
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2005

Evaluating Particle Swarm Intelligence Techniques
for Solving University Examination Timetabling
Problems
Daniel R. Fealko
Nova Southeastern University, daniel.fealko@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Daniel R. Fealko. 2005. Evaluating Particle Swarm Intelligence Techniques for Solving University Examination Timetabling Problems.
Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information
Sciences. (513)
http://nsuworks.nova.edu/gscis_etd/513.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/51098136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Evaluating Particle Swarm Intelligence Techniques for
Solving University Examination Timetabling Problems

by

Daniel R. Fealko

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Graduate School of Computer and Information Sciences

Nova Southeastern University

2005

We hereby certify that this dissertation, submitted by Daniel R. Fealko, conforms
to acceptable standards and is fully adequate in scope and quality to fulfill the
dissertation requirements for the degree of Doctor of Philosophy.

Sumitra Mukherjee, Ph.D.
Chairperson of Dissertation Committee

 Date

Junping Sun, Ph.D.
Dissertation Committee Member

 Date

James Cannady, Ph.D.
Dissertation Committee Member

 Date

Approved:

Edward Lieblein, Ph.D.
Dean, Graduate School of Computer and Information Sciences

Date

Graduate School of Computer and Information Sciences
Nova Southeastern University

2005

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Evaluating Particle Swarm Intelligence Techniques for Solving

University Examination Timetabling Problems

by
Daniel R. Fealko

August 2005

The purpose of this thesis is to investigate the suitability and effectiveness of the
Particle Swarm Optimization (PSO) technique when applied to the University
Examination Timetabling problem. We accomplished this by analyzing
experimentally the performance profile—the quality of the solution as a function
of the execution time—of the standard form of the PSO algorithm when brought
to bear against the University Examination Timetabling problem. This study
systematically investigated the impact of problem and algorithm factors in solving
this particular timetabling problem and determined the algorithm's performance
profile under the specified test environment. Keys factors studied included
problem size (i.e., number of enrollments), conflict matrix density, and swarm
size. Testing used both real world and fabricated data sets of varying size and
conflict densities. This research also provides insight into how well the PSO
algorithm performs compared with other algorithms used to attack the same
problem and data sets. Knowing the algorithm's strengths and limitations is
useful in determining its utility, ability, and limitations in attacking timetabling
problems in general and the University Examination Timetabling problem in
particular. Finally, two additional contributions were made during the course of
this research: a better way to fabricate examination timetabling data sets and the
introduction of the PSO-NoConflicts optimization approach. Our new data set
fabrication method produced data sets that were more representative of real world
examination timetabling data sets and permitted us to construct data sets spanning
a wide range of sizes and densities. The newly derived PSO-NoConflicts
algorithm permitted the PSO algorithm to perform searches while still satisfying
constraints.

Acknowledgements

First, I wish to thank my dissertation committee chairperson, Dr. Sumitra
Mukherjee. I greatly appreciated his willingness to accept me as a Ph.D. student
without hesitation, as well as his providing prompt and incisive guidance
whenever called upon. To the other members of my dissertation committee, Dr.
Junping Sun and Dr. James Cannady, I offer my sincerest gratitude for their
assistance in this work.

I owe a great deal of thanks to my wife, Sue Ellen, who never wavered in her
belief that I would someday finish this project, even when I had doubts. I cannot
express the gratitude I have for the words of encouragement and confidence she
has provided throughout the years.

A special word of thanks goes to my father-in-law, the late Norman L. Matthews,
Ph.D., M.D., who is truly missed. Though no longer with us, he nevertheless
provided motivation through his exemplary life. His wisdom in financial matters
largely made possible the means to afford this long endeavor, and he instilled the
importance of lifelong learning in my wife. For these things, I will forever be
indebted to him.

 iv

Table of Contents

Abstract ii
List of Tables v
List of Figures vii

Chapters

1. Introduction 1

Problem Statement 1
Relevance and Significance 8
Barriers and Issues 12
Research Questions 12
Summary 16

2. Review of the Literature 18

University Examination Timetabling Theory and Research Literature 18
Particle Swarm Optimization Theory and Research Literature 22
Summary 34
Contribution to the Field 35

3. Methodology 36

Research Methods 36
Specific Research Procedures 41
Resource Requirements 78
Reliability and Validity 78
Summary 80

4. Results 81

Data Analysis 81
Findings 85

Summary of Results 127

5. Conclusions, Implications, Recommendations, and Summary 132

Conclusions 132
Implications 135
Recommendations 137
Summary 140

Reference List 145

 v

List of Tables

Tables

1. Enrollments for Conflict Matrix Example 14

2. Conflict Matrix for Enrollment Example 15

3. Matrix for Computing Density 15

4. Attributes of Carter Data Sets – 1 of 3 58

5. Attributes of Carter Data Sets – 2 of 3 59

6. Attributes of Carter Data Sets – 3 of 3 60

7. Attributes of Reduced Carter Data Sets 67

8. Fabricated Data Set Mapping Table Example 70

9. Attributes of Typical Fabricated Data Sets 72

10. Cognitive/Social Ratio (φ1 : φ2) Experiment Attributes 86

11. Cognitive/Social Ratio (φ1 : φ2) Experiment Results 89

12. “Best” Inertia Weight Experiment Attributes 90

13. “Best” Inertia Weight Experiment Results 93

14. “Best” Swarm Size Experiment Attributes 95

15. “Best” Swarm Size Experiment Results 98

16. 1st Order Conflict Weight Experiment Attributes 100

17. Feasible/Infeasible Experiment Attributes 107

18. Feasible/Infeasible Experiment Results 110

19. Feasible/Feasible Experiment Attributes 112

20. Feasible/Feasible Experiment Results 114

21. Full PSO Random Experiment Attributes 117

 vi

22. Full PSO Random Experiment Results 119

23. Some Full PSO Random Result Statistics 120

24. Reduced PSO Random Experiment Attributes 121

25. Reduced PSO Random Experiment Results 123

26. Some Reduced PSO Random Result Statistics 124

27. Reduced LSD No-Conflicts Experiment Attributes 125

28. Reduced LSD No-Conflicts Experiment Results 126

29. Final PSO Algorithmic Parameter Choices 127

30. Average Penalty per Student Comparisons for CAR-F-92 130

 vii

List of Figures

Figures

1. Graph of Example Timetabling Problem 16

2. 381 LSE-F-91 exams, 2731 enrollments, 693 students, 0.062 density 63

3. 381 LSE-F-91 exams, 10918 enrollments, 2726 students, 0.062 density 64

4. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 100, d = 0.04, and r = 10 87

5. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 100, d = 0.08, and r = 10 87

6. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 100, d = 0.16, and r = 10 87

7. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 100, d = 0.32, and r = 10 87

8. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 200, d = 0.04, and r = 10 87

9. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 200, d = 0.08, and r = 10 87

10. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 200, d = 0.16, and r = 10 88

11. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 200, d = 0.32, and r = 10 88

12. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 400, d = 0.04, and r = 10 88

13. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 400, d = 0.08, and r = 10 88

14. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 400, d = 0.16, and r = 10 88

 viii

15. Cognitive/Social Ratio Results for Fabricated Data Set having
n = 400, d = 0.32, and r = 10 88

16. Best Inertia Weight Results for Fabricated Data Set having
n = 100, d = 0.04, and r = 10 91

17. Best Inertia Weight Results for Fabricated Data Set having
n = 100, d = 0.08, and r = 10 91

18. Best Inertia Weight Results for Fabricated Data Set having
n = 100, d = 0.16, and r = 10 91

19. Best Inertia Weight Results for Fabricated Data Set having
n = 100, d = 0.32, and r = 10 91

20. Best Inertia Weight Results for Fabricated Data Set having
n = 200, d = 0.04, and r = 10 91

21. Best Inertia Weight Results for Fabricated Data Set having
n = 200, d = 0.08, and r = 10 91

22. Best Inertia Weight Results for Fabricated Data Set having
n = 200, d = 0.16, and r = 10 92

23. Best Inertia Weight Results for Fabricated Data Set having
n = 200, d = 0.32, and r = 10 92

24. Best Inertia Weight Results for Fabricated Data Set having
n = 400, d = 0.04, and r = 10 92

25. Best Inertia Weight Results for Fabricated Data Set having
n = 400, d = 0.08, and r = 10 92

26. Best Inertia Weight Results for Fabricated Data Set having
n = 400, d = 0.16, and r = 10 92

27. Best Inertia Weight Results for Fabricated Data Set having
n = 400, d = 0.32, and r = 10 92

28. Best Swarm Size Results for Fabricated Data Set having
n = 100, d = 0.04, and r = 10 96

 ix

29. Best Swarm Size Results for Fabricated Data Set having
n = 100, d = 0.08, and r = 10 96

30. Best Swarm Size Results for Fabricated Data Set having
n = 100, d = 0.16, and r = 10 96

31. Best Swarm Size Results for Fabricated Data Set having
n = 100, d = 0.32, and r = 10 96

32. Best Swarm Size Results for Fabricated Data Set having
n = 200, d = 0.04, and r = 10 96

33. Best Swarm Size Results for Fabricated Data Set having
n = 200, d = 0.08, and r = 10 96

34. Best Swarm Size Results for Fabricated Data Set having
n = 200, d = 0.16, and r = 10 97

35. Best Swarm Size Results for Fabricated Data Set having
n = 200, d = 0.32, and r = 10 97

36. Best Swarm Size Results for Fabricated Data Set having
n = 400, d = 0.04, and r = 10 97

37. Best Swarm Size Results for Fabricated Data Set having
n = 400, d = 0.08, and r = 10 97

38. Best Swarm Size Results for Fabricated Data Set having
n = 400, d = 0.16, and r = 10 97

39. Best Swarm Size Results for Fabricated Data Set having
n = 400, d = 0.32, and r = 10 97

40. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 100, d = 0.04, and r = 10 101

41. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 100, d = 0.08, and r = 10 101

42. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 100, d = 0.16, and r = 10 101

 x

43. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 100, d = 0.32, and r = 10 101

44. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 200, d = 0.04, and r = 10 101

45. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 200, d = 0.08, and r = 10 101

46. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 200, d = 0.16, and r = 10 102

47. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 200, d = 0.32, and r = 10 102

48. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 400, d = 0.04, and r = 10 102

49. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 400, d = 0.08, and r = 10 102

50. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 400, d = 0.16, and r = 10 102

51. 1st Order Conflict Weight Results for Fabricated Data Set having
n = 400, d = 0.32, and r = 10 102

52. 1st Order Conflict Weight Results for Fabricated Data Set having
1200 Iterations, n = 100, d = 0.16, and r = 10 104

53. 1st Order Conflict Weight Results for Fabricated Data Set having
1200 Iterations, n = 200, d = 0.16, and r = 10 104

54. 1st Order Conflict Weight Results for Fabricated Data Set having
1200 Iterations, n = 400, d = 0.16, and r = 10 104

55. Feasible/Infeasible Experimental Results for Fabricated Data Set having
n = 100 and r = 5 108

56. Feasible/Infeasible Experimental Results for Fabricated Data Set having
n = 200 and r = 5 108

 xi

57. Feasible/Infeasible Experimental Results for Fabricated Data Set having
n = 400 and r = 5 108

58. 1st Order Conflict Penalty for Feasible/Infeasible Experiment, using
Fabricated Data Set with n = 100 and r = 5 109

59. 1st Order Conflict Penalty for Feasible/Infeasible Experiment, using
Fabricated Data Set with n = 200 and r = 5 109

60. 1st Order Conflict Penalty for Feasible/Infeasible Experiment, using
Fabricated Data Set with n = 400 and r = 5 109

61. Feasible/Feasible Experimental Results for Fabricated Data Set having
n = 100 and r = 5 113

62. Feasible/Feasible Experimental Results for Fabricated Data Set having
n = 200 and r = 5 113

63. Feasible/Feasible Experimental Results for Fabricated Data Set having
n = 400 and r = 5 113

64. Full PSO Random Results with n between 81 and 381, and r = 10 118

65. Full PSO Random Results with n between 461 and 682, and r = 10 118

66. Full PSO Random Results with n = 2419 and r = 10 118

67. Reduced PSO Random Results with n between 81 and 381, and r = 10 122

68. Reduced PSO Random Results with n between 461 and 682, and r = 10 122

69. Reduced PSO Random Results with n = 2419 and r = 10 122

70. Reduced LSD No-Conflicts Results with n between 81 and 381, and r = 5 125

71. Reduced LSD No-Conflicts Results with n between 461 and 682, and r = 5 125

1

Chapter 1

Introduction

Problem Statement

The general timetabling problem consists of assigning resources to objects in space

and time while satisfying a set of hard constraints and, as nearly as possible, a set of soft

constraints. The three most common academic timetabling problems are the school

timetabling, university timetabling, and examination timetabling problems. School

timetabling and university timetabling differ primarily by how students are allocated to

classes. School timetabling groups students in classes with similar academic objectives

whereas university timetabling considers students as individuals with possibly differing

academic objectives. The examination timetabling problem consists of assigning a set of

examinations to a limited number of time slots while satisfying the hard constraints. The

most commonly cited hard constraint is the prevention of double booking; i.e., no student

should be required to take more than one exam during any single time slot. Many times

this requirement is unobtainable and is therefore relaxed. When this happens, the

objective is to minimize the number of double booking conflicts. (Carter & Laporte,

1996)

The sheer size of university student bodies makes examination timetabling a

complex combinatorial problem. Even in moderately sized universities, the manual

solution of timetabling usually requires many person-days of effort. As a result, much

research has been conducted over the last forty years, starting with the work of Gotlieb

(1962), and since then many papers related to the automation of academic timetabling

2

have been published. Numerous approaches to solving the timetabling problem have

been proposed in the literature. The earliest approaches were heuristic in nature, next

came more general methods (e.g., graph coloring), and then came the more recent

attempts using simulated annealing and genetic algorithms. (Carter, 1986; Schaerf, 1999)

Despite enormous effort expended over the last four decades to uncover efficient

methods for solving timetabling problems, these problems are nevertheless still the focus

of intense research (Willemen, 2002). Nor is this research limited to just a few countries

as finding solutions to the general set of school timetabling problems is of interest to

educational institutes throughout the world (Burke, Elliman, Ford, & Weare, 1995;

Hansen & Vidal, 1995; Junginger, 1986).

Problem Representation

There are a number of possible ways to represent the basic university examination

timetabling search problem. We choose to take almost directly from Schaerf (1999, p.

109) as it is a relatively general representation.

Given that

� q is the number of courses,

� r is the number of exams,

� k is a time slot

� p is the number of time slots,

� lk is the maximum number of exams that can be scheduled at

time slot k,

� i is a course, having a single exam,

3

� Sl is a group of exams such that in each group there are students that

take all exams in the group, giving us 2r-1 possible non-empty sets,

then

find iky (i = 1..q; k = 1..p)

such that
1

1
p

ik

k

y
=

=∑ (i = 1..q) (1)

1

q

ik k

i

y l
=

≤∑ (k = 1..p) (2)

 1
l

ik

i S

y
∈

≤∑ (l = 1..2r-1; k = 1..p) (3)

 0 or 1iky = (i = 1..q; k = 1..p)

where yik = 1 if the exam of course Ki is
 scheduled at time slot k, and
 yik = 0 otherwise.

Constraints (1) impose that each exam is scheduled only once. Constraints (2)

enforce the maximum number of exams that can be scheduled for a given time slot.

Constraints (3) prevent conflicting exams from being scheduled at the same time slot.

This search problem may be modeled as an optimization problem when we add

soft constraints. A typical list of soft constraints is presented below:

• Examination Spread Constraint – examinations associated with a student

should be spread out as much as possible to allow the student time to

prepare for the next exam.

• Consecutive Periods Constraint – a student must not be required to take

two exams within consecutive periods, or time slots. This constraint is a

special case of the Examination Spread Constraint but universities do not

necessarily implement both constraints. In addition, even if both

4

constraints are implemented, they can have different associated penalty

values.

• Room Capacity Constraint – sometimes referred to as Venue Capacity

Constraint, requires the availability of a room with sufficient capacity in

which to hold the exam. Sometimes universities permit examination splits,

which is the splitting of an exam across multiple rooms.

• Exam Proximity Constraint – a student must not be required to attend

consecutive exams on different campuses.

• Special Room Assignment Constraint – an exam must be held in either a

specific room or room type. For example, a laboratory room might be

required for the exam.

Constraints and Objectives

Optimization problems have three basic features: an objective function, decision

variables, and a set of constraints. The goal of optimization is to determine the decision -

variable values that minimize (or maximize) the objective function, subject to the

constraints (Rardin, 1998).

Optimization problems can have zero, one, or more objective functions. An

objective function – or cost function, penalty function, loss function – is a function that

assigns a quantitative measure of worth to a point in D-dimensional decision variable

space indicating its contribution to the specific objective. An optimization problem

having no objective function is a feasibility problem or a constraint satisfaction problem.

In this case, the goal is not to optimize but to find decision variables that satisfy the

constraints. A problem with more than one objective function is referred to as a multi-

5

objective optimization problem and is normally reformulated, by combining the separate

functions, into a single objective function.

In addition, all optimization problems require decision variables in order to define

the objective function and problem constraints. These are variables under the control of

the decision maker and affect the value of the objective function.

Lastly, optimization problems may or may not have associated constraints, which

identify the set of feasible points in the D-dimensional decision variable space and fall

into two separate categories: hard and soft. Optimization problems having constraints are

referred to as constraint optimization problems and those lacking constraints, which

actually make up a large and well study class of problems, are known as unconstrained

optimization problems.

In general, hard-constraints reflect timetable requirements such as preventing

examination conflicts and enforcing seating capacity restrictions. That is, students must

not have more than one examination scheduled during the same time slot and an

examination cannot exceed a room’s seating capacity, respectively. Hard-constraints

define the set of feasible solutions to a constrained optimization problem. Infeasible

solutions are those that violate one or more hard-constraints.

Soft-constraints, on the other hand, generally reflect student and teacher

preferences and not strict requirements. The ability to satisfy all soft-constraints is rare

for any real world situation because simultaneous satisfaction of two incompatible soft

constraints, which is a common occurrence, is unachievable. For example, maximizing

the time between student examinations, to allow for maximum study time, would be in

opposition to a requirement to minimize the total time spanned by the exam period.

6

Therefore, optimization problems traditionally use an objective function to measure how

well all soft-constraints are satisfied; in essence, it measures the quality of the solution.

This objective function is customarily an aggregation of soft-constraint penalty functions;

each in turn measuring how well their related constraint is satisfied. The ultimate goal in

solving an optimization problem is to locate the objective function’s global minimum

while satisfying all hard-constraints.

The examination conflict constraint is a first order conflict, where an nth order

conflict has n-1 time slots between two examinations. In like manner, a student that has

to take examinations in two consecutive time slots has a second order conflict (Burke,

Elliman, & Weare, 1993). In all but the most difficult situations, preventing first order

conflicts is a hard-constraint, as a student cannot take more than one examination at a

time. Even so, this constraint is sometimes relaxed as satisfying it may be impractical

due to an insufficient number of allotted examination days, especially in large

universities with thousands of students and hundreds of examinations. As Carter,

Laporte, and Lee (1996) point out for the 1993 Purdue spring exam period, “the calendar

limits the examination week to six days. Five two-hour exams can be scheduled each

day. Direct conflicts (2 in 1) are unavoidable” (p. 382). By this, Carter et al. (1996)

mean that two conflicting exams in one time slot are unavoidable for their scenario. In

such cases, one should focus on reducing the amount of infeasibility rather than finding

feasible solutions (Burke & Newall, 1999). This does not mean that first order conflicts

are unimportant. On the contrary, permitting them requires the quarantining or

cloistering of students after an examination so they may take the conflicting examination

immediately after (Burke & Newall, 1999; Merlot, Boland, Hughes, & Stuckey, 2002).

