of course, this is due to the reasons that we described at the

beginning of the previous sub-subsection: i.e. when using a coarse grained fitness function

such as this, at some point all of the individuals in the population will start to appear very

similar (according to the fitness function’s criteria), and so much of the selection pressure

will be lost. According to our reasoning in Section 4.5, this sustained diversity will naturally

mean that the recombination operator will remain more expensive and destructive,

eventually not allowing as many individuals to be produced within the time limit.

Conversely, we can also see in figures 4.10(a)-(c) that when the more fine-grained fitness

functions are used (i.e. f4, f5, and f6), the diversity of the populations eventually drops to

levels that are lower, because the fitness functions are able to distinguish between

individuals that other fitness functions might see as identical for longer, meaning that

selection pressure remains for a greater part of the run. In turn the lower levels of diversity

will generally result in a less expensive recombination process, meaning that more

individuals can be produced within the time limits.

Note that an overly rapid loss of diversity may sometimes be undesirable in an EA,

because it might lead to a redundancy of the recombination operator and an under-

sampling of the search space. However, in the case of this GGA there is clearly a trade-off

because, as noted, a high amount of diversity can cause recombination to be both expensive

and destructive. With regards to the quality of solutions that are found within the imposed

time limits, in the cases of the small and medium instances, the trade-off seems to fall in

favour of using f5 and f6 which, although exhibiting tendencies to lose diversity at a quicker

rate, still both return superior results and in less time.

As a final point, it is also worth considering some further implications of these fitness

functions: from a practical standpoint, in some real world timetabling problems there may

be some events that every student is required to attend (such as a weekly seminar or

assembly). Clearly, such an event must be given its own exclusive timeslot, because all other

events will conflict with it (i.e. all other non-empty events will have common students with

it). However, fitness function f4 will, unfortunately, view this as an almost empty (or badly

packed) timeslot and will penalise it, therefore possibly deceiving the algorithm. Fitness

functions f5 and f6, however, will reward this assignment appropriately. On the other hand,

although the work of Erben [52] has demonstrated that fitness function f5, when used with

a GGA, can perform very well with types of problem-instances that other sorts of EA might

find very difficult (such as the “Pyramidal Chain”-style problems in graph colouring – see

the work of Ross, Hart, and Corne [94]), it is worth bearing in mind that when we choose

to judge a timeslot’s quality by looking at the total degree of the events within it (with

 77

higher values being favoured) this criteria is ultimately a heuristic, and it is conceivable that

counter examples could be constructed. Additionally, it is also worth remembering that in

our experiments f5 didn’t seem to perform so well with the larger instances either.

4.6.3 Introduction of a Heuristic Search Operator

A second way in which we might go about improving this GGA is via the

introduction of an additional search operator. In evolutionary computation, it is generally

accepted that EAs are very good at coarse-grained global search, but are rather poor at fine-

grained local-search [113]. It is therefore perfectly legitimate (and increasingly common) to

try to enhance an EA by adding some sort of local search procedure. This combination of

techniques is commonly referred to as a memetic algorithm (e.g.[84, 85]), and the

underlying idea is that the two techniques will hopefully form a successful partnership

where the genetic operators move the search into promising regions of the search space, with

the search operator then being used to explore within these regions.

Looking at some other algorithms from this problem domain, both Dorne and Hao

[47], and Galnier and Hao [60] have shown how good results can be found for many graph

colouring instances through the combination of these techniques. In both cases, specialised

recombination operators were used, with tabu search then being utilised to eliminate cases

of adjacent nodes having the same colour. Rossi-Doria et al. have also used similar

techniques for timetabling in [97], where their more global operators (such as uniform-

crossover) are complemented by a stochastic, first-improvement local-search operator

which, as one of its aims, attempts to rid the resultant timetables of any infeasibility.

As a matter of fact, it turns out that these methods are not actually suitable for our

algorithm as they are intended for eliminating violations of hard constraints, and as we have

already related (Section 4.2.1), in our representation we explicitly disallow these violations

to occur as part of the encoding. Indeed, an appropriate searching procedure in this case

should, instead, be able to take a timetable with no hard constraint violations, and

somehow find a timetable that is hopefully better in some way, but still with no violations.

With regards to other grouping-based algorithms that have used of this sort of

representation, but which have also made use of an additional search technique,

Falkenauer’s hybrid-GGA [55, 58], and Levine and Ducatelle’s ant algorithm [73] (both

for bin packing) have both been reported to return substantially better results when their

global-search operators are coupled with an additional search method. These additional

techniques are inspired by Martello and Toth’s dominance criterion [77] and work by

taking some unplaced items, and then attempting to swap some of these with items in

 78

existing bins so that (a) the bins become more full, but (b) the number of items in the bin

stays the same (i.e. each item was only replaced by a bigger item).

However, even though such dominance criterion does not strictly apply in our

timetabling problem, it would still be useful to define a similar operator that attempts to

improve the packings of events into the timeslots somehow. An operator intended for

doing just this is defined by the procedure that we will call Heuristic-Search in fig. 4.11.

Taking a list of unplaced events and a partial timetable (U and tt respectively), this

procedure basically operates by repeatedly taking events from U and trying to insert them

into free (i.e. blank) and feasible places in tt (lines 4-7 of fig. 4.11). In order to complement

these actions, however, at each iteration the procedure also attempts to move the events

within tt (lines 9-15) in such a way that the free places in tt change position, thus offering

the possibility of further events in U being moved into tt in the next iteration.

Heuristic-Search (tt, U, itLimit) .
1. Make a list V containing all the places in tt that have no events
 assigned to them;
2. i := 0;
3. while (U ≠ ∅ and V ≠ ∅ and i < itLimit)
4. foreach(u∈U and v∈V)
5. if (u can be feasibly assigned to v in tt)
6. Put u into v in tt;
7. Remove u from U and v from V;
8. if (U ≠ ∅ and V ≠ ∅)
9. repeat
10. Choose a random event e in tt and v∈V;
11. if(e can be feasibly moved to v in tt)
12. Move e to v;
13. Update V to reflect changes;
14. i := i + 1;
15. until (i ≥ itLimit or e has been moved to v)

Fig. 4.11: Pseudo-code description of the heuristic search procedure. Here, tt represents a partial timetable, U
a list of unplaced events, and itLimit the iteration limit of the procedure.

Note that the addition of this operator to the GGA will have two important effects:

first, whilst Heuristic-Search does not actually allow the number of events contained

within tt to decrease, if its application is successful then events will be taken from U and

added to tt, thereby improving the overall timeslot packings. Secondly, because this process

causes events and free spaces within tt to be randomly shuffled amongst the timeslots (lines

9 to 15 of fig. 4.11) diversity will be added to the population.

 79

In our experiments, which will be described in the next section, we chose to use this

heuristic search operator in conjunction with our mutation operator. As before, each time a

mutation occurs during a run, a small number of timeslots are randomly selected and

removed from the timetable. The events in these timeslots now make up the list of

unplaced events U, and Heuristic-Search is applied. If U is non-empty when the

iteration limit is reached, then the rebuilding scheme (fig. 4.3) is used to insert the

remaining events.

4.6.4 Analysing the Effects of a Heuristic Search Operator

It can be noticed in fig. 4.11 that our heuristic search procedure needs to be supplied

with an iteration limit that specifies the maximum number of steps that the procedure can

run for each time it is called. In these experiments we chose to set this to be proportionate

to the size of the problem instance being solved. This was achieved by using an additional

parameter l such that the iteration limit itLimit = (l ×n), remembering that in this problem,

n represents the number of events in a particular problem instance.

With regards to algorithm performance, the introduction of this operator now

presents an additional trade-off: too much heuristic search (i.e. a setting for l that is too

high) may not allow enough new individuals to be produced within the time limit, and will

probably result in too little global search; however, a setting for l that is too low could also

be detrimental, because it may not allow the new operator enough opportunity to explore

the regions of the search space that the global operators lead us to. To investigate these

implications, we therefore empirically carried out a large number of trials on the three

instance sets, using fitness function f5 with various different recombination rates rr, settings

for l, mutation rates mr, and population sizes ρ . (In all trials the same steady-state

population scheme as described in 4.3 was also used.)

The first thing that we noticed from these experiments was the dramatic effect that

the use of the heuristic search operator had on the number of new individuals that could be

produced within the time limits. This is illustrated for the three instance sets in fig. 4.12.

Here, we see that the introduction of this additional search operator, even in very small

amounts, actually causes a dramatic decrease in the number of new individuals that are

produced within the time limits. Although this is partly due to the obvious fact that the

heuristic search procedure is adding extra expense to the mutation operator, we believe that

the main reason is due to the fact that, because the heuristic search operator is continually

adding diversity to the population (due to its various random elements), this causes the

recombination operator to remain much more expensive and destructive for a greater part

 80

of the run. As fig. 4.12 shows, this is especially so for the medium and large instances,

where the presence of larger groups further exacerbates this phenomenon.

 0

 50000

 100000

 150000

 200000

 250000

 20 18 16 14 12 10 8 6 4 2 0

ev
al

ua
tio

ns

amount of Heuristic Search (l)

small
medium

large

Fig. 4.12: Showing the influence that various amounts of heuristic search have on the number of evaluations
performed within the time limits for the different instance sets (using ρ = 50, rr = 0.5, mr = 2, and ir = 4).

In these experiments we also saw that the GGA responded differently to the various

parameter settings when dealing with the different instance sets. A short summary of these

differences now follows, and example runs with some contrasting parameter settings can

also be seen in figures 4.13(a)-(c):

• With the small instances, the best parameter settings (with regards to the distance-to-

feasibility achieved within the imposed time limit, averaged across the twenty instances)

generally involved using small populations with high amounts of heuristic search and very

small (but still present) amounts of recombination. The best results were gained when

using ρ = 5, l = 100, mr = 1 and rr = 0.1.

• With the medium instances, the best parameter settings for the GGA (again, with

regards to the average distance-to-feasibility achieved within the time limit across the

twenty medium instances) generally came when we used small populations, with small

(but still present) amounts of heuristic search, and a fairly high rate of recombination.

(The best results were given by the parameters ρ = 10, l = 2, mr = 1 and rr = 0.7.) We

also found that an increase in any of these parameters usually caused the search to become

much slower, particularly for increases in l, which would simply cause too much diversity

in the population, thus making the recombination operator too destructive and

 81

expensive. Alternatively, decreases in any of these parameters usually tended to cause an

earlier stagnation of the search.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(GGA using ρ = 5, l = 100, mr = 1, rr = 0.1)
(GGA using ρ = 50, l = 0, mr = 1, rr = 0.0)

(GGA using ρ = 50, l = 100, mr = 1, rr = 1.0)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(GGA using ρ = 10, l = 2, mr = 1, rr = 0.7)
(GGA using ρ = 50, l = 0, mr = 1, rr = 0.0)

(GGA using ρ = 50, l = 20, mr = 1, rr = 1.0)

 80

 85

 90

 95

 100

 0 100 200 300 400 500 600 700 800

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(GGA using ρ = 10, l = 2, mr = 1, rr = 0.1)
(GGA using ρ = 50, l = 0, mr = 1, rr = 0.25)
(GGA using ρ = 50, l = 20, mr = 1, rr = 1.0)

Figs. 4.13(a)-(c): (top, middle, bottom) The effects of various parameter settings with the small, medium, and

large instance sets respectively. Each line represents, at each second, the distance to feasibility of the best

solution in the population, averaged across 20 runs on each of the 20 instances (i.e. 400 runs). Note, because
different population sizes are being used, the lines may not start at the same point on the y-axis.

 82

• Finally, with the large instances, the best results of the GGA were generally gained

when using big populations with small amounts of recombination, and no heuristic

search whatsoever. (The best results were given using ρ = 50, l = 0, mr = 1, and rr =

0.25.) In particular, runs that used both heuristic search and recombination always

provided disappointing searches. This, we believe, was because the sustained population-

diversity offered by the heuristic search would generally cause the recombination operator

to do more harm than good; thus, the best results were generally gained when we ensured

that many regions of the search space were sampled (by using larger populations) with the

majority of the downhill movements then being performed by the less destructive

mutation operator.

4.7 Assessing the Overall Contribution of the

GGA Operators

Given that the experiments in the previous subsection have indicated that the

inclusion of the procedure Heuristic-Search, whilst being able to aid the search in some

cases, can still cause the often unhelpful diversity that makes the GGA recombination

operator expensive and destructive; the natural question to now ask is: What results can be

gained if we abandon the GGA operators altogether, and simply use the heuristic search

operator on its own?

NKIEC

MH

OLGB

JFDA

NKIEC

MH

OLGB

JFDA

E

O

KI

LH

G

JFD

E

O

KI

LH

G

JFD

[A, B, C,
M, N]

Unplaced U

[A, B, C,
M, N]

[A, B, C,
M, N]

Unplaced U

E

O

KI

LH

GJFD

E

O

KI

LH

GJFD

[A, B, C,
M, N]

Unplaced U

[A, B, C,
M, N]

[A, B, C,
M, N]

Unplaced U

KIE

BLH

CONM

AGJFD

KIE

BLH

CONM

AGJFD

s

m

(1a) If stopping criteria is
met then end; else
randomly select between
1 and rm timeslots
(columns) in tt and
remove them.

(1b) Set i = 0.

(2a) for j = 1 to |U |
If the jth event in U can
be feasibly assigned to a
blank cell in tt, then do so.

(2b) If U is empty then go back
to (1a); else go to (3a).

(3a) Add 1 to i. If i = the iteration
limit then go to step (4); else go
to (3b)

(3b) Randomly choose a blank
cell and a non-blank cell in tt and
swap them. If tt is still feasible
then go to (2a); else swap back
and go to (3a).

(4) Build tt back into a full
solution using the BUILD

procedure. Use the same
heuristic rules as the
mutation operator for
event and place selection.
Go back to (1a)

(remove) (remove)

timeslots

ro
om

s

Fig. 4.14: Pictorial description of the Iterated Heuristic Search algorithm for the UCTP.

 83

In order to try and answer this question, we implemented a new algorithm that

operated by making just one initial timetable in the same way as described in Section 4.2.1,

and then simply repeatedly applied the mutation operator incorporating heuristic search

until the time limit was reached. In our descriptions, we will refer to this algorithm as the

Iterated Heuristic Search (IHS) algorithm and, for convenience, a pictorial description of

the complete IHS algorithm can also be found in fig. 4.14.

In fig. 4.15(a)-(c) we provide a comparison between the new IHS algorithm and the

GGA (the latter which is using f5 and the best performing parameter settings of the previous

subsection). A breakdown of the results with regards to the two algorithms’ performances is

also provided in Table 4.2, where we show average performance, and Table 4.3, where we

show the best performance (both taken from twenty runs on each instance).

Considering the large problem instances first (fig. 4.15(c)), because we have now

plotted the IHS algorithm against the GGA, we are able to view, in context, some of the

negative effects of the GGA operators. As can be seen, the IHS algorithm – which, we note,

does not use a population, recombination, or any form of selection pressure – clearly

provides the best results on average within the time limits. This, it is able to do, despite

starting its run with a timetable that is usually worse than the best timetable present in the

initial population of the GGA. These observations, we believe, clearly highlight the various

issues raised in Section 4.5 – not least the observation that when the groups in candidate

solutions are large, the genetic operators seem to be less beneficial to the overall search.

(These differences in results found at the time limit were significant.)

Note that there are also some important differences between the GGA and the IHS

algorithm. Firstly, because the GGA requires that a population of individual timetables is

maintained, computation time generally has to be shared amongst the individual members.

In the case of the IHS algorithm, this is not so. Additionally, the GGA operators of

replication and recombination generally have to spend time copying chromosomes (or part

of chromosomes) from parent to offspring, which in the space of an entire run, could

amount to a consequential quantity of CPU time. Again, with the IHS algorithm, this is

not necessary. Differences such as these might offer advantages to the IHS algorithm

because, for example, more effort can be placed upon simply trying to improve just the one

timetable. Indeed, if the chosen heuristic search operator is not particularly susceptible to

getting caught in local optima (as would seem to be the case here) then this may well bring

benefits.

 84

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(IHS using l = 1000, mr = 1)
(GGA using ρ = 5, l = 100, mr = 1, rr = 0.1)

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(IHS using l = 1000, mr = 1)
(GGA using ρ = 10, l = 2, mr = 1, rr = 0.7)

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700 800

di
st

an
ce

-t
o-

fe
as

ib
ili

ty

time (seconds)

(IHS using l = 1000, mr = 1)
(GGA using ρ = 50, l = 0, mr = 1, rr = 0.25)

Figs. 4.15(a)-(c): (top, middle, and bottom) Comparison of the GGA and the Iterated Heuristic Search

algorithm with the small, medium, and large instance sets respectively. Each line represents, at each second,
the distance to feasibility of the best solution found so far, averaged across 20 runs on each of the 20 instances

(i.e. 400 runs). Note, because the IHS algorithm starts with just one initial solution, it is likely to have a

higher distance-to-feasibility than the best candidate solution in the initial population of the GGA, and will
thus generally start at a higher point on the y-axis.

 85

Moving our attention next to figs. 4.15(a) and 4.15(b), we can see that the IHS

algorithm also outperforms the GGA when dealing with the small and medium problem

instances. Indeed, in our experiments the differences in both cases were also seen to be

significant, thus demonstrating the superiority of the IHS algorithm in these cases as well.

The more powerful search capabilities, presumably, are due to the same factors as those

described in the previous paragraphs. However, it is worth noting that the differences in

results do seem to be less stark than the results of the large instances, hinting that the GGA

is perhaps able to be more competitive when the groups of events (defined by the timeslots)

are smaller in size. This also agrees with the arguments regarding the effectiveness of the

GGA operators given in Section 4.5.

Table 4.2: A Breakdown of the Average Results Found by the GGA and Iterated Heuristic
Search Algorithm over the Sixty Problem Instances. (Results are averaged across twenty runs on
Each Instance.) In the Three Columns Marked “P” , Some Supplementary Information About the
Instances Is Provided: a “Y” Indicates that we Definitely Know a Perfect Solution to Exist, an
“N” Indicates that we Definitely Know there Not to be a Perfect Solution, and a “?” indicates

Otherwise.

Distance to Feasibility (Average 20 runs)
Small Medium Large

Instance # P GGA IHS P GGA IHS P GGA IHS
1 Y 0 0 Y 0 0 Y 0 0
2 Y 0 0 Y 0 0 Y 0.7 0
3 ? 0 0 ? 0 0 Y 0 0
4 Y 0 0 N 0 0 N 32.2 20.5
5 ? 1.05 0 N 3.95 0 N 29.15 38.15
6 Y 0 0 Y 6.2 0 N 88.9 92.3
7 ? 0 0 ? 41.65 18.05 N 157.35 168.5
8 N 6.45 1 Y 15.95 0 N 37.8 20.75
9 N 2.5 0.15 ? 24.55 9.7 N 25 17.5

10 N 0.1 0 Y 0 0 N 38 39.95
11 Y 0 0 Y 3.2 0 N 42.35 26.05
12 N 0 0 ? 0 0 Y 0.85 0
13 N 1.25 0.35 Y 13.35 0.5 Y 19.9 2.55
14 N 10.5 2.75 Y 0.25 0 Y 7.25 0
15 Y 0 0 N 4.85 0 Y 113.95 28.12
16 Y 0 0 ? 43.15 6.4 Y 116.3 57.45
17 ? 0.25 0 Y 3.55 0 ? 266.55 174.9
18 N 0.7 0.2 ? 8.2 3.1 ? 194.75 179.25
19 N 0.15 0 N 9.25 3.15 ? 266.65 247.35
20 N 0 0 N 2.1 11.45 ? 183.15 164.15

Av σ± 1.15±
2.6

0.22±
0.62

 9.01±
12.78

2.6±
4.88

 81.0±
86.33

63.9±
77.85

As a final point, it is also worth noting that whilst the results of the GGA that are

presented in this section are the product of runs using tuned parameter settings for each

 86

instance set, the parameter settings used for the IHS algorithm were only decided upon

following our own intuitions (i.e. little empirical parameter tuning was performed).

Although, in fact, in our experiences we actually found that the IHS algorithm was quite

robust regarding its run time parameter settings, there is, of course, a possibility that results

could be further improved with different settings.

Table 4.3: A Breakdown of the Best Results Found by the GGA and Iterated Heuristic Search
Algorithm with the Sixty Problem Instances (Taken From Twenty Runs on Each Instance).

Distance to Feasibility (Average 20 runs)
Small Medium Large

Instance # GGA IHS GGA IHS GGA IHS
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 30 8
5 0 0 0 0 24 30
6 0 0 0 0 71 77
7 0 0 34 14 145 150
8 4 0 9 0 30 5
9 0 0 17 2 18 3
10 0 0 0 0 32 24
11 0 0 0 0 37 22
12 0 0 0 0 0 0
13 0 0 3 0 10 0
14 3 0 0 0 0 0
15 0 0 0 0 98 0
16 0 0 30 1 100 19
17 0 0 0 0 243 163
18 0 0 0 0 173 164
19 0 0 0 0 253 232
20 0 0 0 3 165 149

Av σ± 0.35±
1.1

0.0±
0.0

4.7±
10.0

1.0±
3.1

71.5±
80.3

52.3±
72.6

4.8 Conclusions and Discussion

In this chapter we have examined a number of different issues regarding GGAs and

their applicability to the UCTP. We have noted that the task of satisfying the hard

constraints of this problem fits the classical definition of a grouping problem, and

consequently, using the guidelines suggested by Falkenauer [54, 58], we have designed and

analysed a GGA specialised for this problem that combines the standard GGA operators

with powerful constructive heuristics. In experiments we have observed that recombination

 87

can aid the evolutionary search in some cases, whilst in others, depending on the run time

available, it might be more of a hindrance.

In this chapter we have also introduced a way of measuring population diversity and

distances between pairs of individuals for the classical grouping representation.

Consequently, we have seen that diversity, together with group size, can drastically

influence (a) the overall expense of the recombination operator, and (b) the ease in which

the underlying building-blocks are combined and passed from one generation to the next.

We have also noted that there may be other issues with this type of representation, due to

the fact that larger groups will mean that chromosomes become proportionally shorter in

length. While we still believe that it is indeed the groups that encapsulate the underlying

building-blocks of grouping problems such as the UCTP, in this chapter we have thus

highlighted areas where the propagation of these can often be quite problematic.

In this chapter we have also examined two ways that the performance of this GGA

might be improved: first, through the use of a number of different fitness functions and

second, by introducing an additional heuristic search operator. In particular, we have seen

that, in some cases the more fine-grained fitness functions (such as f5 and f6) can produce

significantly better results, but in other instances this is not so. We have also seen that the

introduction of a heuristic search operator to this GGA can improve results, but probably

needs to be used with care, as in some cases its use can mean that (a) not enough new

individuals are produced within the time limits, and (b) the added diversity that it brings

can cause the recombination operator to be too destructive and expensive to benefit the

search.

Note that an advantage of EAs in timetabling that is sometimes noted by authors is

that they will usually result in a population of candidate solutions, as opposed to just one.,

meaning that the real-world user will usually have the option of choosing the timetable that

best fits his-or-her needs (see for example the arguments of Colorni et al. [37]). However, as

we have seen in our case, in order for this particular EA to perform at a reasonable level,

population-diversity usually needs to be tightly controlled due to the effects that it can have

on the behaviour of the GGA recombination operator. Additionally, as we can see in the

example runs in figs. 4.10(a)-(c), by the time that reasonably good regions of the search

space have usually been reached, the population-diversity has usually dropped to a fairly

low level anyway, particularly for the more fine-grained fitness functions f4, f5, and f6. It is

debatable therefore, whether this particular advantage is really present in this case.