7

For other institutions, “the most important criterion is to eliminate (or minimize) the

number of student conflicts in a fixed number of periods” (Carter et al., p. 337). Because

of this, one still must make a concerted, but not all consuming, effort at finding a

conflict-free solution.

Although most agree that preventing examination conflicts represents a hard-

constraint, how other restrictions are classified depends in large part on other factors. For

example, some institutions do not consider seating capacity a hard-constraint because

they have the option to obtain additional off-campus rooms when required (Merlot,

Boland, Hughes, & Stuckey, 2002). In cases like these, the institution may instead have a

hard-constraint on the total number of days spanned by the exam period. Other

institutions do classify seating capacity as a hard-constraint (Burke, Newall, & Weare,

1998b).

Goal

The overriding reason the school timetabling problems have been the focus of such

prolonged and intense research is the inescapable fact that, except for the most trivial

non-real world cases, these problems are all NP-complete (Schaerf, 1999). Hence, it

should come as no surprise then that attempts are made to apply each newly discovered

and relevant algorithmic approach to this challenge. In like manner, the goal of this study

was to investigate the suitability and effectiveness of the relatively new Particle Swarm

Optimization techniques when applied to the University Examination Timetabling class

of problems. We accomplished this by analyzing experimentally the performance profile

of the PSO algorithm when brought to bear against the university examination

timetabling problem using both real world and fabricated data sets of varying size and

8

conflict densities. The term Performance Profile here denotes the quality of the solution

as a function of the execution time. Since there are many possible factors affecting the

execution time, the performance profile was determined empirically, not analytically, by

applying the PSO method to numerous data sets and examining factors across iterations

of the algorithm.

Relevance and Significance

The university examination timetabling problem consists of assigning

examinations to a limited number of time slots in such a way that ideally there are no

hard constraint conflicts and the number of soft constraint conflicts is minimized (Carter,

Laporte, & Lee, 1996). When one wants to determine the existence of a timetable that

satisfies all constraints, the problem is formulated as a search or constraint satisfaction

problem (CSP). If instead, one wants to find a solution that minimizes (or maximizes) an

objective function, which embeds the soft constraints, while satisfying all hard

constraints, then the problem is formulated as an optimization problem (Lim, Chin, Kit,

& Oon, 2000; Schaerf, 1999).

All real world university examination timetabling problems have associated

constraints. The number and definitions of the constraints varies from university to

university because each institute embodies unique business rules. Regardless of the

disparity of constraint requirements, all constraints fall into only one of the

aforementioned categories, hard constraints, or soft constraints. Hard constraints are

regarded as essential, in terms of producing a practical timetable, whereas soft constraints

are deemed desirable but can be violated if necessary (Burke & Newall, 1999). Another

way of thinking of soft constraints is that how well one satisfies soft constraints

9

determines the timetable’s solution quality (Burke, Bykov, & Petrovic, 2001; Reis &

Oliveira, 2001).

Numerous algorithmic approaches to solving the timetabling problem have been

put forth in the literature. The more common approaches used are Tabu Search (Di

Gaspero & Schaerf, 2000; Schaerf, 1996), Graph Coloring (Kiaer & Yellen, 1992),

Genetic Algorithms (Corne, Fang, & Mellish, 1993; Ross, Hart, & Corne, 1998;

Terashima-Marín, Ross, & Valenzuela-Rendón, 1999), Simulated Annealing

(Elmohamed, Fox, & Coddington, 1997; Thomson & Dowsland, 1998), and Heuristic

Approaches (Colorni, Dorigo, & Maniezzo, 1998; Zhaohui & Lim, 2000). With so many

approaches already researched, one might well wonder if timetabling is still a problem

and, if so, why? Even though a number of good approaches exist for solving school

timetabling problems, Even, Itai, and Shamir (1976) proved that all common (i.e., real

world) timetable problems are NP-complete. A number of other authors (Cooper &

Kingston, 1995; Schaerf, 1999) have also shown that almost all variants of the

timetabling problem are NP-complete. If one considers timetabling problem sets with

non-trivial cardinality or even where a few constraints are considered, then the problem is

computationally very demanding to solve.

Particle Swarm Optimization

Metaphors are frequently used as guides in modeling systems that solve problems.

For example, Genetic Algorithms (GAs) use the metaphor of genetic and evolutionary

principles of fitness selection for reproduction to search solution spaces. In a similar

fashion, the collective behavior of insect colonies, bird flocks, and other animal societies

10

are the motivation for Swarm Intelligence algorithms, which use self-organization and

division of labor for distributed problem solving.

The Particle Swarm Optimization (PSO) method is a relatively new stochastic

Global Optimization (GO) member of the broader Swarm Intelligence field for solving

GO problems (Kennedy & Eberhart, 2001; Parsopoulos & Vrahatis, 2002d). James

Kennedy and Russell Eberhart first introduced this method in 1995 (Kennedy & Eberhart,

1995). Like GAs, the particle swarm approach is a population-based method. In contrast

to GAs though, PSOs do not use evolutionary inspired operators to construct a new

generation of candidate solutions. Instead, they simply modify the movement of the

individuals, called particles, in its population, called a swarm, without the generation of a

completely new population. In addition, GAs use mutation and selection operators,

among other operators, to “evolve” better solutions over time in contrast to PSO’s use of

volume-less particles in multi-dimensional space, which update their velocities. Each

particle’s velocity, and thus trajectory, is modified based upon their own best previous

position, determined with a fitness function, coupled with the previous best attained by

members of their topological neighborhood. (Parsopoulos & Vrahatis, 2002a)

Particle Swarm Technique Advantages

The simplicity of the particle swarm algorithm, coupled with its demonstrated

ability to deal with complex problems, makes the technique an ideal candidate for

consideration in attacking the university examination timetabling problem. In addition to

the algorithm’s inherent simplicity, there are other motivations for utilizing the particle

swarm algorithm. Some of those advantages include:

11

• Its robustness and speed for solving non-linear, non-differentiable, multi-modal

problems (Shi & Eberhart, 1998).

• Its ability to optimize hard mathematical problems in continuous or binary

space domains (Kennedy, 1998).

• Its consistent record of accomplishments in locating near optima solutions

significantly faster than evolutionary optimization methods (Angeline, 1998;

Kennedy & Spears, 1998).

• Its quick convergence rate, insensitivity to population size, and data set

scalability (Shi & Eberhart, 1999).

According to Schaerf (1999), PSO gets one near the optima faster than GA, but

GA eventually gets one closer. Many believe that getting near a solution faster is better

than achieving an optimum solution for timetabling problems as in almost all cases users

hand-tweak the result in the end anyway (Burke, Newall, & Weare, 1995). Many

universities arrive at acceptable examination timetables through a process of iteration.

Under these circumstances, providing a faster cycle time has advantages as it permits the

university to review the results and modify the parameters of the algorithm in a more

timely fashion.

Suitability of Particle Swarm Techniques for Timetabling Problems

The university examination timetabling problem involves constraints and the

presence of constraints adversely affects the performance of all optimization algorithms,

including evolutionary search methods. Regardless, research results indicate that the

recent advances in the PSO algorithm not only make it capable of handling unconstrained

and constrained multiobjective problems but it is also able to do this with continuous,

12

discrete or mixed variables without restrictions on the number of variables, constraints or

objectives (Ray & Liew, 2002). In addition, the nature of the university examination

timetabling problem is one of a constrained optimization (CO) problem. PSO not only is

an alternative approach to solving CO problems but in most cases, it detects superior

solutions than those achieved through other evolutionary algorithms (Parsopoulos &

Vrahatis, 2002a).

Barriers and Issues

Even though timetabling problems have been around for decades, these problems

have only lately been tackled by artificial intelligence techniques such as genetic

algorithms and tabu search. These approaches generally outperform the more traditional

operational research approaches for large timetabling problems (Schaerf, 1999). Even

though the success of particle swarm techniques have been demonstrated recently

(Parsopoulos & Vrahatis, 2002b), the vast majority of testing has been limited to well

understood mathematical test functions. Research with real world problems (Robinson,

Sinton, & Rahmat-Samii, 2002) is starting but, to date, the author is unaware of any

attempt to apply particle swarm techniques to any timetabling problem, let alone the

school timetabling problems. Other than the lack of any prior research on using the PSO

algorithm against the general class of timetabling problems to provide insight or guidance

for this research effort, the author knows of no other barriers or issues.

Research Questions

The PSO algorithm works well for a wide range of problems, dimensions, and

problem sizes and its real advantage over other algorithms is its simplicity and

13

extensibility (Kennedy & Eberhart, 2001). Consequently, it may also prove valuable in

solving the university examination timetabling problem, providing a different attack

approach on the problem. This reasoning leads to the following research questions:

• How well does the PSO handle university examination timetabling

problems of different sizes and conflict matrix densities?

• How does the PSO algorithm compare with other algorithms against this

problem class?

• What are the advantages and disadvantages of using the PSO algorithm on

this problem over other methods?

The purpose of this thesis was to investigate these basic questions. We

accomplished this by analyzing experimentally the performance profile of the standard

form of the PSO algorithm when brought to bear against the university examination

timetabling problem. This study systematically investigated the impact of various factors

in solving this particular class of timetabling problems and determined the algorithm's

performance profile under the specified test environment.

Conflict Matrix Density

The terms conflict matrix and conflict matrix density are used throughout the

timetabling literature as they are fundamental to the research involving timetabling

problems and graph theory. (Diestel (2000) is an excellent reference for both graph

theory and terminology.)

A conflict matrix is an n×n matrix with entries cij, where cij is the number of

students taking both examinations i and j. The density of the conflict matrix is the

average number of all other exams that each exam conflicts with, divided by the total

14

number of exams (Burke & Newall, 1999). Hence, a density of 0.1 denotes that, on

average, each exam conflicts with 10% of all the exams.

We use a simplified timetabling example here in order to illustrate the definitions

in a manner unencumbered by size. For our example, we use only seven courses,

represented by the letters A through G, and seven students, represented by the numbers 1

through 7. This provides 49 (7×7) possible student/course combinations, which are

enrollments. We then select a random subset of these enrollment possibilities. We show

our selection results in Table 1. Dots located at the intersection of course rows and

student columns designate a selected enrollment. We should also note here that we are

assuming each course has one and only one examination. Given this assumption, the

terms “course” and “examination” are synonymous in the discussion that follows.

Table 1. Enrollments for Conflict Matrix Example

Student
Course

1 2 3 4 5 6 7
A • • •
B • • • •
C • • • • •
D • •
E • • •
F • • •
G • •

From the enrollments identified in Table 1, we construct the conflict matrix using

its definition and arrive at Table 2.

15

Table 2. Conflict Matrix for Enrollment Example

 Course
Course A B C D E F G

A 3 1 3 1 1 1 2
B 1 4 3 3 2 1
C 3 3 5 1 2 3 2
D 1 1 2 1
E 1 3 2 3 1 1
F 1 2 3 1 3
G 2 1 2 1 1 2

Now, using the conflict matrix density definition from Carter, Laporte, and Lee

(1996, p. 376), "the density represents the proportion of non-zero and non-diagonal

entries of the matrix (cij), where cij is the number of students writing both examinations i

and j,” we construct Table 3. It is important to note that the conflict matrix density does

not take into consideration the quantity of students involved between two conflicting

exams, only that a conflict occurs.

Table 3. Matrix for Computing Density

 Course
Course A B C D E F G

A 1 1 1 1 1 1
B 1 1 1 1 1
C 1 1 1 1 1 1
D 1 1 1
E 1 1 1 1 1
F 1 1 1 1
G 1 1 1 1 1

From above, we have that the density of the conflict matrix is the average number

of all other exams that each exam conflicts with, divided by the total number of exams,

which is always less than or equal to (1 – 1/n) and approaches this limit for dense graphs.

Yet another way of looking at the conflict matrix density is to view it from a graph

perspective. Figure 1 is a pictorial representation of the graph for our example

16

timetabling problem. From a graph perspective, the conflict matrix density equals the

ratio of the graph’s degree to the degree of a complete graph of the same order. This

graph definition should be apparent from the matrix examples shown above, as it is

merely a graph representation of the matrix. This iconographic representation of the

conflict matrix density may afford a more intuitive feel for the basic concepts.

Figure 1. Graph of Example Timetabling Problem

Summary

University examination timetabling is a challenge routinely faced by university

schedulers throughout the world, requiring many person-days of effort. This problem has

resulted in decades of intense research due to its significance to universities and because

of its NP-complete complexity.

F

G

E

C

B

D

A

17

This research investigated the efficacy of the PSO algorithm when applied to the

university examination timetabling class of problems by analyzing the performance

profile of the standard PSO algorithm. Both real world and fabricated data sets of

varying size and conflict densities were used to provide insight into how well the PSO

algorithm performs compared with other algorithms used to attack the same problem and

data sets.

18

Chapter 2

Review of the Literature

University Examination Timetabling Theory and Research Literature

Numerous algorithmic techniques to solving the examination timetabling problem

are contained within literature, which encompasses nearly four decades and a number of

good surveys exist (Burke, Elliman, Ford, & Weare, 1995; Burke & Petrovic, 2002;

Carter, 1986; Carter & Laporte, 1996; Schaerf, 1999). In addition to the surveys, the

Ph.D. thesis of Bykov (2003) contains an overview of the chief algorithmic approaches to

date. There are many more algorithmic approaches described throughout the literature

than those covered by Bykov, as an exhaustive survey is unreasonable within the confines

of a thesis. We discuss a few of the more important approaches in the paragraphs that

follow and direct the reader to the surveys above for a more comprehensive overview.

Graph Coloring

It is well known that the examination timetabling problem, when considering only

the examination conflicts constraint, maps into an equivalent graph coloring problem

(Kiaer & Yellen, 1992), which is NP-complete (Burke, Elliman, & Weare, 1993;

Willemen, 2002). The graph coloring problem is an assignment of colors to vertices in

such a manner that no two adjacent vertices have the same color. Therefore, a solution to

the graph coloring problem represents a solution to the core examination timetabling

problem, where graph vertices correspond to exams, graph edges indicate that the

connected vertices have an examination conflict, and colors represent unique time slots

(Welsh & Powell, 1967). The graph coloring problem in turn is solved using one of the

19

graph coloring heuristics (e.g., Largest Degree), usually with backtracking (Burke,

Newall, & Weare, 1998a; Carter, Laporte, & Chinneck, 1994).

Backtracking simply means that when no legal period is available for a particular

examination, one removes already scheduled examinations in order to schedule that

examination. Examinations removed due to this process are placed on a waiting list and

rescheduled into new time slots. Carter, Laporte, and Lee (1996) describe in detail one

algorithm used to perform backtracking. We chose instead to use the backtracking

algorithm outlined by Burke, Newall, and Weare (1998a).

The complexity and richness of most soft-constraints makes it extremely difficult

to incorporate them into the graph coloring model. This is why soft-constraints are not

solved using the graph coloring approach but by other means, such as Genetic

Algorithms, Tabu Search, Simulated Annealing, and others. Graph coloring techniques

are typically limited to solving the first order conflicts. Nevertheless, Burke, Elliman,

and Weare (1994) successfully used this method while considering pre-assignments,

consecutive exams, specialist rooms, and room allocation constraints.

Genetic Algorithms

Evolutionary methods in general and GAs in particular, are probably the

examination timetabling approach that has received the most attention over the last

decade, and genetic algorithms in particular (Corne, Fang, & Mellish, 1993; Fang, 1994;

Ross, Hart, & Corne, 1998; Terashima-Marín, Ross, & Valenzuela-Rendón, 1999).

Genetic Algorithm techniques are a computational analogy of adaptive systems and are

an approximate model of the principles of evolutionary pressure found in natural

selection theory. The basic features of a genetic algorithm are that:

20

1. it consists of a population of individuals, each representing a solution, that

undergo selection,

2. each individual (solution) has a genetic representation that is modeled as a

genome (or chromosome),

3. it uses a fitness function to determine each individual’s reproductive

success, and

4. it uses genetic operators, such as mutation and crossover, to evolve new

solution each successive generation in order to find the best ones.

Tabu Search

Tabu Search is another common heuristic found throughout the exam timetabling

literature (Burke, Bykov, Newall, & Petrovic, 2003; Di Gaspero & Schaerf, 2000;

Schaerf, 1996). The overall feature of this method is the management of a list of the last

n solutions visited in order to avoid “re-finding” those solutions in subsequent iterations

(thus, “tabu list”). Tabu search works under the assumption that one should not accept a

new poor solution unless it is to avoid a solution already discovered. The objective is to

avoid premature convergence on local minima and to force the algorithm to consider new

regions of space. The basic steps, when assessing a neighborhood for a new solution, are:

1. evaluate each solution in the topological neighborhood, and

2. select the highest quality solution not already in the “tabu list” even if its

quality is lower than the current one.

Simulated Annealing

Quite a few research efforts (Burke, Bykov, Newall, & Petrovic, 2003; Burke,

Eckersley, McCollum, Petrovic, & Qu, 2003b; Elmohamed, Fox, & Coddington, 1997;

21

Salman, Ahmad, & Al-Madani, 2002; Thomson & Dowsland, 1996, 1998) have used

Simulated Annealing as their heuristic in an attempt to solve the examination timetabling

problem. This algorithm works in very much the same conceptual way as Tabu Search.

That is, the algorithm occasionally accepts inferior candidate solutions in its attempt to

discover better final solutions. Solutions with inferior objective function values than the

current one are accepted with probability P=exp(-∆f / T) where -∆f is the change in the

objective function and T is a control parameter. T is referred to as the “temperature” only

because of its analogous nature to the real annealing process equation. The temperature

of the system is gradually reduced throughout the search process and this method is

referred to as the “cooling schedule” of the process.

Others

Numerous other approaches have been tried throughout the decades since the first

attempts of automating the examination timetabling process. Three of the more common

approaches are:

• Hybridization – (Burke, Petrovic, & Qu, 2004; Merlot, Boland, Hughes, &

Stuckey, 2002; Newall, 1999) where several techniques are applied in

combination in the hopes that there is a synergetic action among them.

• Memetic Algorithm – where the meme is analogous to the gene except it

represents a modifiable cultural idea. The memetic approach of Burke,

Newall, & Weare (1995) used a hybrid of the evolutionary algorithm with

the hill-climbing algorithm.

• Case-Based Reasoning Approach – (Burke, Eckersley, McCollum,

Petrovic, & Qu, 2003a; Burke, Petrovic, & Qu, 2002) which is a system

22

that selects a heuristic, from a collection of solutions, based on similarity of

the problem, its data set, and objective functions. This approach works

under the assumption that similar problems are solved most effectively by

similar heuristic approaches.

These are but a small set of the plethora of techniques developed over the last four

decades to tackle the examination timetabling problem.