Note also that we have not yet considered the issue of soft constraint satisfaction with

the algorithms of this chapter. This was never our aim, and indeed, we will be looking at

this particular issue in more detail in Chapter 6. However, it is worth noting here that there

 88

might be additional complications if we were to attempt their inclusion. For instance, the

soft constraints SC2 and SC3 (see Section 3.1) clearly depend on the ordering of the

timeslots – a factor that is not considered by the GGA or the IHS algorithm in this chapter.

One way in which we could incorporate these soft constraints might therefore be to add an

additional step to these algorithms so that once a feasible timetable using a maximum of t

timeslots has been achieved, the timeslots (groups) are then ordered in some way to try and

satisfy as many of these soft constraints as possible. We will look at an algorithm that does

something along these lines in Section 6.2 later. However, if we wanted the GGA or IHS

algorithms to consider soft constraints during a run (i.e. when also looking for feasibility)

then it is likely that we would have to follow the strategy of other authors such as Erben

[52], and add penalty measures (possibly through the use of weights) to the fitness

functions. However, because the chief aim of this algorithm is to find feasibility, such a

modification might actually have the adverse effect of sometimes leading the search away

from attractive (i.e. fully feasible) regions of the search space. Meanwhile, the incorporation

of other sorts of soft constraints might present fewer difficulties. Consider, for example, soft

constraint SC1 (Section 3.1). If we were to try and reduce the target number of timeslots

from forty-five down to forty, this would actually mean that candidate timetables would be

deemed feasible when the number of timeslots being used fell below forty-five, but also the

total number of violations of this soft constraint would also fall as the number of timeslots

being used approached forty.

Finally, perhaps the most prominent observation made in this chapter is the fact that

in the majority of instances, we have seen that the GGA – even in its improved states – has

been outperformed by the more straightforward IHS algorithm that, notably, does not

make use of a population, selection pressure, or the grouping recombination operator. In

particular, we have seen that the superior performance of this algorithm is most evident in

the large UCTP instances where, for reasons that we have discussed (particularly in Section

4.5), the GGA operators seem to display the least potential for aiding the search. We

believe these observations to be important, because they seem to highlight difficulties that

are inherent not just with this application, but with the GGA approach as a whole.

However at this point, we must be careful about making such strong claims because we

have little empirical evidence of this from other problem domains. In the next chapter we

will thus temporarily divert our attentions from timetabling, and we will seek to reinforce

these assertions. This we will do by performing a second comparison between a GGA and

an IHS algorithm using a different type of grouping problem – Graph Colouring with

Equipartite Graphs. If similar observations to the experiments in this chapter are observed

then this will serve to strengthen our arguments about the GGA approach in general. In

 89

Chapter 6 we will then return to our study of the UCTP, concentrating our efforts on the

task of satisfying the soft constraints.

 90

5: Further

Investigation:

Application to

Equipartite Graph

Colouring

In the previous chapter, one of the main observations made in our experimental

analyses was that the performance of the grouping genetic algorithm (GGA) for the UCTP,

generally worsened when instances with relatively high numbers of items per group were

encountered. We hypothesised that this was due to two reasons: (a) because larger groups

generally cause the GGA recombination operator to become more destructive, and (b)

because larger groups cause the chromosome to become proportionally shorter in length,

thus placing possible limitations on the search-capabilities of the GGA genetic operators.

Presently, however, the effects of these observations have only been witnessed when

dealing with the UCTP, and we have little experimental evidence as to whether these

characteristics might also occur when applying GGAs to other similar problems. In this

chapter we will therefore take a slight excursion from our studies of university course

timetabling and will take a look at a second type of grouping problem: Graph Colouring

with Equipartite Graphs. By applying a GGA to this problem, we will investigate as to

whether similar observations to those given in Chapter 4 can be made. As a means of

comparison, we will once again compare and evaluate the GGA’s performance against an

 91

IHS algorithm which, on the whole, will be of a very similar style to our previous IHS

algorithm, described in Section 4.7. Note that in this chapter, unlike other chapters in this

thesis, the variable n will be used to denote the number of nodes in particular graph

colouring problem instance. Additionally, the variable m will be used to denote the

maximum number of nodes that can be assigned to any one particular colour class in an

optimal solution.

The reason why we feel it is appropriate to study graph colouring with equipartite

graphs here, as opposed to graph colouring in general, is that it is quite similar in structure

to the timetabling problem that we have been considering thus far and therefore remains

with the general theme of this thesis: in equipartite graphs, the n nodes of the graph are

partitioned into χ almost equal-sized independent sets and edges are then only permitted

between nodes from distinct sets. They are thus a special type of graph colouring problem

where each colour class in an optimal solution cannot contain more than

/m n χ= ⎡ ⎤⎢ ⎥ nodes. This latter feature therefore adds a characteristic to these problems that

is similar to the UCTP where, as we have seen, we cannot assign more than m events to a

particular timeslot without breaking a hard constraint (remembering that in the UCTP, m

is used to represent the number of available rooms). Additionally, in this chapter we will

also conduct our experiments mainly on instances where χ = 40, thus also giving these

problems the same sort of “flavour” as problem instances of the UCTP in which perfect

solutions are obtainable. Finally, the equipartite characteristic also allows us to easily

control the sizes of the groups (colour classes) in the problem instances, which, as we will

see, is also be useful for the purposes of our experiments.

In the next two subsections we will describe the two algorithms that we will use to

perform this comparison. Next, in Section 5.3 we will describe the experiments and criteria

used for comparing the two algorithms in the test, and in section 5.4 we will present our

results. Finally Section 5.5 will conclude the chapter and also provide some further points

of discussion.

5.1 A GGA for Graph Colouring

We noted in the previous chapter that two GGAs for graph colouring have already

been proposed in the literature: first by Eiben, van der Hauw, and van Hemert in 1998

[50], and then later by Erben in 2000 [52]. In fact, the chief difference between these two

algorithms is simply the fitness functions that are used: the former uses an evaluation

method that is equivalent to f3 described in Section 4.6.1, whilst the latter uses fitness

 92

function f5. In [52], Erben claims that this function allows his algorithm to return

substantially better results (than Eiben et al.’s) because it “provides … a search space

landscape that is virtually free of plains, and thus offers more information to be exploited.”

(Remember that similar observations were also made in Section 4.6.2, where we saw better

results being returned by f5 with some of the UCTP instances).

Due to the claimed superior performance of Erben’s GGA (in general), we therefore

choose to use this GGA-version in our experiments. In the following paragraphs, we will

now describe this algorithm. Note that although there is already a description of this

algorithm in [52], it is necessary to include a description here, because some of the

operational details that are necessary for repeating the experiments are not actually present

in the original paper. These details are thus provided here, and were established through

open contact with the author of the original paper. Interestingly, our initial tests with the

algorithm indicated that if these supplementary details were not incorporated into the

algorithm, then performance would sometimes drop quite considerably.

Using typical GGA terminology, Erben’s GGA for graph colouring operates by

considering the nodes of the graph as the items, with the objective then being to try and

arrange these into groups (i.e. colours) of non-adjacent nodes, such that the number of

colours is minimal. In order to form an initial population, each individual is created by first

randomly permuting the n nodes, and by then applying a standard greedy (or first-fit)

procedure [42] to colour them. (This greedy algorithm operates in the usual way of taking

the nodes one-by-one one from left to right, and assigning them to the first colour that

does not cause a colour conflict). Thus, members of the initial population do not feature

any occurrences of a colour conflict, but, of course, the number of colours being used by

each individual (i.e. chromosome length) can vary.

The GGA recombination operator then follows the standard GGA method [54, 58]:

given two parent chromosomes, p1 and p2, some groups (colour classes) in p1 are randomly

selected, and copies of these are then injected into a copy of p2. Next, duplicate nodes that

occur as a result of this injection are removed using adaptation (see Section 4.2.2). Finally, a

rebuild scheme is employed to re-colour any uncoloured nodes that occur as a result of this

step. This scheme works by randomly permuting both the uncoloured nodes and the

existing colour classes, and then simply applies the greedy algorithm as before. A second

offspring is then produced by swapping the roles of the two parents. (Note that in the

conclusions to his paper, Erben states that this crossover (recombination) operator was

beneficial to the algorithm’s search capabilities in all performed experiments.)

 93

The mutation operator also functions in a typical GGA way: some colour classes in a

chromosome are chosen at random and removed. The chromosome is then rebuilt in the

same way as the recombination operator.

Finally, in his experiments Erben uses the noisy sort steady-state population strategy of

Falkenauer [54, 58], and chooses to make use of three parameters: a population size ρ , a

mutation rate mr in the range [0, 1] and a recombination rate rr in the range [0, 0.5]. The

overall behaviour of this algorithm is as follows:

(1) Generate an initial population of ρ individuals and evaluate them.

(2) Perform a noisy sort of the population (i.e. starting with an empty list L, repeatedly

select two individuals from the population at random, apply tournament selection, and

transfer the loser to the head of L. When only one individual remains in the

population, place it at the head of L. We thus have a partially sorted list with the

weaker individuals tending to be towards the tail and with the best individual at the

head).

(3) Take the top .rr ρ⎢ ⎥⎣ ⎦ individuals in L and recombine them with each other. Copy these

offspring over the bottom .rr ρ⎢ ⎥⎣ ⎦ individuals in L.

(4) Apply mutation by going through every individual and removing each group with a

probability mr.

(5) Re-evaluate the new and altered individuals.

(6) If any of the stopping criteria (see below) are met then end; else go back to step (2).

5.2 An Iterated Heuristic Search Algorithm for

Equipartite Graph Colouring

The second algorithm in our comparison is very much like the Iterated Heuristic

Search (IHS) algorithm for the UCTP that we described in Section 4.7: just one initial

solution is created, and the algorithm then makes successive attempts to try and reduce the

number of groups (colours) down to some target amount. There are, however, a few

differences present due to the slight variations in these two problems, and so we will

describe these differences here.

In order to construct an initial solution, we use the Dsatur algorithm of Brélaz [16]

to determine the order in which the nodes are coloured, with a balancing heuristic [15]

then being used to select a colour for each of these. This balancing heuristic simply assigns

 94

each node to the existing colour that contains the least number of nodes, creating a new

colour when no exiting colour is suitable. This approach was chosen because in our initial

tests with equipartite graph colouring problem instances, we saw that this heuristic nearly

always produced solutions that used fewer colours that the standard Dsatur algorithm

(which just chooses the first available colour for each node).

Similarly to our previous IHS algorithm in Section 4.7, throughout the run the

candidate solution is stored in an (m× s) matrix with each column, 1 to s representing a

unique colour class. As before, the number of columns being used in the matrix is allowed

to vary, with the aim of minimisation. Additionally, in this case the number of rows m in

the matrix is a constant that represents the maximum number of nodes that can be

contained in any one colour class, and because we are dealing with equipartite graphs, this

is known to be at most m = /n χ⎡ ⎤⎢ ⎥ . Note, however, that unlike the matrix representation

used with the UCTP, in this case we do not need to concern ourselves about which row

each node is assigned to (any row is suitable) and so for consistency, we choose to always

keep the blank cells of the matrix at the bottom of each column (see fig. 5.1 for an

example).

An initial solution having been formed, the IHS algorithm then operates following

the steps outlined in fig. 5.1. In these steps, two parameters are used: an iteration limit and

a parameter rm, and the meanings of these are described in the figure.

I

NHC

MKGEB

OLJFDA

I

NHC

MKGEB

OLJFDA

E

I

LH

KG

OJFD

E

I

LH

KG

OJFD

[A, B, C,
M, N]

Unplaced U

[A, B, C,
M, N]

[A, B, C,
M, N]

Unplaced U

E

I

LH

KG

OJFD

E

I

LH

KG

OJFD

[A, B, C,
M, N]

Unplaced U

[A, B, C,
M, N]

[A, B, C,
M, N]

Unplaced U

I

CHK

NBLGE

MAOJFD

I

CHK

NBLGE

MAOJFD

s

m

(1a) If stopping criteria is
met then end; else
randomly select between
1 and rm columns and
remove them.

(1b) Set i = 0.

(2a) for j = 1 to |U |
for k = 1 to s

If column k is not full and
no colour clash occurs, then
assign node j to column k

(2b) If U is empty then go to (1a);
else go to (3a).

(3a) Add 1 to i. If i = the iteration limit
then go to step (4) else go to (3b)

(3b) Randomly choose two cells in
different columns (ensuring that at
least one is not blank) and swap
them. If no colour clash is caused by
this then go to (2a); else swap back
and go to (3a).

(4) Rebuild using the
greedy procedure, taking
nodes from left to right in
U. Next, randomly
permute the columns,
and then go back to (1a)

s

(remove) (remove)

Fig. 5.1: The Iterated Heuristic Search Algorithm for Equipartite Graph Colouring

With reference to fig. 5.1, as a final point it is worth mentioning a further detail

about step (4), which is used to rebuild partial solutions when the iteration limit is reached.

Our reasons for choosing the described method are due to some simple characteristics of

 95

the greedy (first-fit) algorithm that were first pointed out by Culberson and Luo in [42],

and which are best illustrated by an example:

In step (1) of fig. 5.1 we notice that two columns are removed from the matrix. The

nodes contained within these two columns are then placed into a list U = [A, B, C, L, M,

N]. Next, in step (2a) we see that we have managed to insert one of these nodes, L, back

into the matrix. Let us now assume that that for the remainder of this procedure, no more

nodes are reinserted into the matrix before reaching the iteration limit, and so, as in fig.

5.1, we arrive at step (4) with U = [A, B, C, M, N]. Note that the original ordering of the

nodes in U (minus K) has been preserved. Additionally, we know that nodes A, B, and C

definitely cannot have a common edge between them, because otherwise they would never

have been placed into the same column (colour class) in the first place (similarly for nodes

M and N). This means that an application of the greedy algorithm using this ordering of

nodes will never need to add more than two extra columns (colours) to the matrix.

However, during the greedy process, there is still, of course, a possibility that some nodes in

U could be assigned to existing colours, thus creating the possibility of needing to open

fewer than two.

When the above feature is tied in with the rest of the algorithm this actually means

that during an entire run, the number of colours being used in a solution can never actually

increase. Thus the overall IHS algorithm might be considered a type of hill-climber, with a

stochastic mechanism for crossing plateaus in the fitness landscape perhaps being supplied

by steps (3) and (4).

5.3 Comparing the Algorithms

In our comparison, both algorithms were designed to halt when either a solution

using χ colours was found, or when a predefined time limit (measured in CPU seconds)

was reached. Note that in their experiments, neither Eiben et al. [50] nor Erben [52]

actually consider CPU time in their analyses – instead choosing to measure algorithm

performance according to the number of evaluations performed. However, the latter

measure is not really appropriate in our case because the IHS algorithm does not actually

need to “evaluate” a candidate solution as such, since its hill-climbing nature makes it

guaranteed never to produce a worse colouring. Indeed, in this case, a candidate solution’s

“quality” (i.e. the number of colours it is using) only ever needs to be checked to see if the

first halting condition above has been met. Secondly, it is also worth remembering that in

the case of a GGA, quality measures according to the number of evaluations are also likely

 96

to hide the varying amounts of computational effort that are needed to perform

recombination at different stages of the evolutionary process due to the extra amounts of

rebuilding that usually need to take place when the population is still diverse and when the

groups are large (as we discussed in the previous chapter).

However, it should also be noted that the comparison of algorithms according to

CPU time also has its pitfalls, not least because it brings into question issues of

implementation and hardware. In our case we have attempted to avoid potential

discrepancies (as much as possible) by implementing both algorithms with the same

language and compiler (C++ under Linux using g++ 3.2.2), and by using common data-

structures and code-sharing whenever appropriate to do so. Naturally, all experiments were

also conducted on the same hardware, the specification of which is the same as previous

experiments.

In our tests, similarly to Eiben et al. and Erben, all problem instances were created

using the instance generator of Culberson [4, 42]. For various values of χ and n (see below),

we performed experiments for a range of edge connectivities p at and around the phase

transitions in each case. More specifically, for each p-value, we produced 10 different

problem instances and then performed 10 separate trials on each instance, giving a total of

100 trials at each setting. We also used four different criteria for comparing the algorithms

which are as follows:

(1) Robustness, which is indicated by a Success Rate in the range [0, 1]. This tells us the

proportion of runs in which the algorithms were able to find an optimal solution

within the time limits. (Note that the instance generator used always produces problem

instances where the optimum is achievable – thus the maximum possible success rate is

always 1.0)

(2) Computational Effort, which is indicated by the Solution Time. This tells us how long

the algorithms took to find an optimal solution in CPU time, if indeed one was found.

(In cases where the success rate is less than 1.0, those runs where optimality could not

found within the time limits are not considered for the calculation.)

(3) Accuracy, which is indicated by the Number of Colours used in the best solution found

during the run, averaged across the 100 runs. This measurement is therefore meant to

give us some indication of how close the algorithms got to optimality on average.

(4) Run Characteristics, Finally, this criterion is also included to help give us some

indication as to how the algorithms actually progress through the search space over time

when dealing with “hard” instances (i.e. those with an edge connectivity level p

somewhere within the phase transition regions of both algorithms). This is

 97

demonstrated by plotting over time the number of colours used in the best solution

found so far (averaged across the 100 runs) at a selected p-value.

Lastly, the time limits for each set of experiments were determined by conducting all

of our experiments with the GGA on each set of problem instances twice: in the first case

we ran the algorithm for a fixed number of evaluations (this amount would be determined

by looking at similar experiments of Eiben et al. [50] and Erben [52]). During these trials

we would then record the largest amount of CPU time that was required in any of these

runs, and a similar value would then be used as the official time limit in our comparison.

5.4 Analysis of Results

In our first comparison, shown in fig. 5.2, we compare the algorithms when

considering equipartite graphs with a chromatic number χ = 8 and number of nodes n =

200. As with the work of Erben [52], the parameters used for the GGA were ρ = 20, mr =

0.05, rr = 0.2, and for the IHS algorithm we used rm = 1 and an iteration limit of 1000n

(our use of n in defining the latter allows the procedure to scale up with instance size). The

CPU time limit used in these experiments was 90 seconds, which was the maximum

amount of time that was required to perform 150,000 evaluations with the GGA (this was

the number of evaluations used as the cut off point in the same experiments in Erben’s

algorithm analysis).

One reason for including a comparison with these particular instances is to

demonstrate that the results of our implemented GGA are very similar to the results

claimed in the same experiments in Erben’s paper (which used the same parameters as

above), thus justifying to a certain extent our method of CPU time limit calculation.

However, we can also see that with regards to the robustness of the two algorithms,

although the phase transition occurs around the same values of edge connectivities p, the

curve of the IHS algorithm is definitely narrower, thus demonstrating a higher success rate

on a greater range of instances. Note that the accuracy of the IHS algorithm is also superior

across the phase transition region, and that, in cases of p = 0.2, it also seems to be able to

make more positive movements through the search space for a greater period of the run.

 98

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.05 0.1 0.15 0.2 0.25 0.3

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 7

 8

 9

 10

 11

 12

 13

 14

 0.05 0.1 0.15 0.2 0.25 0.3

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 8

 9

 10

 11

 12

 13

 14

 15

 0 10 20 30 40 50 60 70 80 90

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.05 0.1 0.15 0.2 0.25 0.3

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 7

 8

 9

 10

 11

 12

 13

 14

 0.05 0.1 0.15 0.2 0.25 0.3

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 8

 9

 10

 11

 12

 13

 14

 15

 0 10 20 30 40 50 60 70 80 90

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

Fig. 5.2: Comparison for equipartite graphs, for n = 200 and χ = 8 (thus m = 25), using a time limit of 90

CPU-seconds. The Run Characteristics-graph (bottom right) was made using instances where p = 0.2.

For the remainder of our experiments and analysis we will now look at equipartite

graphs in which the chromatic number χ = 40. These instances thus represent problems

that are more similar in style to the UCTP. In all cases, time limits were determined by

observing the maximum number of seconds needed for the GGA to perform 300,000

evaluations in total (this stopping criterion was used in similar experiments by Eiben et al.).

Also, following the advice of Erben, for the GGA we used fairly small populations (ρ =20)

and chose to set the recombination and mutation rates to 0.2 and 0.02 respectively. The

parameters used for the IHS algorithm, meanwhile, were set the same as the previous

experiment.

Figure 5.3 shows the behaviour on instances for n = 200 and χ = 40. Interestingly, in

this case we can see that the phase transition regions of the two algorithms are slightly

different, with the GGA’s being slightly to the right of the IHS algorithm’s. Indeed,

between p-values 0.68 and 0.75 we can clearly see that the GGA exhibits a higher success

rate, is more accurate and takes less computational effort on average. Moving beyond these

values we see that the IHS algorithm then begins to show superior performance and, for p =

0.8, for example, we can see that the GGA actually needs to use six extra colours on

average, whilst the IHS algorithm tends to need less than one on average. However, looking

 99

at the run characteristics on instances where both algorithms show a success rate of zero (in

this case p = 0.78), we see that the algorithms seem to behave quite similarly over time and

both tend to find solutions of similar quality of around 44 colours.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 50

 100

 150

 200

 250

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 40

 42

 44

 46

 48

 50

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 0 50 100 150 200 250

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 50

 100

 150

 200

 250

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 40

 42

 44

 46

 48

 50

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 0 50 100 150 200 250

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

Fig. 5.3: Comparison for equipartite graphs, for n = 200 and χ = 40 (thus m = 5), using a time limit of 250
CPU-seconds. The Run Characteristics-graph (bottom right) was made using instances where p = 0.78.

Looking next at the algorithms’ behaviour with equipartite graphs for n = 400 and

χ = 40 (fig. 5.4), we can see that the phase transition region of the GGA is wider than the

IHS algorithm’s, thus indicating a larger range of instances that it cannot solve (or come

close to solving). Perhaps even more telling though is the contrast between the algorithms’

behaviour with regards to accuracy: here we can see that throughout the phase transition of

both algorithms, even in cases where neither algorithm is able to find a solution, the IHS

algorithm produces solutions using fewer colours than the GGA on average. Also note that

between p-values 0.625-0.675, for example, whilst the IHS algorithm was able to find

optimal solutions in relatively short amounts of time in every case, the GGA can only

achieve solutions that are using 20-or-so extra colours within the time limit.

 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.3 0.4 0.5 0.6 0.7 0.8

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 40

 45

 50

 55

 60

 65

 70

 0.3 0.4 0.5 0.6 0.7 0.8

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 40

 45

 50

 55

 60

 65

 70

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.3 0.4 0.5 0.6 0.7 0.8

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 40

 45

 50

 55

 60

 65

 70

 0.3 0.4 0.5 0.6 0.7 0.8

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 40

 45

 50

 55

 60

 65

 70

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

Fig. 5.4: Comparison for equipartite graphs, for n = 400 and χ = 40 (thus m = 10), using a time limit of 800

CPU-seconds. The Run Characteristics-graph (bottom right) was made using instances where p = 0.6.

Finally, in fig. 5.5, we compare the algorithms using equipartite graphs of n = 1000

and χ = 40. Here, we witness similar characteristics to the previous experiment. However,

the difference in performance between the two algorithms seems to be even more apparent

in this case, with the phase transition region of the GGA covering almost two times as

many p-values as the IHS algorithm. Note also, for example, that for edge connectivities p =

0.45-0.6, whilst the IHS algorithm is able to find optimal solutions in relatively short

amounts of time in every run, the GGA can only produce colourings of approximately 2χ

colours within the time limit.