Particle Swarm Optimization Theory and Research Literature

Metaphors are frequently used as guides in modeling systems that solve problems.

For example, Genetic Algorithms (GAs) use the metaphor of genetic and evolutionary

principles of fitness selection for reproduction to search solution spaces. In a similar

fashion, the collective behavior of insect colonies, bird flocks, and other animal societies

are the motivation for Swarm Intelligence algorithms, which use self-organization and

division of labor for distributed problem solving.

The Particle Swarm Optimization (PSO) method is a comparatively new stochastic

Global Optimization (GO) member of the broader Swarm Intelligence field for solving

GO problems (Kennedy & Eberhart, 2001; Parsopoulos & Vrahatis, 2002d). James

Kennedy and Russell Eberhart first introduced this method in 1995 (Kennedy & Eberhart,

1995). Like GAs, the particle swarm approach is a population-based method. In contrast

to GAs though, PSOs do not use evolutionary inspired operators to construct a new

generation of candidate solutions. Instead, they simply modify the movement of the

individuals, called particles, in its population, called a swarm, without the generation of a

completely new population. In addition, GAs use mutation and selection operators,

among other operators, to “evolve” better solutions over time in contrast to PSO’s use of

23

volume-less particles in multi-dimensional space, which update their velocities. Each

particle’s velocity, and thus trajectory, is modified based upon their own best previous

position, determined with a fitness function, coupled with the previous best attained by

members of their topological neighborhood. (Parsopoulos & Vrahatis, 2002a)

Particle Swarm Optimization Algorithm

The PSO algorithm iteratively manipulates the position and velocity of particles in

its search for solutions. Using notation similar to that used by Parsopoulos, Laskari, and

Vrahatis (2001), we have:

� D is the number of dimensions in the multi-dimensional space,

� N is the size of the swarm population,

� pi is the i-th particle’s best previous position and represented as

(pi1, pi2, …, piD),

� Xi is the i-th particle in the D-dimensional space and represented as

(xi1, xi2, …, xiD),

� Vi is the i-th particle’s velocity (spatial change) and represented as

(vi1, vi2, …, viD),

� χ is the constriction factor,

� w is the inertia weight,

� ϕ1 and ϕ2 are two positive constants, frequently referred to as the

cognitive and social parameters respectively,

� r1 and r2 are two random numbers uniformly distributed over the range

the range [0, 1], and

� g is the particle with the best function value,

24

then the particles are manipulated according to the following two equations:

vid = χ (wvid + ϕ1r1(pid – xid) + ϕ2r2(pgd – xid)) (1)

xid = xid + vid (2)

 where d = 1, 2, …, D

 and i = 1, 2, …, N

 and from Clerc (1999) we have

ϕϕϕ
χ

42

2
2

−−−
= (3)

 and ϕ = ϕ1 + ϕ2, ϕ > 4.

Equation 1, the velocity equation, computes each particle’s new velocity. This is

achieved by using the particle’s current velocity and adding to it the influence from its

current best position plus the swarm’s current best position. The three base terms of

Equation 1 are multiplied by the constriction factor, which improves PSO’s ability to

constrain and control velocities.

The inertia weight w term is a parameter used to control the influence of previous

velocities on the particle’s current velocity. It regulates the trade-off between the global

(exploration) and the local (exploitation) abilities of particles (Abido, 2001). In addition,

it is common practice to start with a large inertia weight and linearly decrease its value to

improve the PSO’s performance (Shi & Eberhart, 1999). This method enhances the

algorithm’s exploration abilities early in the process and gradually transitions to an

exploitation mode of local regions of interest. Though we briefly investigated this

25

method of linearly decreasing its value, we dismissed it early on in favor of other more

promising parameters, though a more thorough future investigation may be warranted.

Equation 2, the position equation, uses the particle’s updated velocity value

computed in Equation 1 to determine its new position.

Equation 1 and 2 represent a slightly updated form of the original PSO algorithm

put forth by Kennedy and Eberhart (1995). Some, like Peer, Engelbrecht, and van den

Bergh (2003), refer to Kennedy and Eberhart’s original algorithm as the canonical form

of the algorithm and others, such as Carlisle and Dozier (2001), refer to their own as the

canonical form. We follow Carlisle and Dozier’s lead and refer to our set of equations

above as the canonical form as it is not too different from theirs, it represents the

generalized version utilized by most researchers, and it embodies recent advances.

Implementation

This research requires a programmatic implementation of the PSO algorithm. The

following pseudo-code form of the algorithm is adapted from the version presented by

Abido (2001). Each numbered step describes, in general terms, a core algorithmic

procedure. This pseudo-code is neither an exhaustive enumeration of operations nor a

thorough specification for those steps shown. The algorithm is as follows:

1. Initialize algorithm - Initialize the time interval to zero. Generate m

particles, giving them initial positions and velocities in the D-dimensional

space.

2. Evaluate objective function - Use objective function to evaluate each

particle.

26

3. Initialize individual best - Set each particle’s individual best equal to its

current position.

4. Initialize global best - Set the global best equal to the position of the

particle with the best objective function.

5. Update time - Increment the time interval by one unit.

6. Update weight - Update the inertia weight.

7. Update velocity - For each particle, use the following to compute their new

velocities.

vid = χ (wvid + ϕ1r1(pid – xid) + ϕ2r2(pgd – xid))

8. Update position - Using the updated velocity from step 7 and the following

equation, compute each particle’s new position.

xid = xid + vid

9. Evaluate objective function - Use objective function to evaluate each

particle.

10. Update individual best - If a particle’s new objective function value is

better than its previous best, then update the particle’s individual best to its

current position.

11. Update global best - If the best objective function value, from all of the

current particles, is better than the current global best, then set the global

best equal to that particle’s position.

12. Test for termination - If at least one of the stopping criteria is satisfied,

then terminate algorithm. Otherwise, go to step 5.

27

PSO – Initialization

The first step in the PSO algorithm is initialization of the swarm. As the particles

of the swarm have no previous collective knowledge from which to determine their

position or behavior, the algorithm must specify the starting values of each particle’s

position and velocity. Moreover, as Parsopoulos and Vrahatis (2002a) point out, proper

initialization may help the algorithm to detect better solutions through more efficient

exploration of the search space.

Initialization has been performed in the past using random (stochastic) methods.

Recent research in GA and PSO indicates that there may be better ways to perform

population initialization. (Burke, Newall, & Weare, 1998b; Parsopoulos & Vrahatis,

2002a)

Random Initialization Methods

Typically, one initializes each particle’s position in the swarm by selecting random

values from a uniform probability distribution over each dimension’s domain. After the

initial position of a particle is fixed, its initial velocity is randomly selected from among a

uniform distribution between the allowable minimum and maximum values.

We took a slightly different tack. First, we created random positions and assigned

these to each particle’s best position, as that is what they were by definition. Next, we

created a second set of random positions and assigned these to the particle’s position

values. From these two values, we computed the velocity. Lastly, we updated the swarm

and particle’s best function value positions, in keeping with the algorithm. This approach

was not due to guidance from prior research. We initialized in this manner because it

seemed more natural to derive the velocity from successive random positions.

28

Most published PSO algorithms generate an initial swarm using a Pseudo-Random

Number Generator (PRNG). Unfortunately, this does not guarantee a uniformly

distributed swarm over multidimensional search spaces. Research (Parsopoulos &

Vrahatis, 2002a) indicates improved PSO efficacy if one guarantees multidimensional

uniformity, not randomness (independence), for initialization. A Quasi-Random Number

Generator (QRNG) ensures such multidimensional uniformity by producing number

sequences guaranteed uniformly distributed over multiple dimension, unlike the PRNG

used for random number sequences. Previous researchers used two different QRNGs to

initialize the PSO swarm, the Sobol sequence generator (Parsopoulos & Vrahatis, 2002c)

and the Nonlinear Simplex Method (Parsopoulos & Vrahatis, 2002a). Research results

imply that using either one improves the convergence rate of the PSO. Regardless, for

this study, we used a PRNG. Our results create a baseline upon which, in the future, one

could use a QRNG method to make comparisons.

Heuristic Initialization Methods

A random number generator is sufficient for initializing the swarm but may not be

the best method, in particular, for the examination timetabling problem. Burke, Bykov,

Newall and Petrovic (in press) point out that specialized initialization strategies could be

influential on evolutionary algorithm performance in disconnected search spaces, which

is typical for examination timetabling problems, and Burke, Newall, and Weare (1998b)

show performance improvement due to initialization strategies in a memetic examination

timetabling approach.

A number of exam timetabling approaches employ heuristic ordering based on

graph coloring (Carter and Laporte, 1996) for constructing conflict-free timetables. The

29

heuristic provides a means whereby one can estimate the difficulty of scheduling a

particular exam (Burke & Petrovic, 2002). The idea behind this approach is that we

would expect more latitude in scheduling the difficult exams first then by waiting until

the end when the number of valid timeslots may be fewer.

The following four documented (Petrovic, Yang, & Dror, 2003; Burke, Newall, &

Weare, 1998a) heuristic ordering methods are characteristic of this approach but do not

represent an exhaustive list of ordering methods.

• Largest Degree First (LDF)

Schedule first the examinations having the largest number of conflicts (i.e., largest

degree) with other examinations. The reasoning is that scheduling examinations

having a large number of conflicts are more problematic and so should be dealt

with first.

• Least Saturation Degree (lSD)

Schedule first the examinations having the least number of remaining valid

timeslots available for scheduling. The reasoning is that scheduling these

examinations, which have fewer timeslots available, may prove harder or

impossible to schedule later as the number of options could easily be exhausted.

• Largest Color Degree (LCD)

Schedule first the examinations having the largest number of conflicts with other

examinations already scheduled. This heuristic is a dynamic version of the LDF

heuristic. The reasoning is that scheduling these examinations is harder than

scheduling examinations having little or no conflicting examinations already in

the timetable. For example, if we had an exam with a large number of conflicting

30

exams but where none of these conflicting exams are scheduled yet, then this is

considered not currently as difficult as this could be scheduled anywhere.

• Largest Weighted Degree (LWD)

Schedule first the examinations having the largest sum of weighted conflicts,

where the number of students enrolled in both examinations weights each conflict.

This heuristic is a variation of the LDF ordering. The reasoning is that core

exams, where large numbers of students have similar conflicts, should have

priority.

PSO – Random Numbers

As PSO is a random (stochastic) optimization heuristic, the ability to generate

quality random numbers is fundamental to its success. First, the PSO algorithm requires

the generation of two separate random numbers for each particle’s velocity equation per

iteration. In addition, if the PSO uses a randomized initialization method, then one also

randomly generates each particle’s initial position and velocity values. Hence, as the

number of iterations may well be in the thousands, the need exists for a large set of

randomly generated numbers.

Programmatically one is never able to generate a truly random sequence of

numbers, as any algorithmic approach is deterministic. The best one can do is use a

Pseudo-Random Number Generator (PRNG), which produces number sequences that are

statistically indistinguishable from truly random sources. That is, a number sequence

whose components are mutually independent and uniformly distributed over an interval.

31

PSO – Control Parameters

The PSO algorithm contains a number of control parameters that require initial

specification in order for success. These parameters include the swarm population size,

topological neighborhood size, inertia weight, and cognitive/social ratio. A number of

recent research efforts have examined these parameters and their effect on the overall

performance of the algorithm (Beielstein, Parsopoulos, & Vrahatis, 2001; Carlisle &

Dozier, 2001). Clerc’s (2002b) research went so far as to investigate the possibilities of

creating a parameter free PSO to eliminate the need to specify any values.

PSO – Convergence

The structure of the PSO algorithm is the main causal force in its convergence.

The first contributing factor is a direct result of each particle’s motion over time.

According to the particle update equations, a particle’s new velocity vector is always the

resultant vector combination of the particle’s previous velocity, a vector towards the

particle’s personal best position, and a vector towards the swarm’s global best particle

position. This resultant vector continually prods the particle back to a value lying

between its personal best and the swarm’s best particle position (van den Bergh, 2001).

Over time, and with an appropriate choice of parameter values, each particle’s personal

best converges to the swarm’s best particle position. If each particle’s inertia weight and

velocity are very close to zero at the time, the swarm ceases to move, regardless if the

swarm has even discovered an optimum (van den Bergh & Engelbrecht, 2002).

Though not a strict rule, convergence can be considered as the point in an

evolutionary algorithm where the population’s average fitness is identical to its best

fitness (Peram, Veeramachaneni, & Mohan, 2003). In the case of a swarm, each

32

particle’s personal best position eventually converges the swarm’s global best position.

At this point, nothing exists in the algorithm to move the particles from this position. If it

is the case that the swarm has not discovered the global optimum, then this represents

premature convergence, sometimes also referred to as stagnation.

According to van den Bergh and Engelbrecht (2002), the standard PSO algorithm

(Kennedy & Eberhart, 1995) exhibits premature convergence on sub-optimal solutions.

In addition, van den Bergh and Engelbrecht point out that this algorithmic characteristic

exists even in the later inertia weight and constriction factor versions. According to

Angeline (1998), the PSO algorithm can quickly converge to an optimum in a relatively

low number of iterations but it struggles with finding a near optimal solution. Shi and

Eberhart (1998) introduced the use of a linear decreasing inertia weight parameter,

reminiscent of the temperature parameter in simulated annealing, in an attempt to counter

stagnation. Using the inertia weight parameter, one can influence the algorithm to remain

explorative longer and gradually ease into the exploitative mode where convergence

pressure is stronger. Thus, by preventing the swarm from prematurely converging to

local sub-optima, the algorithm has a higher probability of finding the global optimum

region of the search space. Though we looked briefly at this, we left this for possible

future work, as initial testing did not seem promising at the time.

The reason for avoiding premature convergence is readily apparent. As

mentioned, in the standard PSO, convergence does not imply the discovery of the global

optimum or even local sub-optima necessarily (van den Bergh, 2001), making the value

of the solution highly questionable. This problem is compounded in the case of

university examination timetabling problems as they are multi-modal and, according to

33

Vesterstrøm and Riget (2002), the standard PSO has premature convergence problems

with search spaces that are strongly multi-modal. Vesterstrøm and Riget also point out

that high diversity is “crucial for preventing premature convergence in multi-modal

optimization” (p. 101).

PSO – Constraints

The standard PSO algorithm does not have a mechanism for handling constraints,

either hard or soft, and, like genetic algorithms in general, the algorithm does not respect

feasibility. Unless special steps are taken, algorithmic transformations are not guaranteed

to produce feasible candidate solutions even when the input to the transformation is

within the feasible domain, that is, the feasible search space. Regardless, there are three

main approaches (Paquet & Engelbrecht, 2003) taken in Evolutionary Computing for

handling constraints in addition to an objective function; constraint-preserving, penalty,

and repair methods.

Constraint-preserving methods only consider solutions contained within the

feasible domain. This means that not only are initial solutions drawn from the feasible

domain but also that the only permissible transformations of candidate solutions are those

that result in a feasible solution. This method can be computationally wasteful as one

ends up discarding computed infeasible solutions.

Penalty methods assign a cost with each type of undesirable condition, measuring

the violation. These costs are aggregated to form a weighted sum of all the hard and soft

constraint violations. One sums this aggregated quantity to the objective function to

decrease the value or worth of infeasible solutions. By doing this, the constrained

problem is transformed into an unconstrained problem where infeasible solutions are

34

permitted, thus forming a constraint optimization problem. While this method is

frequently used, it nevertheless does not guarantee feasible solutions since the search is

not limited to the feasible domain, making success highly dependent on the choice of

penalty functions weights.

Repair methods attempt to fix infeasible solutions by replacing them with a nearby

point within the feasible domain. This process can be computationally expensive as it is

not even certain that one can find a feasible replacement.

Summary

The university examination timetabling problem has been shown to be a hard

problem and one of significant importance. Additionally, it is an active research area

even after decades of concentrated effort. We have also shown that the particle swarm

optimization has shown promise in heuristically solving difficult problems while being

relatively uncomplicated itself.

What is unknown is how well the particle swarm optimization algorithm works

against the university examination timetabling problem. This approach is new. In fact,

to the author’s knowledge, this approach has never been tried on any timetabling

problem. Therefore, not only is the PSO’s efficacy unknown in this problem domain but

the appropriate procedural steps are unknown at this point. Even more fundamentally,

what are appropriate values for the control parameters and what initialization method

should one consider using?

35

Contribution to the Field

This dissertation’s contribution systematically investigates the impact of various

factors in solving the university examination form of the timetabling class of problems

and determines the algorithm’s efficacy under the specified test environment. It provides

insight into how well the PSO algorithm handles university examination timetabling

problems and reveals the algorithm’s utility, ability, and limitations in this domain.

36

Chapter 3

Methodology

Research Methods

Determining the suitability and effectiveness of the PSO algorithmic approach to

the university examination timetabling problem is the purpose of this research effort.

That determination will be reached by using an experimental design or Design of

Experiments (DOE) approach. DOE is a well-accepted experimentation methodology

that provides a means of determining which simulation runs to perform to obtain the

essential information with the least number of experiments. An experimental design

model consists of input control variables called factors and output values called

responses, measures, or even response measures. The different values for a factor are

levels and a design is a set of factor level pairs. In a heuristic experiment, common factor

types to study are Problem Factors, Algorithm Factors, and Test Environment Factors.

(Barr, Golden, Kelly, Resende, & Stewart, 1995; Beielstein, Parsopoulos, & Vrahatis,

2001; Hooker, 1996) The overall process of experimental design consists of:

• Identifying factors that may affect the result of an experiment,

• Designing the experiment so that effects of uncontrolled variables are

minimized, and

• Use statistical analysis to separate the effects of the different factors.

This research focused on Problem and Algorithm Factors as the test environment

in our case was fixed. For the problem factors, items such as number of students, number

of rooms, seating capacity of rooms, number of exams, and the conflict matrix density

37

were all candidates. In the case of algorithmic factors, control variables such as

neighborhood size and initial algorithmic control parameters were potential candidates.

We did not study test environmental factors in the current research, as these have no

direct relationship to this effort’s stated purpose.

There are three actions one can take with factors; vary them, fix them, and ignore

them. A researcher chooses to ignore factors assumed inefficacious concerning the

experimental results. Other factors may be fixed because of testing assumptions, such as

fixing the computer hardware and software choices for the testing environment. The

factors used for study were chosen with the goals of the experiment in mind as the goals

are only achieved through the analysis of these factors and measures. The following lists

outline the factors investigated in each action group.

Problem Factors to Vary

• Number of exams, students, and enrollments

• Conflict Matrix Density

• Average number of exams per student

• Weighting value of clashing exams in objective function (see Equation 5)

Problem Factors to Fix

• Number of time slots

• Hard constraints

• Computing environment

38

• Enrollment distribution – i.e., characteristic of university examination

timetables where a few exams have many students and a larger portion of

exams have relatively few students

Problem Factors to Ignore

• Room capacities

• Resource (e.g., rooms and teachers) availabilities

• Exam requirements for special rooms (e.g., labs)

• Examination ordering (e.g., Exam A must precede Exam B)

Algorithm Factors to Vary

• Initialization method

• Number of particles relative to problem size

• Parameter settings

Algorithm Factors to Fix

• Particle’s representation

• Particle’s neighborhood topology

• Termination criteria

Algorithm Factors to Ignore

• None identified

39

Measures – Solution Quality

We define the Average Particle Best Penalty value as each particle’s penalty value,

at their respective previous best positions (pid in Equation 1), averaged across all particles

and replications for each iteration step. We used Average Particle Best Penalty as a

measure of solution quality and plotted its value as a function of the iteration. By looking

at each particle’s best value, instead of the best swarm value, we got a truer sense of how

the swarm’s individual particles behaved on average, given the factors under

investigation.