5.5 Conclusions and Further Discussion

From the results presented in this chapter, it should be clear to the reader that,

similarly to our experimental observations made in the previous chapter, the IHS algorithm

for equipartite graphs seems to give a better overall performance than the GGA. Also

noticeable is that in cases where we witness low success rates from both algorithms (i.e. in

 101

the phase transition regions), the IHS algorithm also seems to show better accuracy than

the GGA in the majority of cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
u
cc

e
ss

 R
a
te

Edge Connectivity (p)

GGA
Heuristic Search

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
o
lu

tio
n
 T

im
e
 (

se
co

n
d
s)

Edge Connectivity (p)

GGA
Heuristic Search

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
C

o
lo

u
rs

Edge Connectivity (p)

GGA
Heuristic Search

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

N
u
m

b
e
r

o
f
C

o
lo

u
rs

CPU Time (Seconds)

GGA
Heuristic Search

Fig. 5.5: Comparison for equipartite graphs, for n = 1000 and χ = 40 (thus m = 25), using a time limit of

1300 CPU-seconds. The Run Characteristics-graph (bottom right) was made using instances where p = 0.4.

We have also seen from these experiments that the inferior behaviour of the GGA

seems once again to be at its most noticeable when the sizes of the groups are larger and

thus the relative lengths of the chromosomes are shorter. Indeed, when the GGA did

sometimes exhibit comparable or better performance than the IHS, this was usually when

the problems being solved involved relatively small groups (in our case where χ = 40, n =

200, and thus m = 5).

Once again, clues as to why the GGA is able to compete in these cases are revealed

when we examine how two related measures – (1) the population diversity and (2) the

amount of rebuild being performed during recombination – seem to vary during the

evolutionary process. Figure 5.6 shows these for a single run on instances with edge

connectivities within the phase transition regions for each of the four instance sets. Here it

can be seen quite clearly that only in fig. 5.6(b), where m = 5, do the two measures seem to

actually settle at low levels during the run. As before, we hypothesise that the smaller

groups in this case allow the underlying building-blocks of the problem (i.e. the groups) to

 102

be propagated more effectively during evolution, and therefore allow the population to

converge around a relatively good point in the search space. In contrast, for the remaining

three cases (shown in figs. 5.6(a), (c), and (d)), we see that these measures seem to remain at

much higher levels throughout the run, implying that the recombination operator is once

again acting as more of a macro-mutation operator in these cases, and less as an operator for

combining and passing on good building-blocks from one generation to the next. This

agrees with the observations that we made in the previous chapter.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity

number of recombiation operations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity

number of recombiation operations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity

number of recombiation operations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity
number of recombiation operations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity

number of recombiation operations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity

number of recombiation operations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity

number of recombiation operations (x200)

proportion (%)
diversity

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
ro

p
o

rt
io

n
 (

%
)

d
iv

e
rs

ity
number of recombiation operations (x200)

proportion (%)
diversity

Number of recombination operations (x200)

Number of recombination operations (x200) Number of recombination operations (x200)

Number of recombination operations (x200)

Fig. 5.6(a)-(d): (top-left, top-right, bottom-left, bottom-right respectively) Four example runs showing (1)

the population diversity, and (2) the proportion of nodes becoming unplaced with each application of the
recombination operator, during example runs with the GGA. Graphs (a)-(d) show runs with instances of n =

200, χ = 8, and p = 0.2; n = 200, χ = 40 and p = 0.78; n = 400, χ = 40 and p = 0.6; and n = 1000, χ = 40,

and p = 0.4 respectively. Run-time parameters used in these runs were the same as the described experiments.
In the figures, the amount of rebuilding needing to be done with the recombination operator is labelled

Proportion (%) - this refers to the percentage of nodes that are becoming unplaced, on average, with each

application of the recombination operator.

Finally, before ending this chapter, it is also probably worth mentioning some

contrasting features of these two algorithms in order to further facilitate our understanding

of this comparison so that we may view these results in their proper context.

Firstly, it should be noted that the GGA does not currently need to know the

chromatic number χ of a problem instance in advance (although, in our case, we do

 103

actually make use of the information in order to specify when the algorithm can halt). On

the other hand, the IHS algorithm uses this information for calculating m (i.e. the number

of rows that will be present in the solution matrix)15. As we have already noted in Section

2.2, however, the task of calculating the chromatic number in graph colouring is NP-hard,

and so this information might not always be easy to come by. If we consider these

implications with regards to course timetabling, however, this particular feature might not

be of such great consequence because, as we have seen in our analysis of the UCTP, it is

usually the case that m (in this case the number of rooms available per timeslot) is known in

advance, and/or the maximum number of timeslots is stipulated as part of the problem

definition.

Secondly, it is also worth remembering that the IHS algorithm considered here is

currently designed specifically for equipartite graphs, whilst the GGA, on the other hand, is

intended for dealing with all types of graph colouring problem. In Erben’s work [52], for

instance, it has been shown to cope quite well with pyramidal chain-style graph colouring

problems (see the work of Ross et al. [94]) – a type of problem that the IHS algorithm

could not currently deal with without some modifications first being made.

With regards to the parameters of the algorithms, we found that the IHS algorithm

generally seemed quite robust and, providing that rm was kept relatively small (e.g. 1-3)

and the iteration limit was kept relatively high (more than 500n, say), we tended to witness

fairly consistent behaviour across the instances. Conversely, we found that the GGA was

usually very sensitive to changes in its three parameters, with alterations to any of them

usually resulting in quite drastic changes to algorithmic performance. In our tests we thus

kept their settings very close to those recommended by Erben [52], which were reported to

perform well in his experiments. Additionally, in this case we also found that other

population strategies, such as the steady-state strategy used for our GGA for the UCTP in

(described in Section 4.3), generally seemed to give a much poorer overall performance

than the “noisy sort” population strategy of Falkenauer [54, 58] and Erben [52] used here.

These factors suggest therefore that in practical applications, some sort of tuning process

would usually need to be applied if the GGA were to be used to its maximum capability.

Finally, looking back at the run characteristics of the two algorithms (figs. 5.2-5) we

can see that our use of the more powerful Dsatur procedure for producing initial solutions

for the IHS algorithm generally gives this algorithm a slight head-start, because the

resultant solutions nearly always use fewer colours than any of the members of the GGA’s

15 Alternatively, if we were to know m in advance, then we could calculate χ because /m n χ= ⎡ ⎤⎢ ⎥ , and

therefore /n mχ = ⎡ ⎤⎢ ⎥ .

 104

initial population. Although it was not our intention to look into such matters here, in the

future it would, of course, be interesting to see whether the performance of the GGA could

improve were the initial population to have one or more individuals in it formed using a

Dsatur-type algorithm.

In conclusion, at the beginning of this chapter our stated aims were to conduct an

analysis of a second GGA to see if similar characteristics to those observed in Chapter 4

could be observed. From the results presented in this chapter we can see that this goal has

been met, and we hope that the reader is now suitably convinced about the potential

pitfalls of the GGA approach in some cases. Moving away from GGAs, in the next chapter

we will now revert back to the overall theme of this thesis – university course timetabling.

In particular, having now established that the IHS algorithm, in general, tends to be a

better choice for finding timetable feasibility with the UCTP (at least for our problem

instances), we will now move our attention on to the second phase of the two-stage

timetabling strategy: satisfying the soft constraints.

 105

6: Satisfying the

Soft Constraints

of the UCTP

Up until this point in the thesis, our proposed timetabling algorithms have been

concerned with the problem of finding feasibility with the UCTP (or in other words,

satisfying the hard constraints of this problem). In this chapter, continuing with our study

of the two-stage approach to timetabling, we will now switch our efforts over to the task of

satisfying the soft constraints of the problem. We will present two separate metaheuristic

algorithms intended for this task, both of which will follow the two-stage timetabling

strategy (Section 2.3.2) of first obtaining feasibility, and then proceeding to try and reduce

a cost function (reflecting the number of soft constraint violations in a timetable, calculated

as described in Section 3.1), whilst always remaining in feasible areas of the search space.

The first of these algorithms, as we will see, will operate using an Evolutionary

Algorithm (EA) framework. In order to follow the desired two-stage approach, we will

introduce a number of specialised, problem-specific genetic operators that are guaranteed to

preserve timetable feasibility, and will conduct an analysis of their general effects. The

second algorithm, meanwhile, will make use of the Simulated Annealing (SA) metaheuristic

[68, 110] and will use neighbourhood operators that are also specifically designed to

preserve feasibility.

In our experimental analyses of both algorithms, rather than using the sixty “hard”

UCTP instances used in Chapter 4, we choose to make use the twenty problem instances

used for the International Timetabling Competition [2]. These, we feel, are perhaps more

appropriate in these circumstances for the following reasons. First, unlike the sixty “hard”

instances, each of the competition instances is known in advance to have a perfect solution,

 106

thus we will always be able to tell exactly how close our proposed algorithms are able to get

to the optimum. However, the vast majority of these instances have still not yet been solved

to perfect optimality, so we can presume that they still present a challenge. Secondly, from

experience, we know that our algorithms from Section 4 will nearly always be able to

achieve feasibility in a non-restrictive amount of time with the competition instances (as we

have seen with the sixty “hard” instances, this is not always so), thus we will be able to

concentrate more fully on the task-in-hand: i.e. satisfying the soft constraints of the UCTP.

Finally, unlike the sixty “hard” instances, various other algorithms in the literature have also

used the competition instances and associated benchmark timing program in their

experimental analyses. We will therefore also be able to compare our proposed algorithms

against these in order to gain a fuller picture of how well they actually perform in general.

6.1 An Evolutionary Algorithm for Soft

Constraint Satisfaction

The first algorithm of this chapter is a two-stage evolutionary algorithm (EA), which

operates by first constructing a population of fully feasible timetables, and then evolves

these whilst always remaining in feasible areas of the search space. Our initial motivations

for designing an evolutionary algorithm of this type were as follows:

(1) Even though many different types of metaheuristic algorithm were submitted to the

International Timetabling Competition (see Chapter 3), interestingly none of the

entrants chose to make use of any sort of evolutionary technique;

(2) Our studies regarding the satisfaction of the hard constraints (Chapter 4) have shown

that our constructive heuristics perform very well with the twenty competition problem

instances, meaning that we have a mechanism by which we can produce populations of

feasible timetables in relatively small amounts of time;

(3) As we have seen in Chapter 3, the two-stage approach for the UCTP has shown great

promise when used in conjunction with other sorts of metaheuristics;

Given the latter point in particular, we therefore considered it interesting to see

whether an EA that followed this two-stage approach could also perform competitively on

the benchmark instances used for the competition; and if not, why not?

For our proposed EA we will again use the matrix representation (Section 3.2) for

each individual timetable. However, in order to be consistent with EA terminology in the

 107

following descriptions, we will usually refer to each individual timetable matrix as a

chromosome, and each cell (blank or otherwise) as a gene. Also, in order to denote a

particular gene of a particular chromosome, we will also use the notation tt[i, j], which will

refer to the value that is contained in the gene appearing in the ith row and jth column of a

chromosome tt.

In the following pages, a description and analysis of this algorithm will now be

presented as follows: in Section 6.1.1 we will describe how populations of feasible

timetables are first produced for this algorithm. In Section 6.1.2 and 6.1.3 we will then

describe the recombination and mutation operators respectively. Next, in Section 6.1.4, we

will outline the experiments that we conducted with this algorithm, and will present an

analysis of the results. Finally Section 6.1.5 will conclude the section concerning this EA

and will provide some further points of discussion.

6.1.1 Initial Population Generation

For this algorithm an initial population is formed by using the procedure Build

(Section 4.2.1) for each individual. To determine the order in which the events are to be

placed into the timetable, we use heuristic H1; breaking ties with H3 (refer to Table 4.1).

Places are then selected for each event using H4, breaking further ties with H6. (We

remember here that heuristic rules H3 and H6 are random choices.) Upon completion of the

event assignments, if more than t timeslots are being used by the timetable, then our

Iterated Heuristic Search (IHS) algorithm from Section 4.7 is called in order to try and

reduce the number of timeslots down to the required amount. (As a matter of fact, in our

trials we saw that this latter step was not actually necessary in over 98% of cases, because

the heuristics that we used were actually capable of producing feasible timetables using t

timeslots by themselves. Also, when this step was actually needed, it was usually able to

achieve its goal very small amounts of time.)

6.1.2 Defining “Useful” Recombination Operators

We have mentioned earlier in this thesis that in evolutionary computation, it is

generally desirable for the recombination operator to facilitate the combining of useful and

relevant parts (building-blocks) of various different candidate solutions, so that new

offspring that are conducive to the search are produced. When designing such an operator

for the problem of satisfying the soft constraints of the UCTP, however, we are faced with

two important questions:

 108

(1) What features actually constitute “useful and relevant” building-blocks in this case?

(2) How can we ensure that all offspring produced by the recombination operator are

always feasible?

With regards to the first question above, we chose to investigate this by designing a

number of different recombination operators. Although, as we shall see, all of these are

actually quite similar in style, essentially each differs in their method of deciding which

genes to copy from parent to offspring, and will base their decisions on some sort of

perceived relationship that these various genes have with one another.

835
742

961

835
742

961
t

m

In this example, which uses our
matrix representation, although both
parent timetables may well be
feasible, we can see that the
offspring timetable caused by this
type of crossover operator contains
multiple copies of some events and
no copies of others - i.e. it is illegal.

48
71639
254

48
71639
254

45
7162
251

45
7162
251

ACAACB ACAACB

ACBBAA ACBBAA ACAAAA ACAAAA
n

Parent p1 Parent p2 Offspring

Parent p1

Parent p2

Offspring

Here, unlike the example above, every event has been
assigned to exactly one place (i.e. A, B, or C).
However, there is still no guarantee that this offspring
will actually represent a feasible timetable because
resources may still be double booked etc. (NB: this is
equally true for 1, 2 or n-point recombination.)

(a)

(b)

Fig. 6.1: Demonstration of the inappropriateness of some of the more “traditional” recombination operators
with this two-stage EA for timetabling.

In order to address the second question, meanwhile, it is first useful for us to look at

fig. 6.1, where we demonstrate the problems of using “traditional” sorts of recombination

and representation with this sort of approach. In fig. 6.1(a), which demonstrates a simple

cut-and-paste type recombination used with our matrix representation, we can see that

simply combining different chunks of two parent chromosomes is actually highly

inappropriate in this case, because it will almost inevitably produce offspring that are not

only infeasible, but also illegal. Meanwhile, as we demonstrate in the second example fig.

6.1(b), where we make use of the “object-based” representation that we discussed earlier

(and which has also been used in various EAs for timetabling such as [39, 93, 94, 97]),

although we can see that offspring produced will not actually be illegal this time (because

all events will still be assigned to some place in the offspring timetable), there is, of course,

no guarantee that the resultant timetable will actually be feasible in most cases.

 109

At this point it is also worth mentioning that the various specialised recombination

operators used in some evolutionary timetabling applications (such as Burke, Elliman, and

Weare’s algorithm in [19, 20], and Paechter et al.’s algorithm in [86]) also don’t seem to be

wholly suitable in this case. This is because, as we have noted earlier, although these

algorithms always manage to ensure that timetables are kept free of hard constraint

violations, both are only actually able to do so by allowing relaxations of some other feature

of the problem (i.e. by opening extra timeslots in the former, and by leaving certain events

unplaced in the latter). Indeed, although such methods of relaxation may sometimes bring

benefits during an algorithm’s execution, as we have seen in the definition of this UCTP in

Chapter 3, if such relaxations (i.e. temporary infeasibilities) have not been dealt with by the

end of a run, then this will, of course, mean that the timetable provided by the algorithm is

infeasible and, according to the judging criteria of the competition, worthless.

Given the above, perhaps the most suitable way of addressing this issue in our case is

to add some sort of genetic repair function to the EA, that will allow genes from different

chromosomes to be combined, but at the same time will somehow ensure that the resulting

offspring are always feasible. However, like most timetabling problems, it is worth noting

that this task of taking an entire chromosome timetable that is infeasible and then “fixing”

it in some way so that it becomes feasible (i.e. repairing at the chromosome level), is actually

equivalent to the NP-hard task of achieving feasibility in the first place. This seems to

suggest that even if a process such as this were able to consistently succeed in a non-

restrictive amount of time, it might still end up having to do a large amount of rearranging

of the genes in order to achieve its goal. However, this would also mean that the offspring

produced would probably have very little in common with either parent. In our case then,

we choose to implement a repair mechanism that operates at the gene-level instead. That is,

we will restrict our recombination operations so that each of the genes selected for copying

from the parents to the offspring will be transferred one-by-one, with each one that causes

an infeasibility then being dealt with immediately by a repair operator. Indeed, as we will

see, our proposed operator does in fact guarantee that the offspring produced will always be

feasible. However, whether it will still actually be beneficial to the search will be looked at

in our experiments in Section 6.1.4.

In the following sections (6.1.2.1-6) we will now describe the five different

recombination operators and also the associated repair operator used in our experiments.

Note that for ease of reading, when describing these operations we will explain how we go

about making the first offspring c1 (which is initially an exact copy of its first parent) from

parent timetables p1 and p2. In order to construct the second offspring, however, the roles of

the two parents are simply to be reversed.

 110

6.1.2.1 Sector-based Recombination

Our first recombination operator explores the idea that there will be “sectors” of a

chromosome that will have a strong sub-fitness [114] – that is, it considers the prospect

that some timetables will have areas of genes within them that are causing smaller numbers

of soft constraint violations than others. The sector-based recombination operator thus

attempts to provide a mechanism whereby such sectors can be propagated during evolution,

and operates as follows: firstly, four values – top, bottom, left, and right – are selected. These

are used to define a sector in the second parent p2 (see fig. 6.2(a)). Next, each gene in p2

within this sector is considered in turn, and an attempt is made to inject it into the same

positions in c1 (this is achieved using the gene transfer and genetic repair functions that will

be defined in Section 6.1.2.6).

Parent p1

Parent p2

Parent p1

Parent p2

Offspring Offspring

(a) (b)

t

m

t

m
(c)

Sector defined
by top, bottom,
left, and right

Sector defined
by top, bottom,
left, and right

Fig. 6.2: Demonstration of (a) Sector-based recombination, (b) Student, Conflicts and/or Random-based

recombination, and (c) the various ways that a sector can perform wraparound.

In our approach, when choosing the values that define the sector, we allow situations

to occur where top < bottom and right < left. We name this feature “wraparound”, and it is

useful because it avoids showing unnecessary bias to genes in the centre of the chromosome.

(See fig. 6.2(c).) Later, we will also see that it is useful when using this method to limit the

size of the sector in some way. Our reasons for doing this are related to the nature of the

genetic repair function, and will therefore be dealt with in the repair operator’s description

in Section 6.1.2.6. In our approach, however, we choose to limit the height of a sector so

that cannot be greater than / 2m⎢ ⎥⎣ ⎦ , and the width so that it cannot be greater than / 2t⎢ ⎥⎣ ⎦

(where t = 45).

 111

6.1.2.2 Day-based Recombination

Our second recombination operator is very similar to the sector-based operator

described above. However, whereas in the latter we allow large amounts of flexibility as to

what dimensions the sectors can take; here, we choose to impose a restriction stipulating

that a sector can only cover an entire day’s assignments. The rationale for this operator is

the observation that in this UCTP, none of the three soft constraints actually carry across

different days; thus we might therefore consider the assignment of events to a particular day

as a sub-timetable, with all of its soft constraint violations contained within it. This

recombination operator will therefore attempt to exploit this fact by providing a

mechanism whereby good days might be propagated and combined during a run.

6.1.2.3 Student-based Recombination

For student-based recombination we start by choosing a student at random, and then

calculate all of the events that he or she is required to attend. We then go through parent p2

and attempt to insert all of the genes that contain these events into the same position in c1,

applying the genetic repair function wherever necessary. (See fig 6.2(b) for an illustration.)

In order to justify such an operator, it is worth considering for a moment the notion

of personal-timetables. As we have described in our definition of the UCTP (Chapter 3),

each student in this problem is required to attend some subset of events. Thus, given a

feasible timetable, we can easily determine the personal-timetable of a particular student by

identifying the particular timeslots and rooms where he-or-she is attending some event.

Now, given the fact that, in this case, all violations of the soft constraints are caused in

some way by the whereabouts of the students during the working week (a student that has

to attend three events in a row will result is a penalty cost of one, for example), it is

reasonable to assume that some students will have personal-timetables that contain fewer

soft constraint violations than others. This recombination operator therefore endeavours to

use this fact by offering a mechanism whereby the good personal-timetables might be

combined and propagated in order to help produce high quality offspring.

6.1.2.4 Conflicts-based Recombination

This operator follows a similar idea to student-based crossover. This time, however,

the operator starts by choosing an event e at random and then identifies the subset 'E E⊆

that represents all of the events that conflict with e. Next, just like our previous operator,

attempts are then made to try and inject all of the genes in p2 that contain these events into

the same position in c1.

 112

With this operator, similarly to student-based crossover, we are thus identifying

collections of genes that are related due to common students, and providing a mechanism

whereby they might be propagated during evolution. However, it is worth noting that the

UCTP, just like in real world timetabling situations, will usually feature pairs of events that

conflict due to multiple students taking both events. In this case, therefore, we might be

arming ourselves with the potential to alter the objective function to a greater degree.

6.1.2.5 Random-based Recombination

Our final recombination operator follows a similar pattern as the previous two

examples. However, in this case the genes that are selected in p2 for injection into c1 are

chosen entirely at random – i.e. no relationships between the various genes are considered.

In our case it is useful to introduce this operator, because it can be used for conducting

control experiments, thus allowing us to assess whether the relationships that are being used

to define the previous four operators are actually aiding the search or not.

Note that with this recombination operator, we need to control in some way the

number of genes that are to be selected for injection from p2 into c1. For our purposes

(which we will outline in Section 6.1.4) we found that it was sufficient to control this

through the introduction of a single parameter τ in the range [0, t×m]. This parameter

simply specifies the number of genes in p2 that are to be randomly selected for transfer to c1

with each application of the operator.

6.1.2.6 Gene Transfer and Genetic Repair

We have noted previously that at the start of the recombination process the child c1

will be an exact copy of parent p1, and the recombination operator of choice will define a

set of genes in p2 that are to be copied into the same positions in c1. For each individual

gene that is to be injected from p2 into c1, there are four things that can happen. We will

now go through each of these in turn, and in each case, we will describe what action will

occur, and how the feasibility of the chromosome will be maintained. For this description,

let e and g represent events such that e≠ g, and let x and y define the coordinates of the

particular gene in p2 that we wish to inject:

(1) p2[x, y] = c1[x, y]. In this case we do nothing.

(2) p2[x, y] is blank and c1[x, y] contains e. In this case we make c1[x, y] blank, and attempt

to find a new place for e using the genetic repair function (see below).

 113

(3) p2[x, y] contains g, and c1[x, y] is blank. In this case we find and delete the original

occurrence of g in c1. Next, we insert g into c1[x, y]. If this maintains the feasibility of

timeslot y in the chromosome then we accept the move and end; otherwise, we reset

the change and we consider this particular insertion as having failed.

(4) p2[x, y] contains g, and c1[x, y] contains e. In this case, we first delete the occurrence of g

in c1. Next, we insert g into c1[x, y]. If this makes timeslot y infeasible, then we reset the

change and end; otherwise we attempt to identify a new place for e using the genetic

repair operator (see below).

Note that in cases (2) and (4) above, we might encounter a situation where we have

an unplaced event e in c1. Our genetic repair function is responsible for identifying a new

blank gene elsewhere in the chromosome where e can be inserted without compromising

c1’s feasibility. As before, let x and y indicate the original position of e in c1. First, the repair

operator searches horizontally along row x looking for a blank gene in which it can insert e

without causing an infeasibility (note that we already know the room defined by row x to

be suitable for e, so we only actually need to check for violation of hard constraint HC1

here). Next, if it cannot find a suitable blank gene for e in row x, then the operator goes on

to check any other rows (if there are any), which define other suitable rooms for e. This

process halts when either (a) a suitable blank gene for e is found – in which case we can

insert e here, or (b) until all blank genes in appropriate rows have been considered. If the

latter occurs, then we consider the repair process as having failed in this case, and we

therefore reset the timetable to its previous state and move on.

Note that in our approach, when performing genetic repair during an application of

the sector-based or day-based recombination operators, only genes that are outside of the

sector are considered by our repair operator. This would seem intuitive as the objective of

these recombination procedures is to try and transfer as many of the genes inside the sector

as possible from p2 to c1. This feature also explains why we feel it necessary to restrict the

size of the sector when using sector-based recombination, because a sector that is too big

would obviously allow very little room for genetic repair to operate, and would thus

encourage a high amount of repair failure.

Finally, this method of repair does have one additional issue that we feel needs

addressing. Generally, when a timetable has a low cost (in that it will contain a relatively

low number of soft constraint violations), then according to soft constraint SC1, it should

not have many (if any) events scheduled in the five end-of-day timeslots. However, when

performing genetic repair in this case, there will actually be a tendency for our repair

operator to want to put events into these timeslots. The reasons for this are twofold: first, in

 114

a good timetable the end-of-day timeslots will usually contain a higher-than-usual number

of blank genes; second, because there are lower numbers of events in these timeslots, then

there will also be a smaller probability of there being an event already existing within the

timeslot that conflicts with the event that we are trying to insert. These factors suggest that

if we are to improve our chances of producing good quality offspring via recombination, we

should try to show prejudice against the placing of events into these five timeslots.

In our approach, we dealt with this problem by introducing a parameter eod (end of

day) of range [0, 1]. This parameter defines the probability of us allowing an event to be

assigned into one of these penalised timeslots each time our repair function encounters one.

6.1.3 Mutation Operator

Finally, like the various recombination operators defined above, a mutation operator

for this algorithm also needs to preserve a chromosome’s feasibility. Given a timetable

chromosome which, for consistency we will again call c1, our method works by performing

the following steps:

(1) Randomly select two distinct genes, c1[a, b] and c1[c, d], ensuring that c1[a, b]≠ c1[c, d]

(i.e. thereby ensuring that both genes are not blank);

(2) Swap the contents of genes c1[a, b] and c1[c, d]. If feasibility is maintained then end;

otherwise, reset the swap and go back to step (1).

Note that a procedure such as this has the potential of becoming an infinite loop,

because we may encounter a situation where we cannot perform any swap that preserves

feasibility. In our experiments, we limited the number of attempted swaps to 10,000. Using

the competition problem instances, however, this limit was never reached in our trials.

6.1.4 Experiments and Analysis

In order to assess the relative effects of the five recombination operators (and

associated repair operator), we performed experiments using the same steady-state

population strategy as our grouping genetic algorithm, described in Section 4.3. In all cases

we used a population size ρ = 50, set rr to 1.0, eod to 0.05, and used a mutation rate of 1/n.

(That is, each time a new individual was produced, a loop was performed n times. At each

iteration, we would then apply the mutation operator with a probability 1/n.) For each set

of trials we performed twenty individual runs on each of the twenty competition instances,

using the time limit specified by the competition benchmarking program as our stopping

criteria, which equated to 270 seconds of CPU time on our computers. As a second control

 115

trial, we also performed experiments using no recombination at all (i.e. using rr = 0.0). In

our descriptions below, these trials will be referred to as “Mutation only”.

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

co
st

evaluations (x100)

sector-based (rr = 1.0)
day-based (rr = 1.0)

student-based (rr = 1.0)
conflicts-based (rr = 1.0)
random-based (rr = 1.0)
mutation only (rr = 0.0)

Fig. 6.3: Showing the behaviour of the algorithm with regards to the number of evaluations performed, with
the various recombination operators, and also with mutation on its own. Each line represents the cost of the

best solution found so far, averaged across 20 runs on each of the 20 instances (i.e. 400 runs).

If we look first at the performance of the algorithm with regards to the number of

evaluations performed (depicted in fig. 6.3), we will notice that the operator that produces

one of the fastest initial movements through the search space is day-based recombination.

However, for these twenty problem instances, this also happened to be the operator that

involved the largest number of genes being transferred (and thus repair being performed)

per application on average. Thus, in order to assess whether this type of recombination was

actually facilitating the propagation of useful building-blocks or, instead, was simply

providing a mechanism by which the algorithm could make larger random-style jumps in

the search space, we chose to set the parameter τ (which, we remember, is used for

controlling the number of genes that are chosen to be transferred from parent to offspring

with our random-based recombination operator) to a value that was equivalent to the

number of genes contained in a day (i.e. τ = (m× t)/5).

As fig. 6.3 demonstrates, a random-based recombination operator using this setting

for τ causes the algorithm to behave in a very similar manner to day-based recombination.

This suggests that the “useful building-blocks” that we were attempting to identify by using

entire day’s assignments are not actually being captured by the day-based operator at all,

and instead, the quicker downhill movements (compared to the remaining trials) are simply

 116

being caused because the larger random-style jumps that are occurring are allowing a

slightly broader search to occur during the initial parts of the run. Indeed, this latter

hypothesis is also backed up by the fact that the sector and student-based operators, which,

in these instances, involves slightly smaller numbers of genes being transferred on average,

also produced slightly slower downhill movements in initial parts of the run. Equally, the

conflicts-based recombination operator, which involves an intermediate number of genes

being transferred, also shows an intermediate behaviour between the four other operators in

the figure, whilst the mutation only trials, which involve no random-style jumps, shows the

slowest.

Note also that with the day-based recombination operator, because there are only five

days in any one chromosome, the actual number of gene combinations that can be chosen

for injection from the second parent p2 into the offspring c1 is quite small. On the other

hand, the number of gene combinations that can be selected during random-based

recombination is much larger. The extra restrictions in the former might therefore lead to a

more rapid drop in the diversity of a population during a run, thereby leading to a quicker

redundancy of the recombination operator, and might explain why the random-based

operator seems to achieve the slightly quicker downhill movement prevalent in the figure.

However, regardless of all these observations, perhaps the most striking feature in fig.

6.3 is that as the runs continue, the differences between the six trials become steadily

smaller and, perhaps most crucially, once the searches stagnate at around 60,000-or-so

evaluations, the trials where the recombination operators are being used don’t actually

appear to be producing results that are noticeably better than the mutation-only trials.

Moving our attention towards fig 6.4, where we show the behaviour of the same set

of runs, but in this case with regards to CPU time, we see very similar patterns emerging:

although we can see that the various recombination operators do offer a slightly faster

movement through the search space for the first parts of the run (as we demonstrate more

clearly in the projection), we can also see that when the time limit is reached, no real

difference in performance exits between mutation only and the remaining trials. Indeed,

none of the algorithm variants was seen to be significantly different to any other.

It is also worth noting that, in both figs. 6.3 and 6.4, in order to display these results

more clearly we have truncated the y-axes. However, if we were to allow the scale of these

axes to start at zero, which, we remember, is a cost that is achievable with all of the problem

instances, the differences between these six trials would be even less clear.

 117

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250

co
st

time (secs)

sector-based (rr = 1.0)
day-based (rr = 1.0)

student-based (rr = 1.0)
conflicts-based (rr = 1.0)
random-based (rr = 1.0)
mutation only (rr = 0.0)

 420

 430

 440

 450

 460

 470

 480

 490

 500

 10 15 20 25 30 35 40 45 50

co
st

time (secs)

sector-based (rr = 1.0)
day-based (rr = 1.0)

student-based (rr = 1.0)
conflicts-based (rr = 1.0)
random-based (rr = 1.0)
mutation only (rr = 0.0)

Fig. 6.4: Showing the behaviour of the algorithm over time, with the various recombination operators, and
also with mutation on its own. Each line represents the cost of the best solution found so far, averaged across

20 runs on each of the 20 instances (i.e. 400 runs). The projection (inset) shows the effects between 10 and

50 seconds).

Finally, in Tables 6.1 and 6.2 we show a breakdown of the results gained at the time

limit with each of the twenty problem instances in each of the six trial-sets. It can be seen

from the averages presented in these tables that the results gained in each set of trials with

regards to both the average performance and best performance, are very similar in general,

with no clear winner presenting its self.

6.1.5 Conclusions and Discussion

We are now at approximately the half way stage of this chapter. So far we have

concerned ourselves with the task of designing and analysing a two-stage EA for the UCTP.

Although in our tests we have seen that this EA can successfully evolve a population of

feasible timetables (in that it is able to improve the quality of the candidate solutions over

time), crucially, we have witnessed that this evolution is done just as effectively within the

time limit when mutation is used on its own. In other words, our proposed recombination

operators do not seem to offer any extra search powers in these cases.

 118

Table 6.1: A Breakdown of the Results Found in the Various Trials with the Twenty
Problem Instances. (Results for all instances are averaged across twenty runs.) The Label:

“Initial Pop. %” Indicates the Percentage of the Time Limit that was required to produce the
Initial Population across the Trials.

Lowest Cost Found During Run (Average± std. dev. for 20 runs)
Initial

Pop. %
Sector-
based

Day-
based

Student-
based

Conflicts-
based

Random-
based

Mutation
only

1 0.02 308.2 ± 24.1 317.1 ± 23.6 308.8 ± 15.7 308.8 ± 25.0 305.7 ± 18.5 312.7 ± 18.5

2 0.02 278.8 ± 17.8 283.6 ± 21.4 287.5 ± 23.4 286.6 ± 21.5 279.7 ± 25.9 278.7 ± 25.9

3 0.03 323.8 ± 29.7 323.2 ± 22.3 340.9 ± 20.2 344.5 ± 16.6 333.2 ± 25.5 324.9 ± 25.5

4 0.04 650.4 ± 23.5 643.8 ± 34.5 643.3 ± 39.2 645.8 ± 43.7 638.6 ± 48.6 665.0 ± 48.6

5 0.03 612.8 ± 46.7 624.4 ± 46.2 626.0 ± 38.3 627.9 ± 48.1 617.2 ± 42.1 618.3 ± 42.1

6 0.03 482.5 ± 43.8 478.1 ± 43.8 498.4 ± 48.5 484.2 ± 47.8 488.4 ± 46.4 487.2 ± 46.4

7 0.03 454.6 ± 43.3 446.6 ± 35.2 433.1 ± 35.7 444.2 ± 42.2 434.7 ± 49.8 444.9 ± 49.8

8 0.03 338.1 ± 29.8 345.3 ± 27.4 337.2 ± 29.3 327.7 ± 22.0 340.2 ± 22.2 341.2 ± 22.2

9 0.03 310.0 ± 20.5 307.6 ± 28.1 295.7 ± 21.6 301.8 ± 21.9 294.5 ± 24.2 301.6 ± 24.2

10 0.02 316.3 ± 18.4 323.5 ± 17.8 318.9 ± 26.8 319.5 ± 21.5 311.3 ± 15.5 326.0 ± 15.5

11 0.03 328.7 ± 30.4 340.1 ± 21.3 342.4 ± 22.6 342.7 ± 30.3 326.2 ± 17.6 331.1 ± 17.6

12 0.02 387.5 ± 38.0 384.3 ± 33.2 379.7 ± 33.5 373.7 ± 35.9 373.6 ± 33.2 380.8 ± 33.2

13 0.03 450.8 ± 29.7 438.6 ± 36.6 432.1 ± 21.9 438.6 ± 24.5 454.6 ± 25.1 442.5 ± 25.1

14 0.03 492.7 ± 54.3 477.6 ± 55.8 489.2 ± 49.9 501.2 ± 41.7 502.4 ± 51.3 505.0 ± 51.3

15 0.03 431.3 ± 27.1 429.8 ± 41.0 419.1 ± 30.8 425.6 ± 32.9 428.4 ± 25.8 433.6 ± 25.8

16 0.03 295.8 ± 14.2 299.4 ± 18.0 289.2 ± 20.5 300.0 ± 20.7 293.2 ± 22.4 290.4 ± 22.4

17 0.03 538.4 ± 56.2 533.2 ± 36.8 530.5 ± 43.8 524.3 ± 52.8 531.1 ± 50.2 539.0 ± 50.2

18 0.02 269.0 ± 20.7 266.2 ± 17.7 267.2 ± 19.3 265.1 ± 23.9 263.5 ± 17.3 263.7 ± 17.3

19 0.04 524.2 ± 39.1 524.9 ± 28.3 538.9 ± 30.7 532.3 ± 31.1 519.0 ± 36.0 521.8 ± 36.0

20 0.03 400.2 ± 38.6 387.0 ± 23.7 413.2 ± 28.5 398.3 ± 27.3 397.6 ± 39.5 408.2 ± 39.5

Average 409.7 408.7 409.5 409.6 406.6 410.8

In reality, the ineffectiveness of these recombination operators is not particularly

surprising because, as we have seen, the nature of this particular timetabling problem

coupled with our chosen representation seemingly makes it difficult to define genetic

operators that can consistently combine meaningful parts of various chromosomes whilst

always ensuring the offspring’s feasibility. In our case, we believe that the following two

factors are probably responsible for this lack of search capability:

(1) During recombination, when injecting a gene from the second parent into the

offspring, if this process fails (as it often can – see Section 6.1.2.6) this will, of course

mean that we are not injecting an entire building block into the offspring at all (if

indeed anything we can arguably call a “building block” has been captured by the

recombinative process in the first place).

(2) The nature of our repair mechanism means that foreign genes (that is, genes that do

not occur in either parent but which do appear in the subsequent offspring) will often

be introduced into the offspring, which may well disrupt various other parts of the

 119

chromosome, as well as possibly undoing some of the work done in previous iterations

of the algorithm.

Table 6.2: The Best Results Found from Twenty Runs on Each of the Twenty Problem
Instances in Each Trial.

Lowest Cost Found During Run (Best of 20 runs)
Sector-

based
Day-
based

Student
-based

Conflict
-based

Rand-
based

Mutation
only

1 269 276 285 262 277 287
2 258 247 234 245 240 245
3 258 287 298 317 287 291
4 611 546 556 561 540 584
5 511 536 558 565 539 534
6 389 410 410 388 408 393
7 399 385 379 361 339 378
8 285 307 296 284 294 298
9 282 238 262 259 254 267

10 280 297 272 282 276 287
11 280 307 306 264 281 283
12 294 321 335 305 317 295
13 398 364 386 385 393 355
14 372 378 391 400 410 411
15 392 364 357 368 395 363
16 271 265 247 258 256 252
17 438 457 462 443 432 456
18 234 232 234 214 231 212
19 442 481 488 465 439 457
20 311 335 355 356 327 347

Average 348.7 351.7 355.6 349.1 346.8 349.8

In practice, of course, these factors will probably mean that these five

“recombination” operators do not recombine different chromosomes at all; instead, they are

more akin to some sort of macro-mutation operator which simply results in large and

random-style leaps within the search space being made. Essentially then, they are not really

fulfilling the desired task of a good recombination operator, meaning that a significant and

potentially useful component of the general EA paradigm has been lost.

It is also worth noting that another potential pitfall of this algorithm is its reliance on

being able to produce populations of different, feasible timetables in reasonable amounts of

time. Whilst our proposed methods have been able to achieve this successfully with the

twenty competition benchmark instances in relatively small amounts of time (although we

can see in Table 6.1 that some instances require slightly longer than others), it is, of course,

worth remembering that even this task might turn out to be unachievable when “harder”

instances (such as the ones used in Chapter 4) are encountered.

 120

Considering all of the above, it is also probably unsurprising to learn that neither the

average nor the best results gained by this algorithm compare very favourably with the

results achieved by other two-stage algorithms for this problem. Looking at the official

results of the International Timetabling Competition [2], for example, we can see that the

average costs of the solutions found by this EA are, in most cases, over twice as high as

many of the official entrants, and even worse compared with some of the better performing

algorithms. Additionally, although it is very likely that the performance of this EA could be

improved by the addition of some extra search routines for soft constraint satisfaction (such

as those described in [96, 97]), and/or some sort of smart-mutation operator16 [39], it seems

that if we are to persist in our quest for an effective two-stage EA for this problem, we will

still always have to compensate for the fact that we do not currently seem to have a natural

way in which we can successfully pass and propagate meaningful information between

different chromosomes with this sort of approach and this sort of representation.

Indeed, it should be noted that in all of our experiments up until this point in the

chapter, we have seen that the genetic operator that seems ultimately to provide this EA

with its (perhaps rather limited) search capabilities is mutation: an operator that works by

making very small – but essentially blind – stochastic perturbations to a candidate solution

timetable, but which does not facilitate the sharing of genetic information between

different members of a population. This factor might suggest, therefore, that perhaps a

more promising direction to take at this point would be to tie such a perturbation operator

in with some sort of neighbourhood search algorithm instead. We will present an algorithm

doing just this in the next section, and a design and analysis of this algorithm will

constitute the second half of this chapter

6.2 An SA Algorithm for Soft Constraint

Satisfaction

Neighbourhood search algorithms (also sometimes known as local search algorithms)

might be considered a family of optimisation techniques that include such popular

algorithms as simulated annealing [68, 110], tabu search [63], iterated local search [65],

variable neighbourhood search [81], and various sorts of hill-climbers. Generally, in order

to operate, these algorithms require three things to be defined: (1) some way of encoding

16 Note that we have not added these sorts of operators here because our objective was to examine the effects

and shortcomings of the various recombination operators.

 121

candidate solutions; (2) a cost function (used for measuring the quality of a given candidate

solution); and (3) a move (or neighbourhood, or perturbation) operator that allows small

changes to be made to a candidate solution in some way. Once these three ingredients have

been defined, these algorithms all operate by taking some initial candidate solution

(possibly produced at random) and then attempt to navigate through the search space in

some way via a repeated application of the move operator, attempting to find the candidate

solution with the best possible cost. (In general the different types of neighbourhood search

algorithm will differ in their ways of deciding which neighbours to look at; their criteria for

deciding which moves to accept and reject; and their proposed methods of escaping or

avoiding local optima.)

In this section, we shall propose another two stage approach that utilises one of these

types of neighbourhood search variants – namely simulated annealing (SA) – for the task of

satisfying the soft constraints of the UCTP. As in our EA above, this algorithm will operate

by first finding feasibility, and will then attempt to eliminate as many soft constraint

violations as possible, whilst always remaining in feasible areas of the search space.

At this point, it should be clear to the reader that we already have at our disposal all

of the essential ingredients for a neighbourhood algorithm such as this, and so an

application of SA should be relatively straightforward:

(1) Our matrix representation provides us with a suitable encoding for this task, and our

IHS algorithm (given in Section 4.7) seems to give us a suitably robust method of

randomly generating an initial feasible timetable;

(2) The method of calculating the number of soft constraint violations (given in Section

3.1) offers us a suitable cost function for this task;

(3) A move operator that preserves feasibility has already been used as a mutation operator

for the previous EA and should also be applicable here. (Note that other feasibility-

preserving operators are possible as well. We will consider one of these here also.)

The SA algorithm that we will describe in this section operates as follows. First, a

feasible timetable is constructed using our IHS algorithm. Once this has been achieved, the

SA metaheuristic is then applied in two successive phases. In the first phase (SA phase-1),

attempts are made to try and order the timeslots of the timetable in an optimal way

through the use of a simple neighbourhood operator that we will call N1 – see fig. 6.5.

Next, in SA phase-2 the algorithm then attempts to make further improvements by

shuffling the events around the timetable, using a neighbourhood operator that we will call

N2 (which is essentially the same as our mutation operator from the previous section). Note

that this two-phased approach for attempting to satisfy the soft constraints has also been

 122

used in the algorithms of White and Chan [112] and also Kostuch [69], both of which we

reviewed earlier. However, there are a number of features that distinguish our methods

from these, including our (more effective) methods for producing initial feasible solutions;

our use of various automated functions to determine some of the algorithm’s run-time

parameters; our cooling schedules, which include a sophisticated reheating function to help

the algorithm escape from local optima; our use of a more flexible and robust

neighbourhood operator; our use of the matrix representation; and the use of our own very

efficient delta-evaluation function. These features will all be explained in the following

sections.

Finally, as before, this algorithm halts either when a perfect solution has been found

or, failing this, when a predefined time limit defined by the competition benchmarking

program has been reached. In the latter case, the best solution found during the whole run

is returned.

s

m

N1: Randomly choose two
timeslots (columns) in the
timetable and swap them.

N2: Randomly choose two places
(cells) in the timetable, ensuring
that at least one is not blank, and
swap their contents.

Fig. 6.5: The two neighbourhood operators used in the SA algorithm.

In both of the SA phases, a very typical SA method will be used: starting at an initial

temperature (that we will denote T0), during the run the temperature T will be altered in

some way according to a temperature update rule. At each value of T, a number of

neighbourhood moves will then be attempted. Any move that increases the cost of the

timetable will be accepted with probability:

 ()exp /Tδ− (6.1)

(where δ represents the change in cost that such a move would cause), whilst any

move that reduces or leaves the cost unchanged will be accepted automatically.

In the following four subsections we will now describe the details of the two SA

phases. Following these descriptions, in Section 6.2.5 we will then provide some details

about how we can also implement an efficient delta-evaluation function for this algorithm.

 123

In Section 6.2.6 we will then present an experimental analysis of this algorithm and discuss

some further points arising from this study.

As a final point, it is also worth noting that in the following algorithm description we

will see that a number of parameters will be defined, each of which will dictate the various

operational characteristics of a run in some way. However, in our case, rather than attempt

to empirically confirm optimal settings for all of these, we have decided to fix some of the

less influential parameters at values that, according to our initial experiments and

intuitions, seem appropriate and/or sensible in these cases. These settings should therefore

be considered design decisions on our behalf and will be discussed and defined at the

appropriate places in the text. The settings for the remaining parameters, meanwhile, will

be established using a simple tuning procedure that will be described in Section 6.2.6.

6.2.1 SA Phase-1: Search Space Issues

The first phase of the SA algorithm is concerned with the exploration of the search

space defined by neighbourhood operator N1 (see fig. 6.5). Note that because of the specific

structure of this timetabling problem (and in particular, the fact that there are no hard

constraints that depend on the ordering of the timeslots within the timetable); a movement

in N1 will always preserve feasibility. Also note that an application of N1 will generally

involve multiple events (and thus relatively many students) and is therefore more than

likely to cause large, wholesale changes to the timetable’s cost in general.

It is also worth mentioning, however, that it is highly unlikely that all feasible

timetables will be achievable through a use of N1 alone. For example, note that the size of

the search space offered by N1 is exactly s! (where s represents the number of timeslots being

used in the timetable, and thus s! is the number of different permutations of these

timeslots). Indeed, given that a feasible timetable must always have s ≤ t (where t = 45), this

means that the number of possible solutions achievable with this operator will not actually

grow with instance size (as is usual), but instead will be fixed at a maximum of 45!.

Additionally, if we were to start this optimisation phase with a timetable in which

two events, say i and j, were assigned to the same timeslot, then an application of N1 would

never actually be able to change this fact. Indeed, if the optimal solution to this problem

instance required that i and j were, in fact, in different timeslots, then an exploration with

N1 would never actually be able to achieve the optimal solution in this case.

Given these issues, it was decided in our case that this first phase of SA should only

be used as a preliminary step for trying to make making quick-and-easy improvements to

the timetable. This also showed to be the most appropriate response in practice.

 124

6.2.2 SA Phase-1: The Cooling Schedule

For this SA phase, an initial temperature T0 is determined automatically by

calculating the standard deviation in the cost for a small sample of neighbourhood moves.

(We used sample size 100). This scheme of calculating T0 is based upon the physical

processes of annealing, which is beyond the scope of this thesis, but of which more details

can be found in [110]. However, it is worth noting that in general SA practice, it is very

important that a correct value for T0 is determined. On the one hand, a value for T0 that is

too high will invariably waste run time, because it will mean that the vast majority of

movements will be accepted, providing us with nothing more than a random walk about

the search space. On the other hand, an initial temperature that is too low could also be

detrimental, as it will likely make the algorithm too greedy from the outset, causing it to

behave more similarly to a hill-climber, and making it far more susceptible to getting stuck

at local optima. In practice, our described method of calculating T0 tended to allow

approximately 75-85% of moves to be accepted, which is widely accepted as an appropriate

amount in SA literature [110].