Burke, Eckersley, McCollum, Petrovic, and Qu (2003a) used average penalty per

student on the Carter data set and defined it as the overall objective function penalty for

the entire timetable divided by the number of students in the data set. This measure is

really on an effort basis, however one measures effort. In our case, effort represents

running the algorithm until the termination criteria is met.

Dividing our average particle best penalty by the total number of students gives the

average penalty per student. This allowed us to compare our solution quality against

published values, which we did on some of the real world examinations. We also

computed average, minimum, maximum, and the population standard deviation for the

last iteration.

Measures – Computational Effort

Our interest with computational effort was not in comparing this algorithm’s effort

with other algorithms given the same input factors, as results from comparisons of this

nature can be misleading and there are too many uncontrollable variables with this

approach. For example, if one uses published results for other algorithms, these

40

algorithms reflect results based on different computing hardware using possibly different

software languages. Even if one were to use the exact same hardware and software

environment, if the same source code is not used, then differences in algorithm

implementation and code optimization can produce different results. Some researchers

implement the alternate algorithms using their test software and hardware environment in

an attempt to eliminate these differences. Nevertheless, even here, factors such as

programming skills and tuning ability vary between implementations.

We limited ourselves to reporting on our implementation’s average computational

effort per iteration for a couple of the test suites. This provided us with a general sense of

how the computational effort varies across problem size while permitting us to ignore

such uncontrollable environmental variables as garbage collection, memory caching, and

operating system background processing, all of which affect timing. We leave a more

thorough analysis of computational effort for a future study.

Measures – Robustness

As Bartz-Beielstein (2003) points out, “Robustness can be defined in many ways,

i.e. as a good performance over a wide range of instances of one test problem or even

over a wide range of different test problems” (p. 11). Barr, Golden, Kelly, Resende, and

Stewart (1995) state that, “Generally, robustness is based on the ability of a heuristic to

perform well over a wide range of test problems and is usually captured through

measures of variability. For example, the quality-versus-time graph in Figure 4 also

includes standard deviation bars with the average quality points" (p. 16).

This study investigated the algorithm’s robustness with respect to the university

timetabling problem by studying solution quality for both a fixed set of factors and a

41

range of factors. These tests show us two things. Firstly, the “fixed set of factors” tests

show how predictable (i.e., consistent) the solution quality is when starting multiple times

from the same set of factors. If the solution quality varies widely for tests having the

same starting factors, then one cannot have a high level of confidence in the solution’s

quality when given only a single run. Thus, for real world problems, this would require

one to perform multiple runs in the hopes of finding a good solution, which is not a

desirable scenario.

Secondly, the “range of factors” tests show how predictable the solution quality is

over data sets having different sizes and conflict matrix densities. Ideally, one wants an

algorithm that provides quality solutions over a wide range of starting factors. For

example, an algorithm that provides high-quality solutions only for data set sizes or

conflict matrix densities within a very narrow range is of limited use in the real world.

Specific Research Procedures

Introduction

The goal of this research was to determine the suitability and effectiveness of

Particle Swarm Optimization techniques when applied to the University Examination

Timetabling Problem. We used data sets, both fabricated and real, spread over a

spectrum of sizes and densities to analyze PSO performance profile on this class of

timetabling problems. In addition, the results were compared against those from other

published studies that used alternate algorithms.

The following subparagraphs describe the approach used to perform this

evaluation. Not only is the PSO algorithm covered but also topics such as Initialization,

42

choice of Objective Function, Termination Criterion, and Data Set properties. We

discuss all major aspects of this research effort’s investigation.

First, we describe some important concepts, methods, and data sets and then we

present the research steps.

PSO Algorithm – Swarm Initialization Method

This research studies the effect of both random and heuristic ordering initialization

of the swarm.

Random Initialization Methods

Instead of using a QRNG, our study will use the more common PRNG and

compare its results against the heuristic ordering methods. Implementations of the PRNG

method were readily available to us from within the SQL Server 2000 environment and

we were more interested in how the more commonly used PRNG implementation faired

against the heuristic approaches described later.

Heuristic Ordering Initialization Methods

Burke, Newall, and Weare (1998b) demonstrated that these heuristic ordering

methods could provide good initial solutions for evolutionary algorithms used on

timetabling problems. If this were true, then the PSO algorithm might make better use of

its time in fine-tuning the solution. Therefore, our initial expectation was that the use of

these heuristic ordering methods would provide us with a better quality initial swarm.

Interestingly, our results revealed something quite different.

To perform this test, we chose the Least Saturation Degree heuristic ordering

method, also referred to as just Saturation degree (Carter, Laporte, & Lee, 1996) and used

by others for producing an initial timetabling solution (Bykov, 2003), as it generally

43

produces the best results of all the heuristic methods.

Heuristic Initialization Implementation

As specified, the above heuristic ordering methods do not stipulate how to resolve

ties in the ordering. Other authors have used a number of methods to break ties. The

approaches can vary between heuristics and even between authors. Additionally, as each

initial swarm particle represents a different timetabling solution, one must generate

multiple initial solutions. Here again, we took the approach used by Bykov (2003) and

solved both these problems by randomly assigning timeslots from among the available

ones. Procedurally, we used a random number, sorted in ascending order, as a secondary

sort order on the generated list. That way, using the heuristic to specify the primary sort

order, this secondary sort order automatically breaks any ties.

Though others used heuristic ordering methods to solve the examination

timetabling problem, we used the heuristics to generate a suitable initialized swarm

population.

PSO Algorithm – Random Number Generation

This study uses Microsoft's Visual Basic .NET 2002 (VB.NET) language to

implement the algorithm. Although VB.NET contains a PRNG function, as mentioned

above, it does not meet statistical requirements for randomness. So, instead, we used the

RAND() function found in Microsoft’s SQL Server Transact-SQL (T-SQL) data base

language. Connolly (2004, March 1) establishes its validity as a random number

generator and Novick (2003, April 8) provides a method that made this function useful

for our algorithmic implementation.

44

PSO Algorithm – Particle Representation

One of the primary issues in designing an effective PSO algorithm is to identify an

appropriate mapping between the problem solution and the PSO particle’s position. A

direct chromosome representation is the customary approach used with Genetic

Algorithms for mapping the problem solution to the examination timetable. In the direct

representation, each chromosome represents the timetable itself. An array of integers,

indexed by exam, represents the chromosome whose value corresponds to a timeslot for

the exam (Terashima-Marín, Ross, & Valenzuela-Rendón, 1999). We used a similar

approach to form the mapping between problem solution and the PSO particle. In our

model, the particle's position in D-dimensional space represents a timetable, where D is

the number of exams. Each exam maps directly to a dimension and each dimension’s

domain is the permissible timeslots, which are discrete values.

PSO Algorithm – Particle Representation – Discrete Search Space

Though the PSO technique’s effectiveness in solving real-valued optimization

problems is well documented (Parsopoulos & Vrahatis, 2002b), literature detailing

discrete PSO research is limited. The more notable works in this area are Kennedy and

Eberhart's (1997) discrete binary PSO version, and Al-kazemi and Mohan's (2002a)

multi-phase discrete PSO method. Both works use a discrete-binary encoded

representation. Another notable effort is Laskari, Parsopoulos, and Vrahatis’s (2002)

research in Integer Programming. These papers notwithstanding, nearly every

documented PSO implementation deals with continuous space, where changes in

particle’s position and velocity have a natural representation. Regardless, the previous

research, involving discrete methods such as binary and integers, shows the ability of the

45

PSO method in efficiently handling high dimensional discrete domain optimization

problems.

This research used an approach similar to the one adopted by Laskari, Parsopoulos,

and Vrahatis’s (2002). That is, we truncated each particle’s position value to the nearest

integer, or time slot in our case, after the PSO algorithm determines its new position.

These same authors performed a second set of experiments where the truncation was

progressive. For example, six decimal digits of precision were used for the first 50

iterations, four were used for the next 100, two were used for the next 100, and the rest

were simply truncated. We briefly investigated this approach and found, as did the

original authors, that there was essentially no difference between the two methods.

PSO Algorithm – Objective and Constraints

Our research followed a similar tact to the one taken by Carter, Laporte, and Lee

(1996) in their constrained optimization approach using graph coloring heuristics to

initialize our algorithm and limiting ourselves to only considering the Examination

Spread cost function during the optimization portion. Carter et al. (1996) discuss

research performed against real world data with the addition of soft-constraints. They

incorporated soft-constraints into their algorithm through a simple method; that is,

“whenever an attempt is made to schedule an exam, feasibility with respect to the side

constraints has to be checked in addition to potential conflicts” (p. 379). Burke, Newall,

and Weare (1998a) point out that spread constraints cause the greatest problems when

solving exam timetabling challenges as these constraint types occur most often.

Therefore, as Carter et al. did for their initial testing, we limited our research efforts to

the examination spread cost function and our research did not look at soft-constraints.

46

Additionally, we did not use the clique-processing step they mention. Nevertheless, the

study of soft-constraints is a natural extension of the current study though and its

incorporation into the algorithm is straightforward, as evidenced by the approach

mentioned above.