With regards to other features of the cooling schedule for this phase of SA, because,

as we have noted, this phase is only viewed as a preliminary, during execution we choose to

limit the number of temperatures that are encountered by the algorithm to a fixed value M.

Of course, in order to have an effective cooling, this also implies a need for a cooling

schedule that will decrement the temperature from T0 down to a value close to zero, in

exactly M steps. We could, therefore, simply use the following temperature update rule:

 ()0
1

T
i i MT T+ = − (6.2)

which would just reduce the temperature at a fixed amount at each stage. However,

in practice, we actually found this cooling scheme to be a little unsatisfactory, because the

temperature tended to drop too slowly early on in the run (resulting in too much random

walk-style movements) and, as a result, did not seem to allow enough of the run to operate

at the lower temperatures. We therefore used the following temperature update rule

instead:

0

0

1

1 1

1

i i M
T

i i i MT T

β β

λ β

λ λ

λ

+
+

+ +

= −

= +

= −

 (6.3)

 125

Here, β represents a parameter that, at each step, helps determine a value forλ . The

resulting value for λ is then used for influencing the amount of concavity or convexity

present in the cooling schedule (fig. 6.6 shows these effects in more detail).

In our experiments, for this phase we set M = 100 and, in order to allow more of the

run to operate at lower temperatures, we set β = –0.99. Meanwhile, the number of moves

to be attempted at each temperature was fixed at s2, thus keeping the value proportional to

the total size of the neighbourhood (a strategy favoured in many SA implementations).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90

te
m

pe
ra

tu
re

 T

iterations

β = -0.99
β = 0.00
β = 0.99

Fig. 6.6: The effects of the parameter β with the cooling scheme defined in eq. (6.3). For this example, T0 =
10.0 and M = 100. Note also that setting β = 0.0 in this case will produce exactly the same cool as that which

would be produced by eq. (6.2).

6.2.3 SA Phase-2: Search Space Issues

In the second and final round of simulated annealing, taking the best solution found

in the previous SA phase, an exploration of the search space defined by the neighbourhood

operator N2 is conducted (see fig. 6.5). Note that, unlike neighbourhood operator N1,

moves in N2 might cause a violation of one or more of the hard constraints. In our

approach we therefore choose to immediately reject and reset any move that causes such an

infeasibility to occur.

Before looking at how we will tie this operator in with the SA approach, it is first

worth considering the large amount of flexibility that an operator such as N2 can offer the

search. Suppose that in a single application of this operator we elect to swap the contents of

cells p and q, and for sake of argument, this move will not result in a violation of any of the

hard constraints:

 126

• If p is blank and cell q contains an event e, then this will have the effect of moving e to a

new place p in the timetable;

• If p contains an event e and cell q contains an event g, then this will have the effect of

swapping the places of events e and g in the timetable.

Additionally,

• If p and q are in the same column, then only the rooms of the affected events will

change (and thus only hard constraint HC2 will have the possibility of being broken);

• If p and q are in the same row, then only the timeslots of the affected events will change

(and thus only hard constraint HC1 will have the possibility of being broken);

• Finally, if p and q are in different rows and different columns, then both the rooms and

timeslots of the affected events will be changed (and thus both hard constraints HC1 and

HC2 will have the possibility of being broken).

It can be appreciated, therefore, that the neighbourhood operator N2 has the

potential to alter a timetable in a variety of ways. Additionally, the number of new

candidate solutions (feasible and infeasible) that are obtainable via any single application of

this operator is exactly:

 1

2 (1) 1n n nx− + − (6.4)

(where x defines the number of blank cells in the timetable). Thus, unlike N1, the size

of the neighbourhood is directly related to the number of events n, and therefore the size of

the problem. This latter point suggests that for anything beyond very small instances, more

time will generally be required for a thorough exploration of N2’s solution space.

6.2.4 SA Phase-2: The Cooling Schedule

For this phase, an initial temperature T0 is calculated in a very similar fashion to SA

phase-1. However, before starting the annealing process we also choose to reduce the result

of this particular calculation by a factor (c2/c1), where c1 represents the cost of the timetable

that was found before SA phase-1, and c2 the cost after SA phase-1. Our reason for doing

this is that during our experiments, we observed that an unreduced value for T0 was often

so high, that the improvements achieved during the SA phase-1 were regularly undone at

the beginning of the second. Reducing T0 in this way, however, seemed to allow the second

phase of SA to build upon the progress of SA phase-1, thus giving a more efficient run on

the whole.

 127

In order to determine when the temperature T should be decremented, in this phase

we choose to follow the methods used by Kirkpatrick et al. [68] and Abramson et al. [9]

and make use of two values. The first of these specifies the maximum number of feasible

moves that can be attempted at any value for T and, in our case, this is calculated using the

formula: maxnη , where maxη is a parameter that we will need to tune (note that our use of

the number of events n in this formula keeps this value proportional to instance size).

However, in this scheme T is also updated when a certain number of feasible moves have

been accepted at the current temperature. This value is calculated using the

formula min max()nη η , where minη is in the range (0, 1] and, for our purposes, must also be

tuned.

Next, with regards to the temperature decrement, we choose to use the traditional

geometric scheme [68] where, at the end of each cycle, the current temperature Ti is

modified to a new temperature Ti+1 using the formula:

 1i iT Tα+ = (1.1)

whereα is a control parameter that we will refer to as the cooling rate.

Finally, because this phase of SA will operate until a perfect solution has been found,

or until we reach the imposed time limit, we also make use of a reheating function that is

invoked by our algorithm when no improvement in cost is achieved during a number of

successive values for T (thus implying that the search has presumably become stuck at a

local optimum). In order to calculate a suitable temperature to reheat to, we opt to use the

“Reheating as a Function of Cost” method of Abramson, Krishnamoorthy, and Dang [10]

that we mentioned previously in Chapter 2. We choose this scheme in particular, because

in their paper, the authors showed that this particular method outperformed all other

proposed reheat schemes when tackling their particular timetabling problem (similar results

are also reported in the work of Elmohamed et al. [51]).

6.2.5 Performance Gains via Delta-Evaluation

Finally, before going on to conduct an analysis of this algorithm, it is worth

mentioning some points about how this algorithm can be made to run more efficiently

during the annealing phases, via the introduction of some computation-saving measures to

our evaluation function. Looking at the neighbourhood operators that are used in this

algorithm, it should be easy to appreciate that because applications of N1 and N2 will only

ever alter a small portion of a timetable, it is actually unnecessary (and imprudent) to set

about evaluating the whole timetable after every move. Like many algorithms of this type,

 128

we therefore chose to make use of delta-evaluation [92], which is the name given to the

general method of re-evaluation whereby only the relevant changes that have been made to a

candidate solution by particular neighbourhood operator are considered. In our case, we

can implement an efficient function of this type by making use of the following three facts:

(1) A single application of either N1 or N2 will only ever effect the assignments made to at

most two of the five days in the timetable. Moreover, because the soft constraints

imposed in the UCTP do not carry across different days, at least three of the five days

will always be unaffected by a move and will therefore not need to be re-evaluated.

(2) If an application of N2 involves moving an event to a new room in the same timeslot,

or swapping two events in the same timeslot, then the cost of the timetable will not

change.

(3) If an application of N2 involves moving one event to a new timeslot, then only the

students taking this single event will be affected (and thus only the personal timetables

of these students will need to be recalculated). Meanwhile, if N2 involves swapping two

events in different timeslots, then only students taking just one of these (and not both)

will need to have their personal timetables recalculated.

As can be imagined, in most neighbourhood-search algorithms such as this, the re-

evaluation of candidate solutions will usually constitute a large part of the algorithm’s

computation time. Thus, the implementation of efficient delta-evaluation functions has the

potential to offer considerable speed-ups, particularly when being used with larger problem

sizes. Note, however, that although delta-evaluation is highly suitable with this sort of

neighbourhood search-type algorithm, it is perhaps less applicable for use with any sort of

evolutionary algorithm where recombination is being used (such as ours, which we

mentioned earlier in the chapter). This is because a recombination operation usually results

in offspring that are made of by information coming from multiple parents (as well as

possibly a repair function). Thus the “changes” that occur in the offspring (compared to the

parents) will usually be much larger, making a delta-evaluation process much more

complicated and expensive on the whole.

6.2.6 Experimental Analysis

6.2.6.1 Assessing the Effects of Eliminating the End-of-Day Slots

For our experimental analysis of this SA algorithm, we performed two separate sets of

trials on the twenty competition instances, again using the time limit that was specified by

 129

the competition-benchmarking program. In the first set of trials, we used our IHS

algorithm (Section 4.7) to produce any feasible timetable where a maximum of forty-five

timeslots was being used. The SA algorithm would then simply take this timetable and

operate in the manner described above. For our second set, however, we chose to make a

slight modification to the way in which the initial solution was produced by allowing the

IHS procedure to run a little longer in order to try and schedule all of the events into a

maximum of just forty timeslots (we chose to allow a maximum of 5% of the total runtime

in order to achieve this). Our reasons for making this modification were as follows:

When we were designing and testing our SA algorithm, one characteristic that we

sometimes noticed was the difficulty that the neighbourhood operator N2 sometimes

encountered when attempting to deal with violations of soft constraint SC1: often, when

trying to rid a timetable of a violation of the other two soft constraints SC2 or SC3, N2

would actually do so by making use of an end-of-day timeslot. Or in other words, by trying

to eliminate a violation of one type of soft constraint, the algorithm would inadvertently

cause another one.

The reasons why such behaviour might occur start to become apparent if we look

back at the descriptions of the three soft constraints in Section 3.1. Note that SC2 and SC3

stand out as being slightly different to SC1, because if an event e is involved in a violation of

either SC2 or SC3, then this will not be simply due to the position of e in the timetable, it

will also be due to the relative positions of the other events that have common students with

e. By contrast, if e is causing a violation of SC1, then this will be due to it being assigned to

one of the five end-of-day timeslots, and will have nothing to do with the relative positions

of other events with common students to e. Thus, given that a satisfaction of SC1 depends

solely on not assigning events to the five end-of-day timeslots, a seemingly intuitive idea

might be to simply remove these five timeslots (and therefore constraint SC1) from the

problem altogether. In turn, the SA algorithm will then only need to consider the

remaining forty (unpenalised) timeslots and only try to satisfy the two remaining soft

constraints. (Note that this will also have the effect of making the search space smaller,

because there will also be 5m fewer places/cells to which events can be assigned to in the

timetable)

In our experiments, it turned out that our strategy of allowing the IHS procedure to

run a little longer worked quite well: using the IHS algorithm described in Section 4.7

together with an iteration limit of 10000n, trials of twenty runs on each of the twenty

competition instances revealed that this procedure was able to produce feasible initial

solutions using forty timeslots in over 94% of cases. In the remaining cases, where initial

solutions using a maximum of forty timeslots could not be achieved by our methods, our

 130

algorithm simply assigned these remaining events into the end-of-day slots. However, in

order to still show preference to the task of eliminating SC1 violations, in these cases we also

chose to use a slightly modified version of neighbourhood operator N2, which would

operate using the following steps:

(1) First, randomly choose any non-blank cell p in the timetable;

(2) Next, randomly choose any cell q in the timetable, ensuring that (a) q is not in an end-

of-day timeslot, and (b) p≠ q.

(3) Swap the contents of cells p and q;

This operator then, although very similar to the original N2 operator described

earlier, thus allows the prospect of reducing the number of events that are assigned to the

end-of-day timeslots, but at the same time, does not allow the figure to increase. In our

case, this strategy would always eliminate any remaining SC1 violations within the first

minute-or-so of the run and, obviously, once these had been gotten rid of, the nature of

this modified version of N2 would mean that these extra timeslots would then be closed off

and removed from the problem.

6.2.6.2 Results and Analysis

In Table 6.3 we provide a comparison of these two sets of trials by displaying the

average and best results achieved at the time limit in 50 runs on each of the 20 instances. In

both cases we used a cooling rate of α = 0.995, and specified for the reheating function to

be called when 30 successive temperatures were encountered without an improvement in

cost. Meanwhile, suitable values for minη and maxη (the two parameters that we witnessed to

be the most influential in regards to algorithm performance over time), were determined

empirically in some initial experiments, whereby we ran the algorithm at 11 different

settings for maxη (between 1 and 41, incrementing in steps of 4) and 10 different values for

minη (0.1 to 1.0, in steps of 0.1). At each setting for minη and maxη in these preliminaries, we

then performed twenty separate runs on each of the twenty competition problem instances,

thus giving a total of 400 runs per setting. The best performing values for minη and maxη in

both cases (i.e. the settings that gave the lowest average cost of the 400 runs when using

forty and forty-five timeslots) were then used in our comparison.

As can be seen in Table 6.3, when considering just forty timeslots, the SA-algorithm

is able to produce better average results in the majority of cases (seventeen out of the twenty

instances). Additionally, we can see that the best results from the fifty runs are also

produced in sixteen of the twenty instances in this case, with ties occurring on a further

 131

two. A Wilcoxon signed-rank test also revealed that the differences in results produced in

each set of trials was significant (with a probability greater than 95%). The results gained

when using forty timeslots also compare well to other approaches: for example, had the best

results in Table 6.3 (i.e. those using 40 Slots, maxη = 5, and minη = 0.9) been submitted to

the timetabling competition, then according to the judging criteria, this algorithm would

have ranked second. Note, however, that our algorithm actually beats the competition

winner in ten of the twenty instances, and according to a Wilcoxon signed-rank test, there

is also no significant difference between the two algorithms. (The results reported for the

competition winner are also the best results gained from 50 separate runs on each instance.)

Table 6.3: Comparison of the Two Trial-Sets (i.e. Using Forty-Five and Forty Timeslots
Respectively) on the Twenty Competition Instances. In Each Case the Average and Standard

Deviation in Cost is Reported, as well as the Best Cost (parenthesised) from 50 Individual Runs.

Instance # 1 2 3 4 5 6 7 8 9 10
45 Slots,

maxη = 9, and

minη = 0.1

85.9
±10.9
(68)

68.5
±8.2
(49)

86.9
±12.7
(63)

260.1
±23.4
(207)

190.1
±25.7
(133)

31.5
±8.8
(12)

42.3
±17.0
(19)

28.3
±7.2
(14)

52.2
±9.6
(31)

84.9
±8.0
(68)

40 Slots,

maxη = 5, and

minη = 0.9

86.9
±17.6
(62)

53.5
±10.2
(39)

95.6
±18.8
(69)

231.8
±39.5
(176)

147.7
±29.5
(106)

22.8
±8.4
(11)

23.7
±13.3

(5)

22.2
±8.6
(10)

41.4
±13.7
(22)

91.7
±15.3
(70)

Instance # 11 12 13 14 15 16 17 18 19 20 Average
45 Slots,

maxη = 9, and

minη = 0.1

61.6
±9.7
(43)

147.5
±16.3
(109)

130
±14.1
(101)

107
±33.4
(55)

41.5
±8.5
(22)

47.2
±7.9
(29)

169.3
±26.5
(119)

45.9
±7.8
(27)

85.5
±14.7
(62)

9.5
±4.5
(1)

88.8

(61.6)
40 Slots,

maxη = 5, and

minη = 0.9

60.6
±16.0
(38)

133.8
±28.1
(94)

128.2
±19.2
(101)

66.3
±20.7
(37)

33.2
±13.6
(14)

35.8
±12.6
(18)

129.4
±25.0
(94)

40.8
±9.7
(27)

84.9
±21.2
(55)

8.6
±6.1
(0)

77

(52.4)

The reasons why we believe the use of just forty timeslots to be advantageous (instead

of forty-five) in this case have already been outlined in Section 6.2.6.1. However, it is

worth noting that one potential negative feature of this particular approach is the fact that

the removal of the end-of-day timeslots will also have the effect of reducing the number of

blanks that are present in the timetable matrix. Indeed, considering that moves in N2 that

involve a blank cell (and therefore just one event) are, in general, more likely to retain

feasibility than those involving two events, this means that the removal of blanks will also

lead to further restrictions being placed on the algorithm’s ability to move about the search

space (we remember that there is already a considerable restriction placed upon this

algorithm because only moves that preserve feasibility are permitted). Given that one of the

major requirements for the two-stage timetabling approach is for practical amounts of

movement in feasible search space to be achievable (see Chapter 2), there is thus a slight

 132

element of risk in reducing the number of timeslots in this way, as in some cases too many

restrictions might be imposed. However, in these instances (where, we note that perfect

solutions are always achievable) the strategy appears to be beneficial.

Finally, in fig. 6.7 we show two example runs of the SA algorithm using the

parameters defined in Table 6.3. Here we can observe the general contributions that both

phases of SA lend to the overall search, and also the general effects of the reheating function

(although in one case we can see that the latter has been invoked too late to have a positive

effect). We can also see that the second line – which uses 40 timeslots – actually starts at a

markedly lower cost than the first, because the elimination of all violations of SC1 in this

case has actually resulted in a better quality initial solution. However, note that this line

also indicates a slower progression through the search space during the first half of the run,

which could well be due to the greater restrictions on movement within the search space

that occur as a result of this condition.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

co
st

time (seconds)

(b)

(a)

(a)

45 slots, ηmax = 9 and ηmin = 0.1
40 slots, ηmax = 5 and ηmin = 0.9

Fig. 6.7: Two example runs of the SA algorithm on competition instance-20. The points marked (a) indicate

where the algorithm has switched from SA phase-1 to SA phase-2. Points (b) indicate the point in the runs

where a reheating has occurred.

6.3 Conclusions and Discussion

In this chapter we have designed and analysed two separate metaheuristic algorithms

for the second stage of the two-stage timetabling strategy. Both have used the same

representation and fitness function, but the second of these – our simulated annealing

algorithm – has clearly outperformed the proposed evolutionary algorithm in these cases.

 133

As we have noted, we believe that one of the main reasons for this unsatisfactory

performance of the EA is the apparent difficulty in the task of producing a recombination

operator that can aid the search in a positive manner, whilst at the same time also ensuring

that the offspring produced obey the hard constraints of the problem.

With our SA-based algorithm, meanwhile, we have also seen that significant

improvements in results can be gained if we choose to place special priority on removing

the five end-of-day timeslots from the timetable, thereby eliminating one of the three soft

constraints of the problem. However, it is worth reiterating that this strategy will also

actually have the effect of tightening the search space in most cases, and it is likely that with

other problem instances, particularly those that are more constrained in nature, this

approach also has the potential to decrease algorithm performance. However, as we have

seen, this is not the case with these instances.

As we have mentioned above, the results of the SA algorithm using forty timeslots

compare very well with the official entrants to the International Timetabling Competition,

although it should be noted that at this point in time, better results for these twenty

instances overall, have been reported in papers by both Kostuch in [69] and Chiarandini et

al. in [34]. However, when making comparisons such as these, although the use of

benchmark problem instances and timing programs can be helpful for comparing

algorithms, it is also worth bearing in mind the following points when making any overall

conclusions. Firstly, as we noted in Chapter 3, the timing program used for the

competition (and subsequent works) specifies the time limit in elapsed time (or “wall-clock”

time), as opposed to CPU time. This means that there is the potential for discrepancies to

occur if the computer’s operating system also has to deal with things such as background

processes, remote users, the arrival of emails, and so on17. (Of course, these factors will also

depend on the type of operating system being used as well.) Additionally, the use of time

(CPU or elapsed) in itself is also open to inaccuracies, because it obviously brings into

17 In fact, in order to try and eliminate this potential inconsistency with timing, in all of our experiments in

this chapter we actually chose to measure algorithm performance using CPU time rather than wall-clock time.

In order to work out a suitable CPU time limit, we did the following. First, using the wall-clock time limit

specified by the benchmarking program (we will call this wc1) we took an unoccupied computer (the

specification of which was given in Section 4.3), and ran our program for exactly wc1 CPU seconds. At the

end this run we then collected a second value wc2 which was the amount of wall-clock seconds that this run

actually took (which due to background processes etc. would inevitably be more than wc1). The proportion

(wc1/wc2) thus gives us an approximation of the amount of CPU time that will be lent to the program during

a run on an unoccupied computer, and a suitable CPU time limit for the experiments can be calculated as

wc1(wc1/wc2).

 134

question the implementation details of the algorithm, such as the programming language

that was used, the type of compiler, and so on.

It is also worth considering that the actual time limit that is used for these

comparisons will also have an important effect in the results that are gained. Indeed,

although the time limit used for the competition may well be a fair one, it is in essence

arbitrary, and it is likely that the relative performances of the various algorithms proposed

for the competition (with regards to the best solutions that they can find) will change were

it to be lengthened or shortened. For instance, in our SA algorithm if our time limit was

lower, then as well as having to use different values for many of the parameters, it could be

the case that the first version of the SA algorithm (where we use the full forty-five timeslots)

might actually bring better overall results because, as we demonstrate in an example run in

fig. 6.7, there will tend to be more freedom of movement in the search space, thus allowing

the algorithm to make quicker initial movements (indeed, in fig. 6.7 it is only at around

200 seconds that the advantages of using just forty timeslots seems to become evident).

Remember also that the twenty benchmark instances used in these comparisons are all, in

essence, quite similar, and it is likely that the relative performances of the different

algorithms would change if instances of different sizes and “constrainedness” were also to be

considered.

It is also worth mentioning once again that both algorithms described in this chapter,

as well as the various other high-performance two-stage algorithms for this problem

(reviewed in Chapters 2 and 3) all crucially depend on two things: (a) that feasibility is

relatively easy to achieve, and (b) that there is enough freedom in the feasible-only search

space for a suitable amount of optimisation to take place. It would appear that the twenty

benchmark problem instances that were used for the competition allow this to be achieved.

However, with regards to the second requirement, in our case some further reasons as to

why our second approach seems able to produce good results can also be demonstrated by

looking carefully at the characteristics of our feasibility-preserving neighbourhoods N1 and

N2 described above:

For purposes of demonstration, let S represent a feasible timetable that is using s

timeslots (such that s≤ t). As we noted earlier, through the use of N1 alone we have the

potential to produce another (s! – 1) new timetables from S, all of which will also be

feasible. Now, given one of these new timetables S’, in the vast majority of cases it is likely

there will be some (and possibly many) further feasible timetables S’’ that are obtainable

through an application of N2. In turn, each of these new solutions will then also have a

further (s! – 1) feasible solutions S’’’ that can produced through a second application of N1,

and so on. Using this simple demonstration, it is thus easy to appreciate that even with

 135

these relatively simple neighbourhood operators, the number of different feasible timetables

that are obtainable by their application can quickly become very large, and the number of

feasible timetables that we have the potential to search through is unlikely to be a trivial

amount. Indeed, these numbers are likely to grow at an even greater rate if we were also to

consider other feasibility-preserving operators such as the Kempe-chain interchange

operators used in some other works [106, 107].

Concluding this chapter, two things should be noted by the reader. First, the IHS

algorithm, which we have mainly analysed in Chapter 4, generally seems to be an effective

way of achieving feasibility with the UCTP with known problem instances. Second, the SA

algorithm discussed in the latter half of this chapter, at least for the twenty competition

instances used here, seems to be effective at reducing the number of soft constraint

violations, despite being required to navigate in the restricted “feasible-only” search space.

However, as we noted in the problem analysis of Chapter 3, the UCTP problem-model is

still essentially a simplification, and it is worth remembering that various other sorts of hard

constraints that one could encounter in the real world are not presently considered in the

model. This issue therefore begs the following questions: What would happen if extra hard

constraints were to be added to the UCTP? Would this affect our ability to achieve

feasibility? Also, what effects would the presence of these extra constraints have on a two-

stage timetabling algorithm’s capacity to navigate through the feasible-only search space?

Would performance increase or decrease? In the next chapter – the penultimate chapter of

this thesis – we will endeavour to answer some of these questions.

 136

7: Towards Real-

World

Timetabling

Up until this point in this thesis, we have spent most of our time analysing the

effectiveness of the two-stage timetabling approach on a particular version of the UCTP.

From this analysis we have seen that the Iterated Heuristic Search algorithm is generally the

most effective of our algorithms for achieving timetable feasibility (Chapter 4); and that by

navigating exclusively through feasible areas of the search space, our simulated annealing

algorithm, is generally able to satisfactorily reduce the number of soft constraint violations

within a feasible solution (Chapter 6). However, at various points in earlier chapters of this

thesis we have also made note of the fact that although our chosen timetabling problem-

version is useful for scientific research and algorithmic analysis, it is still essentially a

simplification of most real-world timetabling problems. In this penultimate chapter, it is

perhaps, therefore, an appropriate time to start looking at how other sorts of constraints

might be incorporated into this two-stage algorithmic framework. Consequently, we will

take a close look at a particularly interesting type of constraint whose absence is arguably

the most conspicuous – what we will call the “unavailability constraint” – and will

investigate what effects the addition of such constraints might have with respect to finding

feasibility (Section 7.2) and for satisfying the soft constraints (Section 7.3). In Section 7.4

we will then round off this chapter by conducting a short discussion on some further hard-

constraints and other features that might also occur in some practical university timetabling

problems, and we will make some suggestions as to how they might be incorporated into

our two-stage timetabling approach in the future.

 137

7.1 Unavailability Constraints

For the purposes of this chapter we can consider an “unavailability constraint” as a

type of constraint that specifies that something or someone is not available at some specific

time. Typically, unavailability constraints can come in two forms:

(1) Room-Unavailability Constraints: such as “room a is unavailable for use in timeslot b”,

or “room c is unavailable on Thursdays”;

(2) Event-Unavailability Constraints: such as “event i is unavailable in all timeslots except

timeslot b”, or “event j is unavailable in all morning timeslots”.

The effects that the addition of room-unavailability constraints will have on a

timetabling problem are actually quite obvious – if, for example, room i cannot be used in

timeslot j, then this place in the timetable (or matrix-cell with our chosen representation)

cannot be used by any event in the problem instance and can therefore simply be ignored.

Naturally, this means that as the number of room-unavailabilities increases, consequently

the number of places that are available in the timetable will decrease. (This also implies that

if the total number places eliminated by room-unavailability constraints x rises to a point

such that (m× t – x) < n, then the problem instance will no longer be solvable, because there

will not be enough places for all of the events.)

The issues surrounding the introduction of event-unavailability constraints,

meanwhile, seem to be a little more complicated, and so their investigation will therefore

constitute the majority of this chapter. First of all, in real-world situations event-

unavailability constraints can come in various forms such as “event i cannot be assigned to

timeslot j”, “event i cannot be assigned to afternoon timeslots”, and so on. They can also be

stated in the form of pre-assignments, such as “event i must be scheduled into timeslot j”, or

“event i must be scheduled on a Monday”. Additionally, they can also be expressed from

the point-of-view of the student (and/or lecturer), as in “student x is unavailable on

Wednesday afternoons”, and so on.

As a matter of fact, however, all of the above types of event-unavailability constraint

can be specified by a simple (n× t) Boolean matrix, which can be used to indicate those

events that are available and unavailable for each of the individual timeslots. In particular,

note that even when considering these constraints from a student’s point-of-view, as we

have just seen, we can still easily infer the appropriate event-unavailability constraint by

simply identifying all of the events that student x is required to attend, and by then making

these events unavailable in the appropriate timeslots.

 138

Note that the presence of event-unavailability constraints can also provide us with

further information with regards to the pre-processing steps that we saw in Chapter 3. For

example, if in a particular problem instance a pair of events i and j have been pre-assigned

to different timeslots, then we can actually set elements (i, j) and (j, i) in the associated

conflicts matrix to be true (i.e. we can add an edge between vertices i and j in the

underlying graph colouring model). This is because we know that these two events cannot

now be assigned to the same timeslot in any feasible timetable. In practical situations,

adding extra constraints such as this might allow us to determine more accurately just how

difficult a particular timetabling problem is. (In his survey paper for exam timetabling,

Carter [28] also suggests that if two events have been pre-assigned to the same timeslot,

then these can then be merged into one super-event that will have the union of conflicts of

the originals. However, in the case of the UCTP this step is not wholly appropriate, as we

still also need to assign individual rooms to each of these events.)

7.2 Coping with Unavailability Constraints

when Achieving Feasibility

In Chapters 4 and 5 we saw that in our algorithms for both the UCTP and graph

colouring problem, the grouping representation that was used did not consider the labelling

(or ordering) of the groups. Instead, the emphasis was placed – we believe more

appropriately – on how the items were grouped and into how many groups. As we have

discussed, when attempting to find feasibility with the UCTP such a representation seems

fitting, because the current hard constraints for the UCTP are not concerned with matters

pertaining to the timeslots’ orderings. However, if we now wish to also incorporate

unavailability constraints into our timetabling problem, then it is easy to see that the

grouping representation in its pure form is actually no longer appropriate. This is for the

obvious reason that constraints such as “event i cannot go in timeslot j” definitely are

concerned with the labelling of the timeslots, because it is now necessary to be able to

identify exactly which timeslots each of the events can be assigned to. On the face of it, this

additional requirement might not seem too much of a problem – all we seemly need to do

is to add labels to each of the timeslots. However, in our case this new requirement suggests

that our current strategy of opening-up extra timeslots (beyond t) in order to deal with the

unplaceable events, is perhaps not so appropriate anymore, because each of these additional

timeslots, from the point of view of these new constraints, will be meaningless. (Which

events should be considered available and unavailable in timeslot (t + 1), for example?)

 139

This factor would seem to suggest, therefore, that when trying to find feasibility in

this case, it might be more appropriate to fix the number of timeslots being used to t from

the outset, thus allowing us to label each timeslot explicitly. However this will, of course,

also require us to make modifications to our existing algorithmic model in order to cope

with any unplaceable events that we encounter during a run. In the next subsection we will

therefore define such modifications, which will then be used in conjunction with our

procedure Heuristic-Search for the UCTP (see fig. 4.11) In Section 7.2.2 will then

perform an experimental analysis of this algorithm using our own instance generator, and

will present some results.

7.2.1 Algorithm Description

Our new algorithm for finding feasibility is described by the pseudo-code in figure

7.1. This procedure, that we will call Build-Complete-Timetable, takes as arguments an

empty timetable tt and a list of unplaced events U. (Of course, when this procedure is first

called U will represent the entire set of events, and therefore | |U = n). The process then

works in the following way. First, an initial solution is constructed using the procedure

Make-Initial-Timetable. This procedure uses the same event and place-selection

heuristics as our previous solution builder for the UCTP (Chapter 4)18. However, in

contrast to our previous methods, in this case when events are encountered that cannot be

feasibly placed into tt, rather than open extra timeslots, these events are simply kept to one

side in the list of unplaced events U for consideration later on.

Moving on to the main body of the Build-Complete-Timetable procedure, if there

are any events remaining in U after we have applied Make-Initial-Timetable, then first-

of-all the heuristic search procedure from Chapter 4 (fig. 4.11) is called in order to try and

reduce this figure. Upon completion of this step, if U is still non-empty, then it is assumed

that tt will need to undergo some more radical alterations in order to accommodate these

remaining events. In our case what we choose to do here is to remove a number of other

events from tt and put these into a second list V. This is achieved by employing the

function Extract-Some-Events, which we will look at in more detail below. By removing

events from tt, we are, of course, creating extra places in the timetable into which we can

hopefully insert some, if not all, of the remaining events in U. Thus in our approach the

events in V are put to one side, and in line 6 of Build-Complete-Timetable the heuristic

18 Note that the constructive heuristics used so far in this thesis (outlined in Table 4.1) are still appropriate

here. For example, if a particular event has been pre-assigned to a relatively small number of timeslots, then

due to heuristic rule H1, it will be inserted into the timetable relatively early on in the constructive process.

 140

search procedure is again applied using U and the new, emptier version of tt. Finally, upon

completion of this second phase of heuristic search, the unplaced events in V are added to

the events (if any) that are still in U, this list is randomly permuted, and the process is

repeated.

Build-Complete-Timetable (tt, U,) .
1. Make-Initial-Timetable (tt, U);
2. while (U≠ ∅ and (time limit not reached))
3. Heuristic-Search (tt, U, itLimit);
4. if (U≠ ∅)
5. V := Extract-Some-Events (tt, | |U);
6. Heuristic-Search (tt, U, itLimit);
7. Move all events from V into U, and randomly permute U;

Make-Initial-Timetable (tt, U) .
1. Open t new timeslots in tt;
2. while (there are events in U with feasible places in tt between
 timeslots 1 and t)
3. Choose an event e from U that has feasible places in tt;
4. Pick a feasible place p for e;
5. Move e from U to p in tt;

Extract-Some-Events (tt, q) .
1. V :=∅ ;
1. for (i := 1 to q)
2. Randomly choose two events e and g currently assigned to tt;
3. Move either e or g (according to some heuristic) from tt to V;

Fig. 7.1: The Build-Complete-Timetable procedure. In this pseudo-code tt represents the timetable and U

and V are lists of unplaced events (of lengths | |U and | |V respectively). The function Heuristic-Search is
already described in figure 4.10 of Chapter 4. As usual t represents the target number of timeslots, which in

this case = 45.

Looking closely at Build-Complete-Timetable in fig. 7.1, it should be noticeable

that if we are extracting some events from the timetable in line 5 and then subsequently

adding these to the list of unplaced events in line 7, then unless the heuristic search routine

in line 6 has managed to transfer all of the events currently in U into tt, then the overall

number of unplaced events will actually increase. Of course, with regards to the overall aim

of this algorithm, such a situation is undesirable because it will move us further away from

our goal of inserting all of the events into the timetable. However, in our case it is hoped

that this will only be temporary as, with a bit of luck, the size of U will once again decrease

when the algorithm then loops back to the heuristic search routine in line 3. (This matter

will be examined further in our analysis in the next section.)

 141

Note that our strategy of extracting events from the timetable in order to reinvigorate

the search also raises two questions: how many events should be extracted; and which events

should be extracted? To address the first issue, in our case we choose to extract exactly

| |U events. This seems an intuitive choice because this will free up exactly the number of

extra places in tt that are needed to house those events residing in U. However it should be

noted that this choice is only instinctive, and it is possible that the removal a larger or

smaller amount might bring about a better performance in some cases. Meanwhile, the

second issue mentioned above also deserves consideration. When choosing which events to

extract from tt, we could simply make our choices at random. However, it could be that in

certain circumstances it might be more favourable to remove some events rather than

others. For example, if we were to bias our choices towards removing events that have a low

conflicts degree (i.e. events that in many cases will more easy to insert into a timetable) then

this may aid the algorithm in the long run, as these events might be more easy to re-insert

into tt later on. Conversely, however, it could be the case that the removal of events of a

higher conflicts-degree might be a better strategy, because by removing these more

“problematic” events, it may help the algorithm by freeing up the resources needed by the

other “problematic” events already residing in U. In Table 7.1, we therefore suggest five

different heuristic rules that can be used in order to bias our choices of which events to

remove from tt when applying Extract-Some-Events. Heuristic rule h1 is simply a

random choice. Rules, h2 and h3, meanwhile, consider the conflicts-degrees of the events,

showing slight biases towards events of high degrees and low degrees respectively. Lastly,

heuristic rules h5 and h6 consider the number of places (i.e. timeslots and rooms) that are

available for each of the events when the timetable is empty; heuristic h5 biases the

extraction of events with higher number of places, and h6 the opposite.

Table 7.1: The Heuristics used with the Extract-Some-Events Procedure in Fig 7.1. In This
Case, All Ties are Broken Using Rule h1.

Heuristic Description
h1 Choose between e and g randomly.
h2 Choose the event with the highest degree.
h3 Choose the event with the lowest degree.
h4 Choose the event that has the highest number of feasible places in tt
h5 Choose the event that has the lowest number of feasible places in tt

 142

7.2.2 Algorithm Analysis

In our experimental analysis of Build-Complete-Timetable we will investigate the

implications of adding event-unavailability constraints to our timetabling problem. (We

remember that this particular type of unavailability constraint is perhaps a little more

interesting then the room-unavailability constraint, whose presence simply causes places in

the timetable to be eliminated.) In the resultant experiments we will be looking at two main

issues:

(1) How this algorithm is generally able to cope with the additional presence of the event-

unavailability constraint; and

(2) What effects, if any, the various event-extraction heuristics have on the algorithm’s

performance overall.

In order to help us investigate the first issue, we implemented our own instance

generator. This operated by taking an existing UCTP problem-file, and then simply

appended an (n× t) event-unavailability matrix on to the end. The characteristics of this

matrix are controlled by a parameter p defined in the range [0, 1] which is used to control

the overall “constrainedness” of the problem instance (with regards to the event-

unavailability constraint). In our case this was done by simply going through each element

of this new event-unavailability matrix in turn, and marking it false with a probability p,

and true otherwise. Thus instances generated with low p-values will generally represent

fairly unconstrained instances (with regards to event-unavailabilities) as each of the events

will be available in most, if not all, of the t timeslots. Problem instances with a high p-value,

meanwhile, will generally represent constrained problem instances, as each event will only

be able to be feasibly assigned into a small number of timeslots, if any.

Using this instance generator we chose to perform experiments using ten problem

instances from the set of twenty used for the International Timetabling Competition19. For

each of these ten “root-instances”, we then produced ten new problem instances for p-

values of 0.0 through to 1.0, incrementing in steps of 0.05. (That is, for each of the 21

values for p considered, we produced 10 different event-availability matrices for each of the

10 problem instances – giving (21× 10× 10) = 2100 problem instances in total.) We then

performed ten individual trials with different random seeds on each of these instances,

using a CPU time limit of 200 seconds and an iteration limit to 1000n. (These time and

19 For consistency we chose to make use of ten instances of equal size (n = 400 and m = 10). Specifically, these

were competition instances 2, 3, 4, 8, 10, 11, 12, 13, 18, and 19.

 143

iteration limits are consistent with similar experiments in Chapter 4.) These experiments

were then repeated for each of the five extraction-heuristics.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 U

np
la

ce
d

E
ve

nt
s

Proportion (p)

Unplaced at Start
Unplaced at End using h1
Unplaced at End using h2
Unplaced at End using h3
Unplaced at End using h4
Unplaced at End using h5

 0

 10

 20

 30

 40

 50

 60

 70

 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

N
um

be
r

of
 U

np
la

ce
d

E
ve

nt
s

Proportion (p)

Unplaced at Start
Unplaced at End using h1
Unplaced at End using h2
Unplaced at End using h3
Unplaced at End using h4
Unplaced at End using h5

(Events can go
in all of the
timeslots)

(Events can go
in none of the

timeslots)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 U

np
la

ce
d

E
ve

nt
s

Proportion (p)

Unplaced at Start
Unplaced at End using h1
Unplaced at End using h2
Unplaced at End using h3
Unplaced at End using h4
Unplaced at End using h5

 0

 10

 20

 30

 40

 50

 60

 70

 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

N
um

be
r

of
 U

np
la

ce
d

E
ve

nt
s

Proportion (p)

Unplaced at Start
Unplaced at End using h1
Unplaced at End using h2
Unplaced at End using h3
Unplaced at End using h4
Unplaced at End using h5

(Events can go
in all of the
timeslots)

(Events can go
in none of the

timeslots)

Fig. 7.2: Accuracy of the five algorithm variants for various p-values. Inset in grey, we show a magnification of

the graph around the values for p in which there is a slight difference in performance due to the different
extraction heuristics. All points are the averages of 1000 runs (as explained in the text). Also note that when p

= 1.0, this means that all timeslots are unsuitable for all events, and therefore none of the 400 events can be

assigned to the timetable.

In figs. 7.2 and 7.3 we show the results of these experiments with regards to

algorithm accuracy and computational effort respectively. In fig. 7.2, for p-values 0.0

through to 1.0, two things are shown: (a) the number of unplaced events in the initial

solutions produced by Make-Initial-Timetable; and (b) the number of events that

remained unplaced upon termination of each of the five algorithm variants. All plotted

points are averaged across the 1000 individual runs performed at each p-value. In fig. 7.3,

meanwhile, we display the average amount of CPU time that it took for the algorithms to

find complete, feasible solutions for the same runs. (As in chapter 5, only the runs in which

a fully feasible solution were found were considered in the latter’s calculation.)

The first thing to notice from fig. 7.2 is that from p-values of 0.0 up to 0.75, the

algorithm is able to able to find complete, feasible solutions within the time limit in every

case. Furthermore, in lower values for p (0.0 to approximately 0.4) we can see that this is

nearly always achieved at the start of the run. These observations indicate two things. First,

they suggest that the constructive heuristics used in our Make-Initial-Timetable

 144

procedure are able to cope well with the addition of event-unavailability constraints (when

present in moderate amounts); second, they show us that even when some events have been

left unplaced by Make-Initial-Timetable, the remaining steps of our algorithm will

usually reduce this number by a reasonable amount within the imposed time limit.

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

S
ol

ut
io

n
T

im
e

(s
ec

on
ds

)

Proportion (p)

h1
h2
h3
h4
h5

 0

 20

 40

 60

 80

 100

 120

 140

 0.7 0.75 0.8 0.85 0.9

S
ol

ut
io

n
T

im
e

(s
ec

on
ds

)

Proportion (p)

h1
h2
h3
h4
h5

(Events can go
in none of the

timeslots)

(Events can go
in all of the
timeslots)

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

S
ol

ut
io

n
T

im
e

(s
ec

on
ds

)

Proportion (p)

h1
h2
h3
h4
h5

 0

 20

 40

 60

 80

 100

 120

 140

 0.7 0.75 0.8 0.85 0.9

S
ol

ut
io

n
T

im
e

(s
ec

on
ds

)

Proportion (p)

h1
h2
h3
h4
h5

(Events can go
in none of the

timeslots)

(Events can go
in all of the
timeslots)

Fig. 7.3: Computational effort of the five algorithm variants for various p-values. Inset in grey, we show a

magnification of the graph around the values for p in which there is a slight difference in performance due to

the different extraction heuristics. All points are the averages of 1000 runs (as explained in the text).

Also noticeable in both figs 7.2 and 7.3, is that for a small range of p-values (roughly

p = 0.75 to 0.85), the heuristics governing the choices of which events to extract from the

timetable also seem to have a slight impact on the accuracy and solution times of the

algorithm (these characteristics are perhaps slightly more noticeable on the magnifications,

which are inset and in grey in the original figures). In particular, we can see that extraction

heuristics h3 and h4 tend to give a slightly better performance than the three other heuristics.

This suggests that by biasing our choices towards removing the less troublesome events (i.e.

events with lower conflicts-degrees or events with a larger numbers of feasible places), this

will aid the algorithm in the long run, because the extracted events will generally be more

easily re-inserted by Heuristic-Search later on. However, it is also worth noting that the

differences between the algorithm variants are quite small on the whole, suggesting that it is

the successive applications of Heuristic-Search that are doing the majority of the work in

general.

 145

Another noticeable characteristic in figs. 7.2 and 7.3 is that for p-values of around 0.9

up to 1.0, none of the algorithm variants is able to find any complete and feasible

timetables within the imposed time limit. However, in our present method of instance

generation we have not actually concerned ourselves in ensuring that each instance even

features an optimal solution; thus it could be the case that these problem instances do not

even have feasible solutions available in the first place. Indeed, when p is greater than 0.9,

for example, this implies that over 90% of timeslots will be unsuitable for each of the events

on average. It is therefore quite possible in these cases that there will be occurrences of

events that are marked as unavailable in all of the t timeslots, and/or that two conflicting

events might be pre-assigned to the same single timeslot (Note that there are various other

factors here that might make an instance unsolvable, although we will not go into these

here.)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

un
pl

ac
ed

 e
ve

nt
s

iterations of the Heuristic-Search operator

run progress

Fig. 7.4: An example run of Build-Complete-Timetable. In this figure we show the number of unplaced

events that occur after each successive application of the Heuristic-Search function (lines 3 and 6 of Build-

Complete-Timetable, fig 7.1). This particular run was performed using Competition instance-19 with p =
0.8, using extraction heuristic h3. All other parameters are specified in the text.

In fig. 7.4 we also show an example run of this algorithm with regards to the total

number of events that remain unplaced after each successive application of Heuristic-

Search (i.e. lines 3 and 6 of the Build-Complete-Timetable procedure in fig. 7.1). The

jagged line in this plot clearly indicates the phenomenon that we alluded to in Section 7.2.1

– i.e. that the total number of unplaced events (those that are held in U and V) will often

have increased after every second application of the Heuristic-Search operator. However,

 146

as is demonstrated in this figure, these increases tend to be complemented by the remaining

applications of Heuristic-Search (line 3) where decreases in the total number of unplaced

events will usually occur. (In this particular case we can see that the number of unplaced

events is reduced from 21 down to zero in 145 applications of the operator.)

7.3 Effects of Event-Unavailability Constraints

when Satisfying Soft Constraints

As we have noted, the second question that arises when considering the addition of

event-unavailability constraints is: what effect do these additional constraints have on our

ability to satisfy the soft constraints of the UCTP? And in particular, what are the

implications with regards to the ease in which we can perform an adequate navigation in

the resultant feasible-only search space? In order to investigate these issues we took our

simulated annealing algorithm from the previous chapter and made a small number of

modifications so that it would also be able to deal with the event-unavailability constraint.

Specifically, these modifications were as follows. First, we replaced our original method of

constructing initial feasible timetables with the Build-Complete-Timetable procedure,

described above. Secondly, we removed SA phase-1 from the algorithm (i.e. the phase

where timeslots were ordered using neighbourhood operator N1 – described in Section

6.2.1-2), as obviously this process is now not completely appropriate for our purposes.

Finally, we also updated our neighbourhood operator N2 (fig. 6.5) so that, in addition to

the original hard constraints of the UCTP, moves that caused a violation of any

unavailability constraint would now also be immediately rejected.

Note that the final point of the previous paragraph is likely to be of some

importance, because the presence of additional constraints will mean that a greater

proportion of N2 moves will be rejected in general. This, in turn, suggests that movements

through the feasible-only search space will also become more restricted – perhaps to a point

where an adequate search is not actually achievable.

In order to investigate this issue we chose to implement a second instance generator

very similar in style to our previous one, described in Section 7.2.2. However, for purposes

of comparison, in this case we also decided that each generated problem instance should

have at least one perfect solution obtainable. Our modified problem instance generator

therefore operates in the following way. First, an existing UCTP problem instance is taken,

together with a corresponding perfect solution. (We remember that the UCTP instance

generator, described in Chapter 3, allows the user to specify that a perfect solution should

 147

be produced alongside the problem instance.) Next, as before a Boolean (n× t) event-

unavailability matrix is then appended to the end of the instance file, with a parameter p

again being used to control the proportion of true and false entries. In difference to our

previous generator, however, in this case when creating the event-unavailability matrix, we

also take special care to ensure that if an event i is assigned to timeslot j in the perfect

solution, then element (i, j) in the event-unavailability matrix is also kept false (i.e. event i

must not be unavailable in timeslot j). By doing this, it is easy to appreciate that a problem

instance generated in this way, though featuring extra constraints, will always feature a

perfect solution.

Using this new instance generator, we then performed the following trials. For a

given value of p, one hundred problem instances were first generated by producing ten

versions of each of the same ten “root-instances” used in Section 7.2.2. (The perfect

solutions for these ten competition instances were supplied to us by the competition

organisers.) For each one these new problems we then performed ten individual trials with

our SA algorithm, giving 1000 individual runs in total (all runs were performed using the

same parameters for the SA algorithm as described in Section 6.2.6 (when using forty-five

timeslots)). These experiments were then repeated with p-values of 0.0 through to 0.8,

incrementing in steps of 0.1. Finally, in order to allow us to observe the algorithm’s run-

characteristics in their proper context, we also used excess computation time of 1000

seconds of CPU time for each run. Note that we did not consider p-values greater than 0.8

in these experiments because, due to factors that will be explained below, the Build-

Complete-Timetable procedure was not always able to produce feasible timetables in

these cases.

In figure 7.5 we demonstrate the effects that different values for p have on the SA

algorithm’s ability to make positive movements through the search space over time. As can

be seen, as p is increased, then so does the average cost at which the search stagnates. This

clearly demonstrates that as the number of event-unavailability constraints is increased,

then so does the restrictiveness of the feasible-only search space, thereby reducing the

algorithm’s ability to make reductions in the number of soft constraint violations. Further

results of these experiments are also presented in fig. 7.6. Here we can observe that differing

p-values do not seem to have any real effect on the average cost of the initial feasible

solutions, but do, however, have a large bearing on the amount that the SA algorithm is

then able to reduce this cost over time.

 148

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

co
st

time (seconds)

p = 0.8

p = 0.7

p = 0.6

p = 0.5

p = 0.4

p = 0.3
p = 0.2
p = 0.1
p = 0.0

Fig. 7.5: Demonstrating the effects that various p-values have on the simulated annealing algorithm’s ability

to reduce the cost-function over time. Each line represents, at each second, the cost of the best solution found

so far averaged across 10 runs on each of the 100 instances (i.e. 1000 runs). Note that the time taken to find
an initial feasible solution for this algorithm is not included in the graph; instead (time = 0) may be

considered the point at which a feasible solution was first obtained. Note also that every instance considered

in these experiments is known to have an optimal cost of zero.

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0

 20

 40

 60

 80

 100

in
iti

al
 c

os
t

re
du

ct
io

n
in

 c
os

t d
ur

in
g

ru
n

(%
)

p

initial cost
reduction in cost during run (%)

Fig. 7.6: Comparison of (a) the costs of the initial feasible solutions, and (b) the percentage reduction in cost

achieved during the run, for various p-values. All points are averaged across 1000 runs.

From these experiments, it is also interesting to note that we do not seem to witness

the typical “easy-hard-easy”-style phase transition as p is increased from 0.0 to 1.0. (When

considering solvable instances, “easy-hard-easy” phase transitions have been previously

 149

noted in various Operations Research problems such as constraint satisfaction problems

[101], graph colouring problems [109], exam timetabling problems [93], and sudoku

puzzles [75].) The lack of a phase transition in this case may well be due to the fact that the

underlying search mechanism for both the heuristic search and simulated annealing

algorithms is the operation of randomly moving events around the timetable whilst not

breaking any of the problem’s hard constraints. Of course, for higher p-values the extra

hard constraints that are present in a problem will usually mean that a lower proportion of

moves will actually preserve timetable feasibility. This, in turn, will cause the overall search

capabilities of both algorithms to drop, resulting in the patterns that we see in the figures.

Note that this feature also explains why we were unable to find feasible solutions for

instances where p > 0.8 in our experiments, despite the fact that solutions to these instances

were definitely known to exist.

7.4 Adding further “Real-World” Constraints

In this chapter we have discussed modifications to our two-stage algorithmic

approach that allow us to cope with the addition of extra types of hard constraint. In

particular we have looked in detail at one of these – the event-unavailability constraint –

and have demonstrated through experiments how this constraint can affect our ability to (a)

find feasibility, and (b) reduce the number of soft constraint violations when navigating

through the resultant feasible-only search space. We have thus made some movements from

our original “simplified” university course timetabling model towards problems that are

perhaps more applicable to real world scenarios. However, in addition to these constraints,

it should be noted that in many practical situations there might also be yet further types of

constraints whose satisfaction a particular university might also see as mandatory. As we

will see presently, there are also some other possible features of real-world timetabling

problems that we have not yet considered. In this final section we will discuss some of

these, and will also make some suggestions as to how we might extend our chosen

approaches in order to incorporate them.

The first types of constraint that we may wish to consider are those that are

concerned with the relative positioning of events within the timetable. The following three

examples are typical and, rather like the event and room-unavailability constraints

considered earlier in this chapter, these also require the timeslots to be explicitly labelled:

(1) Inter-site travel times: in some cases, a university might be split across a number of

campuses, and students and staff may require some commuting-time in order to travel

 150

from one site to another. Thus, if two events i and j have common students, but need

to take place in different sites, then the constraint “if event i is scheduled to occur in

timeslot x, then event j cannot occur in timeslot x + 1 if this timeslot is on the same

day” might be specified.

(2) Providing a Lunch-break: many universities will also want to ensure that all staff and

students have the opportunity to eat lunch. Thus constraints such as the following

might be imposed: “if a student is attending an event in a 12:00pm timeslot, then he-

or-she must not be required to attend an event in a 1:00pm timeslot on the same day,

and vice-versa”.

(3) Relative Timing of Events: universities may also wish to impose other types of

constraint on their timetabling problem such as “events i and j must be assigned to the

same/different timeslots”, “event i must occur before/after event j”, “events i and j

must take place on the same/different days”, and so on.

Note that because these sorts of constraints are concerned with the relative positions

of events in the timetable, they are in fact very similar to soft constraints SC2 and SC3 that

we met in Chapters 3 and 6. One strategy of coping with these might therefore be to

simply treat them as additional soft constraints, and try to eliminate as many of them as

possible using an algorithm such as our simulated annealing approach (Section 6.2). If, on

the other hand, such a strategy is unacceptable, and instead a satisfaction of these

constraints is mandatory from the outset, then one approach could be to simply use our

basic Build-Complete-Timetable procedure as before, and then simply change the

criteria for considering which alterations to the timetable tt are acceptable. It is also likely

that in the presence of these sorts of constraints, other sorts of constructive heuristics might

prove useful. For example when selecting a suitable place in which to insert an event i, if

there is an existing constraint stating that “i should appear before events j, k and l” then it

might be a good idea to favour the choice of timeslot towards one that occurs earlier in the

week. As a second example, if two events were specified as needing to be scheduled on the

same day, then when choosing a timeslot for the first of these, common-sense dictates that

it may well be useful to show preference towards those days which are also suitable for the

second event as well.

Another timetabling feature that has not yet been considered in our algorithms is the

occurrence of double-events – that is, events that take place over two (or in some cases

more than two) consecutive timeslots on the same day, in the same room. In order to insert

a double event into our timetable matrix, such an event obviously needs to occupy two

adjacent cells on the same row on the same day. However, these sorts of events could

 151

introduce difficulties when shuffling events around the timetable (for instance when we are

applying Heuristic-Search or our SA algorithm), because in order to be able to move a

double-event, an appropriate space in the timetable would also need to be made present. If

the timetable were relatively empty perhaps this wouldn’t cause too many problems.

However, it is likely that in some cases, trying to move double events using our existing

types of neighbourhood operators could be quite difficult, and it may be the case that new,

more appropriate neighbourhood operators might be needed in order to facilitate this task

in a manner that is satisfactory. It is also possible that other constructive heuristics could be

defined for dealing with double events as well.

Finally, another possible feature of real-world timetabling problems not yet

considered is that some events may not actually require a room (they may take place

outdoors, involve trips to off-site locations, and so on). In its current form, our algorithm is

not suitable for this feature, because each place (i.e. cell) in the timetable matrix defines an

explicit (timeslot× room) pair. One way that we could deal with such a constraint, however,

might be to introduce a number of dummy-rooms into each timeslot. In effect, each timeslot

could have an unlimited number of these dummy-rooms, and any event not requiring a

room could then be feasibly assigned to one of these providing, of course, that the

remaining hard constraints were not violated in the process. Obviously, if we were to use

dummy-rooms, then a restriction would also have to be imposed in order to prevent events

that did require a room from being inserted into these dummy-rooms, and similarly, we

would also have to ensure that normal rooms were not made available to those events that

did not require rooms.

Note that we are yet to have carried out any of the above suggestions in our research

and so, for now, they remain just that: suggestions. Future research will, of course, serve to

indicate whether they are actually suitable in a practical sense.

 152

8: Conclusions and

Future Research

8.1 Conclusions

In this thesis we have examined various algorithms that constitute parts of the two-

stage approach for the university course timetabling problem. We now summarise the main

conclusions that can be drawn from this work:

• In Chapter 2 of this thesis we have proposed that metaheuristic-based techniques for

timetabling can be classified into three main groups: (1) one-stage optimisation

algorithms; (2) two-stage optimisation algorithms; or (3) algorithms that allow relaxations

of some feature of the problem. We have concerned ourselves primarily with second of

these, and in our studies of the UCTP-version used for the International Timetabling

Competition we have seen that this approach is able to work well with a number of

benchmark problem instances.

• Our constructive heuristics used for determining the order and locations in which

events are to be inserted into the timetable (given in Table 4.1) have shown to be effective

with many different instances. We have seen in Chapter 4, for example, that for the

twenty competition problem instances, these rules have been able to determine an event-

ordering and place-selection strategy that produces fully feasible timetables in nearly all

cases, without any need for additional search. To our knowledge, no other set of

constructive heuristics proposed for this particular set of problem instances have been able

to achieve this. Additionally, in Chapter 7, we have also demonstrated the robustness of

these heuristics, as they have been able to cope quite effectively when additional hard

constraints have been added to the UCTP (i.e. the “unavailability constraints”), without

any extra modifications actually having to be made.

 153

• We have noted that some timetabling problems, in particular those that do not involve

having to individually label each of the timeslots, can be considered a type of grouping

problem, and can therefore be addressed using Grouping Genetic Algorithms (GGAs).

During our analysis of our own GGA for the UCTP, we have introduced a way of

measuring diversity and distances between individuals for the general grouping

representation. We have also seen how the performance of this algorithm might be

improved: first via the use of specialist, fine-grained fitness functions and, also in some

cases, by supplementing the GGA with an extra search operator. Additionally, although

we have seen that in some cases the use of the standard GGA recombination can enhance

the performance of the algorithm, we have also demonstrated conditions whereby the

operator might actually start to do more harm than good. Specifically, these conditions

are met when there is high population diversity and when the group-sizes are large in size,

and we have offered evidence as to why this is so. We have also noted the fact that when

the groups are larger, the chromosomes, in turn, become proportionally shorter, which

might also place limitations on the standard GGA operators in some cases.

• Even though we have discovered ways in which the GGA’s performance can be

improved, in the majority of our experiments with the UCTP we have seen that it has

nearly always been outperformed by our much more straightforward Iterated Heuristic

Search (IHS) algorithm, which does not make use of a population, selection pressure, or

the grouping recombination operator. In particular, the superior performance of the IHS

algorithm is most noticeable when dealing with our large UCTP instances where,

according to the arguments that we have presented, the GGA operators show the least

potential for aiding the search in general. Similar findings to these have also been shown

in our experiments with equipartite graph colouring problems in Chapter 5, backing-up

our arguments further.

• In Chapter 6 we have presented two algorithms for the second stage of the two-stage

timetabling strategy. The first of these – our specialised evolutionary algorithm – has not

proved as successful as we had first hoped, mainly due to the difficulties that are

encountered when trying to propagate useful and meaningful building-blocks in the

population whilst always ensuring that feasibility is maintained. Indeed, our experiments

have indicated that the only genetic operator that seems to do anything of consequence in

this case seems to be the (blind) mutation operator; however, on its own this operator

does not appear to be powerful enough to produce results that are comparable with other

algorithms of this type. Meanwhile, the second of our algorithms – our SA-based

approach – has proved to be more successful, despite that fact that the majority of its

 154

search is conducted using a neighbourhood operator (N2) that is equivalent to the EA’s

mutation operator. This observation, together with the results presented in other works

[2, 11, 23, 34, 69, 97] suggests that algorithms for the UCTP that are based on some

form of neighbourhood-search are perhaps more naturally suited for the second stage of

the two-stage approach than algorithms that are based on evolutionary search.

• In Chapter 6 we have also demonstrated how we can improve upon the results returned

by the SA algorithm (within the imposed time limits) by treating some soft constraints

differently to others. In our case this involves forcing all of the events into just forty of the

available forty-five timeslots so that we are then able to remove the five “end-of-day”

timeslots from the search altogether. For the twenty competition instances we have seen

that such a strategy has allowed performance to improve overall, although we have noted

that by doing this, we are also adding further restrictions to the search space, possibly

making movements through the search space more difficult in some cases. This latter

phenomenon has also been demonstrated in the experiments of Section 7.3. Here, we

have shown that as more hard constraints are added to a particular timetabling problem

(in this case event-unavailability constraints), this eventually leads to a situation where the

movement in the search space is so restricted that the SA algorithm is not able to make

satisfactory improvements to the cost function in reasonable amounts of time. Indeed, the

fact that we do not witness an “easy-hard-easy” phase transition here (which is what is

usually seen when dealing with solvable instances over varying levels of constrainedness)

seems to suggest that other sorts of timetabling strategy might be more suitable in these

types of situation.

• Finally, in Chapter 7 we have also demonstrated how our IHS algorithm might be

modified in order to cope with additional hard constraints such as unavailability

constraints. These modifications require us to explicitly label each of the timeslots, thus

rendering our strategy of opening-up new timeslots in order to cope with unplaceable

events as unsuitable. Our resultant algorithm, which we have called Build-Complete-

Timetable, has shown to work well on a number of artificially generated instances of

various levels of constrainedness. We have also seen that one of the sub-functions of this

procedure Extract-Some-Events, which is used in order to help reinvigorate the search

from time-to-time, can improve algorithm performance if it is able to bias its choices of

which events to extract towards the less “troublesome” ones, such as those with low

conflicts-degrees. However, it should be noted that these differences are only very slight,

and indeed, our experiences with this algorithm lead us to believe that it is the

Heuristic-Search operator that tends to do most of the work in these cases.

 155

As we have seen, in this thesis we have chosen to base our studies on a standardised

benchmark timetabling problem-version. This, we believe, has been useful as it has allowed

us to avoid some of the negative issues often caused by the idiosyncratic nature of

timetabling, and has also provided a means by which we are able to compare our results

against other peoples’ in a meaningful way. However, it is worth bearing in mind that

whilst the use of these sorts of benchmark instances may facilitate the analysis and

comparison of algorithms, they do not necessarily allow insight into how these algorithms

might fare with other kinds of problem instances – including those from the real-world. It

is also worth remembering that while the requirements of this particular UCTP (which

state that a timetable with any hard constraint violations is essentially worthless) seem to

make the two-stage method the most fitting one, in problems where the requirements are

different to these, other timetabling algorithms might show to be more suitable in some

cases.

In conclusion, when designing algorithms for timetabling, it is always worth

considering that in the real world many different sorts of constraints, problem instances,

user-requirements and political factors might be encountered. The idiosyncratic nature of

real-world timetabling seems to indicate an advantage to those algorithms that are robust

with respect to problem-class changes or to those that can easily be adapted to take account

of the needs of particular institutions.

8.2 Discussion and Suggestions for Future

Research

Finally, we round off this thesis by making some other general comments arising

from this work and also offer some suggestions for future research.

As we have seen, in this thesis we have spent much of our time examining algorithms

that constitute part of the two-stage timetabling approach. One worthwhile future

endeavour concerning this approach might be to investigate the actual importance of

ensuring that a completely feasible timetable is always gained in stage-one. Will an

algorithm specialising in the elimination of soft constraints always perform better when

presented with a fully feasible timetable? Or will an almost-feasible timetable bring similar

results? On a similar theme, it might also be instructive to see if we can identify some

features of feasible (or near-feasible) timetables that will give us some indication of how

easy it will then be to satisfy the soft constraints. Such studies could well provide us with

deeper insights about the two-stage timetabling approach in general.

 156

The scaling-up issues that we have noted when applying the GGA to the UCTP

(Chapter 4) also seem to present us with a number of future research-issues. For example,

from a practical point-of-view it is not uncommon in universities to have a few thousand or

more events that need to be scheduled into a limited number of timeslots, thus presenting

some unfavourable practical implications to any timetabling algorithm using a grouping

theme. However, a worthwhile future endeavour could be to investigate how complete

timetabling problems might be broken up into smaller sub-problems. For example, in [93]

it is noted by Ross et al. that real-world timetabling problems are often quite clumped in

their make up: a computing department, for example, might have a set of events that forms

a distinct clump largely separated from the events in, say, the psychology department.

These departments could have few or no common students, may use different sets of rooms

or might even be situated in separate campuses altogether. In these cases, the timetabling

problems of these departments may have little bearing on each other and might even be

solved independently (see fig. 8.1). As we saw in our literature review in Chapter 2,

interesting ideas on the subject of dealing with large problem instances have also been

proposed by Burke and Newall [26], where the authors use graph colouring-type heuristics

to first break up large sets of events into a number of smaller sub-sets, and then use a

memetic algorithm to try and solve each of these in turn.

Fig. 8.1: An example of clumping: no vertex in the left sub-graph conflicts with a vertex in the right sub-

graph. These two graphs might therefore be coloured separately from one another.

We may also see some general improvements to both the GGA and IHS algorithms

for timetabling by making some modifications to the solution construction processes,

described in Section 4.2.1. For example, given a list of unplaceable events U, the current

function Insert-Events opens up | | /U m⎡ ⎤⎢ ⎥ additional timeslots. As we have noted, this

defines a lower bound as to the number of timeslots that are needed to house all of the

 157

events in U. However, by opening this amount there is no guarantee that additional

timeslots will not also need to be opened later on. Indeed, calculating the actual number of

timeslots needed for the events in U is the same as the NP-hard problem of calculating the

chromatic number in graph colouring. On the other hand, opening too few timeslots at

this stage (which is what this calculation could do) will also be disadvantageous because it

means the algorithm will have to continue to open timeslots later on, adding further cost to

the overall process. However, some simple reasoning with respect to problem structure

might give us further information. For example, if there are, say, x events in U that can

only be put into the one same room then it is obvious that at least x extra timeslots will

need to be opened for them.

More generally, the observations made in Chapters 4 and 5 regarding group-size also

hold implications for applications of the GGA approach in other problem domains. For

example, a GGA has been shown to be very successful with bin packing in the work of

Falkenauer [55, 58]. However in this work, all of the problem instances that were used in

testing were made up of very small groups (generally there were only three items per bin).

Thus, according to our arguments, these groups would have been easily propagated during

evolution, and would therefore have allowed the GGA operators to perform relatively

effectively. However it would, of course, be very interesting to investigate how these same

operators also perform with bin packing problem instances that allow larger numbers of

items to be placed into each bin. It would also be instructive to see how the GGA approach

copes with various other grouping problems that might feature “large” groups such as large

exam timetabling problems and graph colouring problems with low chromatic numbers

(some results concerning this latter problem can be seen in the work of Eiben et al. [50]

where a GGA is applied to various graph colouring problems in which the chromatic

number χ = 3). Of course, it would also be interesting to see how algorithms based on our

IHS approach also perform with these sorts of problems as well.

Pursuing this theme, it would also be helpful to investigate ways in which we might

get around the problems that are inherent in the GGA operators. For example, we might be

able to discourage some of the destructive behaviour of recombination by imposing some

sort of “breeding-rule” on the population such as “parents must have a distance (see

Chapter 4, equation (4.3)) between them that is less than 0.5 in order for them to be

allowed to combine to form offspring”. In the future we might also be able to create new

ways in which the building-blocks of these problems might be propagated without these

underlying limitations.

Considering now the second stage of the two-stage timetabling approach, there are

also various ways in which our evolutionary and simulated annealing algorithms (Chapter

 158

6) might be improved. The EA, for example, might improve if it were to be supplemented

with a local-search routine and/or a smart mutation operator. Perhaps other sorts of

feasibility-preserving recombination operator might also be suggested in the future that are

more conducive to the search than those that were suggested here. Meanwhile, we might

also be able to improve the performance of the simulated annealing-based algorithm by

making use of some other sorts of cooling schemes (see, for example, the work of Abramson

et al. [10]) or by incorporating some further specialised neighbourhood operators such as

the Kempe and S-chain operators used by Thompson and Dowsland in [107].

Another important avenue of future research might be to investigate how the various

algorithms described here are also able to cope with real-world problem instances taken

from universities and so forth. As we have seen, all our experimental work in this thesis has

been conducted using problem instances that have been artificially generated and, although

it was intended by the designers of the UCTP instance-generator that these would reflect

real-world problems to some degree, it is worth considering that various common and real-

world features may not have actually been included in practice. Such an endeavour may

involve having to carry out some of modifications that we suggested in Section 7.4, and

possibly others although, of course, all of these matters are currently pending further

research.

Finally, due to the fact that we were obliged to make our own problem instances for

our experiments in Chapter 4, we have been unable to provide comparisons of these

algorithms with other approaches. However, these instances can be found on the web at

http://www.emergentcomputing.org/timetabling/harderinstances and we invite any other

researchers interested in designing algorithms for this problem to download them for use in

their own experiments.

 159

Bibliography

[1] http://www.or.ms.unimelb.edu.au/timetabling/atdata/carterea.tar (The Carter

Instances for Exam Timetabling)

[2] http://www.idsia.ch/Files/ttcomp2002 (Website of the International Timetabling

Competition)

[3] http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm (Scholl's Library of Bin

Packing Problem Instances)

[4] http://www.cs.ualberta.ca/~joe/Coloring/index.html (Culberson's Graph Colouring

Problem Instance Generator)

[5] http://www.research.att.com/~dsj/chtsp/index.html (TSP Instances by DIMACS)

[6] http://www.metaheuristics.org (Website of the Metaheuristics Network)

[7] http://www.emergentcomputing.org/timetabling/harderinstances (Website for the

Sixty "Hard" UCTP instances used in Chapter 4)

[8] K. I. Aardel, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano,

"Models and Solution Techniques for the Frequency Assignment Problems," 4OR :

Quarterly Journal of the Belgian, French and Italian Operations Research Societies, vol.

1, pp. 1-40, 2002.

[9] D. Abramson, "Constructing School Timetables using Simulated Annealing:

Sequential and Parallel Algorithms," Management Science, vol. 37, pp. 98-113,

1991.

[10] D. Abramson, H. Krishnamoorthy, and H. Dang, "Simulated Annealing Cooling

Schedules for the School Timetabling Problem," Asia-Pacific Journal of Operational

Research, vol. 16, pp. 1-22, 1996.

[11] H. Arntzen and A. Løkketangen, "A Tabu Search Heuristic for a University

Timetabling Problem," in Metaheuristics: Progress as Real Problem Solvers, vol. 32,

Computer Science Interfaces Series, T Ikabaki, K. Nonobe, and M. Yagiura, Eds.

Berlin: Springer-Verlag, 2005, pp. 65-86.

[12] K. J. Batenburg and W. J. Palenstijn, "A New Exam Timetabling Algorithm,"

Proceedings of BNAIC’03, 2003.

 160

[13] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, "A Racing Algorithm for

Configuring Metaheuristics," presented at The Genetic and Evolutionary

Computation Conference (GECCO) 2002, New York, 2002.

[14] P. Boizumault, Y. Delon, and L. Peridy, "Logic Programming for Examination

Timetabling," Logic Program., vol. 26, pp. 217-233, 1996.

[15] D. Brelaz, Y. Nicolier, and D. d. Werra, "Compactness and balancing in scheduling,"

Mathematical Methods of Operations Research (ZOR), vol. 21, pp. 63-73, 1977.

[16] D. Brelaz, "New methods to color the vertices of a graph," Commun. ACM, vol. 22,

pp. 251-256, 1979.

[17] E. Brown and R. Sumichrast, "A Grouping Genetic Algorithm for the Cell

Formation Problem," International Journal of Production Research, vol. 39, pp.

3651-3669, 2001.

[18] E. Burke, D. Elliman, and R. Weare, "The Automation of the Timetabling Process

in Higher Education," Journal of Education Technology Systems, vol. 23, pp. 257-

266, 1995.

[19] E. Burke, D. Elliman, and R. Weare, "A Hybrid Genetic Algorithm for Highly

Constrained Timetabling Problems.," presented at Genetic Algorithms:

Proceedings of the Sixth International Conference (ICGA95), 1995.

[20] E. Burke, D. Elliman, and R. Weare, "Specialised Recombinative Operators for

Timetabling Problems," in The Artificial Intelligence and Simulated Behaviour

Workshop on Evolutionary Computing, vol. 993, Lecture Notes in Computer Science.

Berlin: Springer-Verlag, 1995, pp. 75-85.

[21] E. Burke, Y. Bykov, and M. Petrovic, "A Multicriteria approach to Examination

Timetabling," in Practice and Theory of Automated Timetabling (PATAT) III, vol.

2070, Lecture Notes in Computer Science, E. Burke and E. Erben, Eds. Berlin:

Springer-Verlag, 2001, pp. 118-131.

[22] E. Burke and M. Petrovic, "Recent Research Directions in Automated Timetabling,"

European Journal of Operational Research, vol. 140, pp. 266-280, 2002.

[23] E. Burke, Y. Bykov, J. P. Newall, and S. Petrovic, "A Time-Defined Approach to

Course Timetabling," Yugoslav Journal of Operations Research (YUJOR), vol. 13, pp.

139-151, 2003.

[24] E. K. Burke, D. G. Elliman, P. H. Ford, and R. Weare, "Examination Timetabling

in British Universities: A Survey," in Practice and Theory of Automated Timetabling

 161

(PATAT) I, vol. 1153, Lecture Notes in Computer Science, E. Burke and P. Ross,

Eds. Berlin: Springer-Verlag, 1996, pp. 76-92.

[25] E. K. Burke, J. P. Newall, and R. F. Weare, "A Memetic Algorithm for University

Exam Timetabling," in Practice and Theory of Automated Timetabling (PATAT) I,

vol. 1153, Lecture Notes in Computer Science, E. Burke and P. Ross, Eds. Berlin:

Springer-Verlag, 1996, pp. 241 - 250.

[26] E. K. Burke and J. P. Newall, "A Multi-Stage Evolutionary Algorithm for the

Timetable Problem," IEEE Transactions on Evolutionary Computation, vol. 3, pp.

63-74, 1999.

[27] M. P. Carrasco and M. V. Pato, "A Multiobjective Genetic Algorithm for the

Class/Teacher Timetabling Problem," in Practice and Theory of Automated

Timetabling (PATAT) III, vol. 2079, Lecture Notes in Computer Science, E. Burke

and W. Erben, Eds. Berlin: Springer-Verlag, 2001, pp. 3-17.

[28] M. Carter, "A Survey of Practical Applications of Examination Timetabling

Algorithms," Operations Research, vol. 34, pp. 193-202, 1986.

[29] M. Carter, "A Langarian Relaxation Approach to the Classroom Assignment

Problem," INFOR, vol. 27, pp. 230-246, 1986.

[30] M. Carter and G. Laporte, "Recent Developments in Practical Examination

Timetabling," in Practice and Theory of Automated Timetabling (PATAT) I, vol.

1153, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 3-21.

[31] M. Carter, G. Laporte, and S. Y. Lee, "Examination Timetabling: Algorithmic

Strategies and Applications," Journal of the Operational Research Society, vol. 47, pp.

373-383, 1996.

[32] M. Carter and G. Laporte, "Recent Developments in Practical Course Timetabling,"

in Practice and Theory of Automated Timetabling (PATAT) II, vol. 1408, Lecture

Notes in Computer Science, E. Burke and M. Carter, Eds. Berlin: Springer-Verlag,

1998, pp. 3-19.

[33] S. Casey and J. Thompson, "GRASPing the Examination Scheduling Problem," in

Practice and Theory of Automated Timetabling (PATAT) IV, vol. 2740, Lecture Notes

in Computer Science, E. Burke and P. De Causmaecker, Eds. Berlin: Springer-

Verlag, 2002, pp. 233-244.

 162

[34] M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria, "An Effective Hybrid

Approach for the University Course Timetabling Problem," Technical Report

AIDA-2003-05, FG Intellektik, FB Informatik, TU Darmstadt, Germany, 2003.

[35] A. Colorni, M. Dorigo, and V. Maniezzo, "Genetic Algorithms And Highly

Constrained Problems: The Time-Table Case," in Parallel Problem Solving from

Nature (PPSN) I, vol. 496, Lecture Notes in Computer Science, H.-P. Schwefel and

R. Manner, Eds. Berlin: Springer-Verlag, 1991, pp. 55-59.

[36] A. Colorni, M. Dorigo, and V. Maniezzo, "A genetic algorithm to solve the timetable

problem," Technical Report 90-060 revised, Politecnico di Milano, Italy 1992., 1992.

[37] A. Colorni, M. Dorigo, and V. Maniezzo, "Metaheuristics for high-school

timetabling," Computational Optimization and Applications, vol. 9, pp. 277 - 298,

1997.

[38] T. Cooper and J. Kingston, "The Complexity of Timetable Construction Problems,"

in Practice and Theory of Automated Timetabling (PATAT) I, vol. 1153, Lecture

Notes in Computer Science, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag,

1996, pp. 283-295.

[39] D. Corne, P. Ross, and H. Fang, "Evolving Timetables," in The Practical Handbook

of Genetic Algorithms, vol. 1, L. C. Chambers, Ed.: CRC Press, 1995, pp. 219-276.

[40] D. Costa, "A tabu search algorithm for computing an operational timetable,"

European Journal of Operational Research, vol. 79, pp. 98-110, 1994.

[41] P. Cote, T. Wong, and R. Sabourin, "Application of a Hybrid Multi-Objective

Evolutionary Algorithm to the Uncapacitated Exam Proximity Problem," in

Practice and Theory of Automated Timetabling (PATAT) V, vol. 3616, Lecture Notes

in Computer Science, E. Burke and M. Trick, Eds. Berlin: Springer-Verlag, 2005,

pp. 294-312.

[42] J. Culberson and F. Luo, "Exploring the k-colorable Landscape with Iterated

Greedy," in Cliques, Coloring, and Satisfiability: Second DIMACS Implementation

Challenge, vol. 26, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, D. S. Johnson and M. A. Trick, Eds.: American Mathematical

Society, 1996, pp. 245-284.

[43] S. Daskalaki, T. Birbas, and E. Housos, "An integer programming formulation for a

case study in university timetabling," European Journal of Operational Research, vol.

153, pp. 117-135, 2004.

 163

[44] B. Deris, S. Omatu, H. Ohta, and D. Samat, "University Timetabling by Constraint-

based Reasoning: A Case Study," Journal of Operational Reasearch Society, vol. 48,

pp. 1178-1190, 1997.

[45] L. Di Gaspero and A. Schaerf, "Tabu Search Techniques for Examination

Timetabling," in Practice and Theory of Automated Timetabling (PATAT) III, vol.

2079, Lecture Notes in Computer Science, E. Burke and E. Erben, Eds. Berlin:

Springer-Verlag, 2001, pp. 104-117.

[46] L. Di Gaspero and A. Schaerf, "Multi-neighbourhood Local Search with Application

to Course Timetabling," in Practice and Theory of Automated Timetabling (PATAT)

IV, vol. 2740, Lecture Notes in Computer Science, E. Burke and P. De Causmaecker,

Eds. Berlin: Springer-Verlag, 2002, pp. 263-287.

[47] R. Dorne and J.-K. Hao, "A new genetic local search algorithm for graph coloring,"

in Parallel Problem Solving from Nature (PPSN) V, vol. 1498, Lecture Notes in

Computer Science, A. Eiben, T. Back, M. Schoenauer, and H. Schwefel, Eds. Berlin:

Springer-Verlag, 1998, pp. 745-754.

[48] G. Dueck, "New Optimization Heuristics: The Great Deluge Algorithm and the

Record-to-Record Travel," Journal of Computational Physics, vol. 104, pp. 86-92,

1993.

[49] A. Eiben and J. Smith, Introduction to Evolutionary Computation. Berlin: Springer-

Verlag, 2003.

[50] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert, "Graph Coloring with

Adaptive Evolutionary Algorithms," Journal of Heuristics, vol. 4, pp. 25-46, 1998.

[51] S. Elmohamed, G. Fox, and P. Coddington, "A Comparison of Annealing

Techniques for Academic Course Scheduling," in Practice and Theory of Automated

Timetabling (PATAT) II, vol. 1408, Lecture Notes in Computer Science, E. Burke

and M. Carter, Eds. Berlin: Springer-Verlag, 1998, pp. 146-166.

[52] E. Erben, "A Grouping Genetic Algorithm for Graph Colouring and Exam

Timetabling," in Practice and Theory of Automated Timetabling (PATAT) III, vol.

2079, Lecture Notes in Computer Science, E. Burke and W. Erben, Eds. Berlin:

Springer-Verlag, 2001, pp. 132-158.

[53] S. Even, A. Itai, and A. Shamir, "On the complexity of Timetable and

Multicommodity Flow Problems," SIAM Journal of Computing, vol. 5, pp. 691 -

703, 1976.

 164

[54] E. Falkenauer, "A New Representation and Operators for GAs Applied to Grouping

Problems," Evolutionary Computation, vol. 2, pp. 123 - 144, 1994.

[55] E. Falkenauer, "Setting New Limits in Bin Packing with a grouping GA Using

Reduction," C.R.I.F. Technical Report, 1994.

[56] E. Falkenauer, "Solving equal piles with the grouping genetic algorithm," in

Proceedings of the 6th International Conference on Genetic Algorithms, L. J. Eshelman,

Ed.: Morgan Kaufmann Inc, 1995, pp. 492-497.

[57] E. Falkenauer, "A hybrid grouping genetic algorithm for bin packing," Journal of

heuristics, vol. 2, pp. 5 - 30, 1996.

[58] E. Falkenauer, Genetic Algorithms and Grouping Problems: John Wiley and Sons,

1998.

[59] E. Falkenauer, "Applying genetic algorithms to real-world problems," in Evolutionary

Algorithms, vol. 111, The IMA Volumes of Mathematics and its Applications, L.

Davis, K. De Jong, M. Vose, and L. Whitley, Eds. New York: Springer-Verlag,

1999, pp. 65-88.

[60] P. Galinier and H. J-K., "Hybrid evolutionary algorithms for graph coloring,"

Journal of Combinatorial Optimization, vol. 3, pp. 379 - 397, 1999.

[61] M. R. Garey, D. S. Johnson, and L. Stockmeyer, "Some simplified NP-complete

graph problems " Theor. Comput. Sci., vol. 1, pp. 237-267, 1976.

[62] M. R. Garey and D. S. Johnson, Computers and Intractability - A guide to NP-

completeness, First ed. San Francisco: W. H. Freeman and Company, 1979.

[63] F. Glover, "Tabu Search: A Tutorial," Interfaces,, vol. 20, pp. 74-94, 1990.

[64] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading, MA.: Addison-Wesley, 1989.

[65] H.R. Lourenco, O. Martin, and T. Stuetzle, "Iterated Local Search," in Handbook of

Metaheuristics, F. Glover and G. Kochenberger, Eds. Norwell, MA: Kluwer

Academic Publishers, 2002, pp. 321-353.

[66] A. Hertz, "Tabu search for large scale timetabling problems," European Journal of

Operational Research, vol. 54, pp. 39-47, 1991.

 165

[67] S. Khuri, T. Walters, and Y. Sugono, "A grouping genetic algorithm for coloring the

edges of graphs," in SAC '00: Proceedings of the 2000 ACM symposium on Applied

computing. New York: ACM Press, 2000, pp. 422-427.

[68] S. Kirkpatrick, C. Gelatt, and M. Vecchi, "Optimization by Simulated Annealing,"

Science, pp. 671-680, 1983.

[69] P. Kostuch, "The University Course Timetabling Problem with a 3-Phase

Approach," in Practice and Theory of Automated Timetabling (PATAT) V, vol. 3616,

Lecture Notes in Computer Science, E. Burke and M. Trick, Eds. Berlin: Springer-

Verlag, 2005, pp. 109-125.

[70] G. Lajos, "Complete University Modular Timetabling using Constraint Logic

Programming," in Practice and Theory of Automated Timetabling (PATAT) I, vol.

1153, Lecture Notes in Computer Science, E. Burke and P. Ross, Eds. Berlin:

Springer-Verlag, 1996, pp. 146-161.

[71] J. D. Landa Silva, E. Burke, and M. Petrovic, "An Introduction to Multiobjective

Metaheuristics for Scheduling and Timetabling," in Metaheuristics for Multiobjective

Optimisation, , vol. 535, Metaheuristic for Multiobjective Optimisation, X.

Gandibleux, M. Sevaux, K. Sorensen, and V. T'kindt, Eds. Berlin: Springer-Verlag,

2004, pp. 91-129.

[72] Y. Leung, Y. Gao, and Z. Xu, "Degree of Population Diversity - A perspective on

Premature Convergence in Genetic Algorithms and Its Marcov Chain Analysis,"

IEEE Trans. Neural Networks, vol. 8(5), pp. 1165-1765, 1997.

[73] J. Levine and F. Ducatelle, "Ant Colony Optimisation and Local Search for Bin

Packing and Cutting Stock Problems.," Journal of the Operational Research Society,

vol. 55(12), pp. 705-716, 2003.

[74] R. Lewis and B. Paechter, "New Crossover Operators for Timetabling with

Evolutionary Algorithms," presented at The Fifth International Conference on

Recent Advances in Soft Computing RASC2004, Nottingham, England, 2004.

[75] R. Lewis, "Metaheuristics can Solve Sudoku Puzzles," (Forthcoming) Journal of

heuristics, vol. 13, 2007.

[76] R. Lister, "Annealing Networks and Fractal Lanscapes," presented at IEEE

International Conference on Neural Networks, San Francisco, 1993.

[77] S. Martello and P. Toth, "Lower bounds and reduction procedures for the bin

packing problem," Discrete Applied Mathematics, vol. 28, pp. 59-70, 1990.

 166

[78] C. Mattiussi, M. Waibel, and D. Floreano, "Measures of Diversity for Populations

and Distances Between Individuals with Highly Reorganizable Genomes,"

Evolutionary Computation, vol. 12, pp. 495-515, 2004.

[79] F. Melicio and J. Caldeira, "Timetabling Implementation aspects by Simulated

Annealing," presented at IEEE Systems Science and Systems Engineering, Beijing.

Aceite., 1998.

[80] L. Merlot, N. Boland, B. Hughes, and P. Stuckey, "A Hybrid Algorithm for the

Examination Timetabling Problem," in The Practice and Theory of Automated

Timetabling (PATAT) IV vol. 2740, Lecture Notes in Computer Science, E. Burke

and P. D. Causmaeker, Eds. Berlin: Springer-Verlag, 2003, pp. 207-231.

[81] N. Mladenovic and P. Hansen, "Variable Neighborhood Search," Comps. in Opns.

Res., vol. 24, pp. 1097-1100, 1997.

[82] C. Morgenstern, "Algorithms for General Graph Coloring," in PhD Thesis,

Department of Computer Science: University of New Mexico, 1989.

[83] W. Morrison and K. de Jong, "Measurement of Population Diversity," presented at

Artificial Evolution 2001, 2002.

[84] P. Moscato, "On Evolution, Search, Optimization, Genetic Algorithms and Martial

Arts: Towards Memetic Algorithms," Tech. Rep. Caltech Concurrent Computation

Program, Report. 826, California Institute of Technology, Pasadena, California, USA,

1989.

[85] P. Moscato and M. G. Norman, "A 'Memetic' Approach for the Traveling Salesman

Problem. Implementation of a Computational Ecology for Combinatorial

Optimization on Message-Passing Systems," presented at Parallel Computing and

Transputer Applications, 1992.

[86] B. Paechter, R. Rankin, A. Cumming, and T. Fogarty, "Timetabling the Classes of

an Entire University with an Evolutionary Algorithm," in Parallel Problem Solving

from Nature (PPSN) V, vol. 1498, Lecture Notes in Computer Science, T. Baeck, A.

Eiben, M. Schoenauer, and H. Schwefel, Eds. Berlin: Springer-Verlag, 1998, pp.

865-874.

[87] L. Paquete and C. Fonseca, "A study of examination timetabling with multiobjective

evolutionary algorithms," presented at 4th Metaheuristics International Conference

(MIC 2001), Porto, 2001.

 167

[88] S. Petrovic and Y. Bykov, "A Multiobjective Optimisation Approach for Exam

Timetabling based on Trajectories," in The Paractice and Theory of Automated

Timetabling (PATAT) IV, vol. 2740, Lecture Notes in Computer Science, E. Burke

and P. De Causmaecker, Eds. Berlin: Springer-Verlag, 2003, pp. 181-194.

[89] N. J. Radcliffe, "Forma Analysis and Random Respectful Recombination," presented

at the fourth International Conference on Genetic Algorithms, San Marco CA,

1991.

[90] B. Rekiek, A. Delchambre, and H. Saleh, "Pickup and Delivery Problems: An

application of the Grouping Genetic Algorithm," Universite Libre de Bruxelles,

IRIDIA technical report TR/IRIDIA/2003-32. 2003.

[91] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard, "Some Guidelines for

Genetic Algorithms with Penalty Functions.," in the Third International Conference

on Genetic Algorithms, J. D. Schaffer, Ed. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc, 1989, pp. 191-197.

[92] P. Ross, D. Corne, and H.-L. Fang, "Improving Evolutionary Timetabling with

Delta Evaluation and Directed Mutation," in Parallel Problem Solving from Nature

(PPSN) III, vol. 866, Lecture Notes in Computer Science, Y. Davidor, H. Schwefel,

and M. Reinhard, Eds. Berlin: Springer-Verlag, 1994, pp. 556-565.

[93] P. Ross, D. Corne, and H. Terashima-Marin, "The Phase-Transition Niche for

Evolutionary Algorithms in Timetabling," in Practice and Theory of Automated

Timetabling (PATAT) I, vol. 1153, Lecture Notes in Computer Science, E. Burke and

P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 309-325.

[94] P. Ross, E. Hart, and D. Corne, "Some Observations about GA-Based Exam

Timetabling," in Practice and Theory of Automated Timetabling (PATAT) II, vol.

1408, Lecture Notes in Computer Science, E. Burke and M. Carter, Eds. Berlin:

Springer-Verlag, 1998, pp. 115-129.

[95] P. Ross, E. Hart, and D. Corne, "Genetic Algorithms and Timetabling," in Advances

in Evolutionary Computing: Theory and Applications, A. Ghosh and K. Tsutsui, Eds.:

Springer-Verlag, New York., 2003, pp. 755- 771.

[96] O. Rossi-Doria, J. Knowles, M. Sampels, K. Socha, and B. Paechter, "A Local Search

for the Timetabling Problem," presented at Practice And Theory of Automated

Timetabling (PATAT) IV, Gent, Belgium, 2002.

[97] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. Manfrin,

M. Mastrolilli, L. Paquete, B. Paechter, and T. Stützle, "A Comparison of the

 168

Performance of Different Metaheuristics on the Timetabling Problem," in Practice

and Theory of Automated Timetabling (PATAT) IV, vol. 2740, Lecture Notes in

Computer Science, E. Burke and P. De Causmaecker, Eds. Berlin: Springer-Verlag,

2002, pp. 329-351.

[98] W. Salwach, "Genetic Algorithms in Solving Constraint Satisfaction Problems: The

Timetabling Case," Badania Operacyjne i Decyzje, 1997.

[99] A. Schaerf, "Tabu Search Techniques for Large High-School Timetabling Problems,"

in Proceedings of the Thirteenth National Conference on Artificial Intelligence.

Portland (OR): AAAI Press/ MIT Press, 1996, pp. 363-368.

[100] A. Schaerf, "A Survey of Automated Timetabling," Artificial Intelligence Review, vol.

13, pp. 87-127, 1999.

[101] B. Smith, "Phase Transitions and the mushy region in Constraint Satisfaction

Problems," in 11th European Conference on Artificial Intelligence, A. Cohn, Ed.:

John Wiley and Sons ltd, 1994, pp. 100-104.

[102] K. Socha, J. Knowles, and M. Samples, "A MAX-MIN Ant System for the University

Course Timetabling Problem," in Proceedings of Ants 2002 - Third International

Workshop on Ant Algorithms (Ants'2002), vol. 2463, Lecture Notes in Computer

Science, M. Dorigo, G. Di Caro, and M. Samples, Eds. Berlin: Springer-Verlag,

2002, pp. 1-13.

[103] K. Socha and M. Samples, "Ant Algorithms for the University Course Timetabling

Problem with Regard to the State-of-the-Art," in Evolutionary Computation in

Combinatorial Optimization (EvoCOP 2003), vol. 2611, Lecture Notes in Computer

Science. Berlin: Springer-Verlag, 2003, pp. 334-345.

[104] N. Srinivas and K. Deb, "Multiobjective Optimization Using Nondominated Sorting

in Genetic Algorithms," Evolutionary Computation, vol. 2, pp. 221-248, 1994.

[105] G. Tao and Z. Michalewicz, "Inver-over Operator for the TSP," in Parallel Problem

Solving from Nature (PPSN) V, vol. 1498, Lecture Notes in Computer Science, T.

Baeck, A. Eiben, M. Schoenauer, and H. Schwefel, Eds. Berlin: Springer-Verlag,

1998, pp. 803-812.

[106] J. Thompson and K. Dowsland, "Variants of Simulated Annealing for the

Examination Timetabling Problem," Annals of Operational Research, pp. 105 -128,

1996.

 169

[107] J. M. Thompson and K. A. Dowsland, "A Robust Simulated Annealing based

Examination Timetabling System," Computers and Operations Research, vol. 25, pp.

637-648, 1998.

[108] A. Tripathy, "School Timetabling - A Case in Large Binary Linear Integer

Programming " Managment Science, vol. 30, pp. 1473-1489, 1984.

[109] J. S. Turner, "Almost all k-colorable Graphs are easy to Color," Journal of Algorithms,

vol. 9, pp. 63-82, 1988.

[110] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applications. Reidel,

The Netherlands: Kluwer Academic Publishers, 1987.

[111] G. V. von Lazewski, "Intelligent Structural Operators for the k-way Graph

Partitioning Problem," in Forth International Conference on Genetic Algorithms, R.

K. Belew and L. B. Booker, Eds. San Mateo, CA, USA: Morgan Kaufmann, 1991,

pp. 45-52.

[112] G. White and W. Chan, "Towards the Construction of Optimal Examination

Schedules," INFOR, vol. 17, pp. 219-229, 1979.

[113] X. Yao, "An Overview of Evolutionary Computation," Chinese Journal of Advanced

Software Research, vol. Allerton Press Inc., New York, NY 10011, pp. 12-29, 1996.

[114] E. Yu and K.-S. Sung, "A Genetic Algorithm for a University Wekly Courses

Timetabling Problem," International Transactions in Operational Research, vol. 9,

pp. 703-717, 2002.

[115] E. Zitzler, M. Laumanns, and L. Thiele, "Spea2: Improving the Strength Pereto

Evolutionary Algorithm for Multiobjective optimization," Gloriastrasse 35, CH-

8092 Zurich, Switzerland, Tech. Rep. 103, 2001.