The Examination Spread cost function’s purpose is to force the reduction of

second order, and higher, conflicts. The function is formulated in such a manner that

second order conflicts receive the greatest penalty and higher order conflicts receive

proportionally smaller penalty values. This causes the dispersion of clashing

examinations across the full exam period on a per student basis, where clashing

examinations are any two examinations that share a common student. The intent is to

provide students with ample preparation time between examinations and minimize the

chances of back-to-back examinations.

Carter, Laporte, and Lee (1996) used the same cost function used by Laporte and

Desroches (1984), based on the sum of proximity costs, and given as

 { }5 ..., 1, ,
2

32
∈≡ sw

ss (4)

where ws is the weight given to clashing examinations scheduled s periods apart. The

penalty value is equal to this proximity cost weight multiplied by the number of students

involved in the clash. Finally, the objective function value equals these penalty values

aggregated over all clashes and divided by the total number of students, giving us the

average penalty per student. Other examination spread functions and approaches exist in

the literature (Burke & Newall, 2004; Zhaohui & Lim, 2000), all having this same basic

47

aim, but we did not consider these.

Although Carter, Laporte, and Lee (1996) refer to the function in Equation 4 as a

cost and claim to use no side constraints in their initial set of tests, others refer to this

function as a proximity constraint, spread constraint, or even a soft-constraint (Burke,

Eckersley, McCollum, Petrovic, & Qu, 2003a; Burke & Petrovic, 2002). This variation

in terminology is partly because soft-constraints are routinely handled by incorporating

them directly into the objective function. In actuality, it is a cost function or objective

function, as spreading the examinations evenly throughout the exam period is an

objective of most examination timetabling problems and not an inviolable rule, as

implied by a hard-constraint. In addition, some look upon the proximity constraint as

reflecting a preference, which implies a soft-constraint when viewed this way.

Regardless, for the examination spread objective, we use the two forms of reference

interchangeably. That is, we refer to this objective as a cost function, objective function,

or constraint in the context of the referenced work; otherwise, we refer to the spread cost

function as the examination spread cost function or simply as the examination spread.

Along with the single hard-constraint, preventing examination conflicts and the

examination spread cost function, Carter, Laporte, and Lee (1996) made the following

assumptions:

• Time gaps between consecutive time slots, such as overnight and weekends,

were ignored when computing the examination spread.

• No limit was set on the total number of seats available during each time slot.

48

PSO Algorithm – Constraint Handling

The PSO algorithm has two main process sections: initialization and optimization.

In either of these two sections, the solution points can either be restricted to the set of

feasible solutions or drawn from the larger set that also includes infeasible solutions.

These two algorithmic sections, when restricted to either the feasible or the infeasible

domains, provide four possible scenario combinations. For example, the scenario where

solutions are restricted to the feasible domain for both the initialization and optimization

sections is a good match for the constraint-preserving method of handling constraints. Of

course, the repair method of handling constraints is applicable to this scenario too. The

penalty constraint handling method is well suited to handling the two scenarios having

infeasible search space for the optimization section, where one uses feasible initial

solutions and the other uses infeasible. Finally, we have the case where the initialization

section considers the points within the infeasible search space and its optimization phase

only considers those within the feasible domain. This last scenario requires the algorithm

to consider only solutions from the highly restrictive feasible domain after generating

initial points in infeasible domain. It is possible that the initial solutions in this case are

topologically distant from any feasible solutions; putting a significant computational

burden on the algorithm. For this reason, we did not consider this fourth and last case at

this time.

We elaborate on these scenario combinations below, where each subparagraph’s

caption indicates the approach discussed. For example, the approach that considers only

feasible solutions during initialization and infeasible solutions during the optimization

49

process has Feasible/Infeasible Approach as its caption. As mentioned above, we are

not considering the Infeasible/Feasible Approach.

Feasible/Feasible Approach

This approach considers the case where both initialization and optimization

processes draw only from the feasible search space for candidate solutions. This

follows the general method for solving examination timetabling problems (Carter,

Laporte, & Chinneck, 1994), which typifies the constraint-preserving method. The

algorithm consists of two core steps: the use of a graph coloring heuristic to generate

initial feasible solutions, and an optimization process where the PSO algorithm is used

to optimize the objective function while only accepting feasible solutions.

1. Create Initial Feasible Solutions. For this step, we used the computationally

expensive graph coloring heuristics with backtracking to create initial feasible

timetables. As was done by Carter, Laporte, and Lee (1996), we only considered

the examination conflicts hard-constraint during this step. Because we used the

PSO algorithm, we required multiple initial particles for the swarm. Each particle

represented a timetable in our encoding scheme, which in turn required the

generation of multiple initial feasible solutions. We accomplished this using the

following procedural steps:

1.1. Execute the graph coloring heuristic for each required particle. The use of

randomness when breaking ties produces multiple solutions, though this does

not guarantee a solution each time, let alone a unique one. We want to stress

that it is not always possible to find multiple feasible solutions. If the problem

is over-constrained, then by definition, a single solution does not even exist.

50

In these cases, we may end up with fewer than the desired number of initial

particles or even none. To resolve this situation when it arises, we perform the

following two additional steps.

1.2. If step 1.1 produced an incomplete set of initial particles, then, for every

missing particle, use a solution randomly selected from the set of successfully

created ones.

1.3. If step 1.1 produced no feasible solution, then flag the data set with a “Failure”

indicator.

2. Perform Optimization Process. This step incorporates optimization into the

algorithm by way of the objective function. Normally, one would perform this

step by repeatedly testing solution points in D-dimensional space for feasibility.

This approach would then terminate only after finding a feasible solution, making

its termination indeterminate. If the number of feasible to infeasible solutions is

very small in the search vicinity, then this approach could take a very long time

before discovering a feasible solution. For this reason, we devised an approach

that requires only a slight modification to the canonical PSO algorithm and results

in deterministic termination and still prohibits illegal assignments. The general

steps are:

2.1. Use the canonical PSO algorithm to compute the particle’s new position but

do not move the particle to this position.

2.2. Until all of the particle’s dimensions have been checked, do the following:

2.2.1. Randomly select one of the particle’s unchecked dimensions.

2.2.2. If moving the particle along this dimension to the new position, while

51

holding the values of the other dimensions constant, results in a new

feasible solution, then update this dimension to its new value. That is,

move the particle along this dimension.

2.2.3. Otherwise, do not move the particle along this dimension.

The ability of this method to discover better-quality feasible solutions depends in

large part on the density of alternate feasible solutions around the initial solution point.

It was thought that this altered PSO algorithm, which we will referred to as the PSO-

NoConflicts optimization algorithm, would be better able to maintain the explorative

qualities of the algorithm well enough that finding improved feasible solutions would

not be a problem. Moreover, in the case where there is a scarcity of feasible solutions,

at least this method deterministically terminates.

Infeasible/Infeasible Approach

This approach, which more closely matches the original PSO approach for

solving problems, considers the case where both initialization and optimization

processes draw candidate solutions from the infeasible search space. The algorithm

consists of two core steps: the random generation of initial, potentially infeasible,

solutions and an optimization process, which uses the PSO algorithm to optimize the

objective function. In this case, we used the penalty method, via the objective

function, for handling constraints, both hard and soft.

This differs from the previous approach in that infeasible solutions are not

restricted but instead just heavily penalized in much the same manner as Burke and

Newall (2004). Minimization of the objective function, now encompassing both hard

and soft constraints, guides the algorithm to search in ever more promising areas of the

52

search space. Our goal was that by suitably weighting hard and soft constraint

violations through the penalty function, the PSO would find satisfactory solutions to

the timetabling problem. The term “satisfactory” is of course subjective with respect

to the one seeking a solution. What we are saying is that there are no infeasible

solutions within this approach, only feasible solutions having varying degrees of

quality or acceptability (i.e., all solutions are considered feasible by definition). Of

course, this approach does not guarantee a feasible solution, as it is drawing from the

infeasible search space.

Construction of the objective function for this approach requires penalty

functions for all hard and soft constraints. As there may be a large range in the

domains among the penalty functions, typically, one normalizes and weights the

function values so each more accurately represents its significance in the overall

objective. The process of determining the weights is typically empirical and therefore

iterative by nature. As we were only interested in hard-constraints and the

examination spread cost function for this study, we started with a reformulation of the

Carter, Laporte, and Lee (1996) Equation 4 and used the following:

 { }5 ..., 0, ,
2

32
∈≡ sw

ss (5)

The difference between Equation 4 and 5 is that Equation 5 now considers the

case where two exams share the same time slot. This occurs when s equals zero and

produces a penalty value of 32. Now this altered objective function not only provides

a penalty for the examination spread but it also penalizes, to a proportionally larger

degree, exam clashes. That is, first-order through sixth-order conflicts provide values

for the objective function. This reformulation was our starting position for the penalty

53

approach. Additionally, we ran tests with larger weights to investigate how these

affected the occurrence of examination clashes.

Feasible/Infeasible Approach

This final approach is merely a hybrid of the previous two approaches. In this

case, initialization draws candidate solutions from the feasible search space and the

optimization portion draws them from the infeasible search space. The algorithm

consists of two core steps: the use of a graph coloring heuristic to generate initial

feasible solutions, and an optimization process where the PSO algorithm optimizes the

objective function.

PSO Algorithm – Control Parameters

Carlisle and Dozier (2001) performed a study and established a set of default

values for the control parameters, which performed well in the majority of scenarios

tested. Our original intention was to use these default control parameters unless

preliminary testing indicated the need for a reassessment of these values. Pilot testing

with these published default values suggested the existence of parameter values more

suitable to the timetabling problem domain. Therefore, we designed our first test suites

to uncover more appropriately tuned parameter values.

PSO Algorithm – Premature Convergence

We used an initialization method designed to get the swarm very near feasible

solutions or right on them. Our hope was that, by starting the particles off very close to

feasible solutions, we would be in close proximity to a good solution during the

optimization phase and bypass many local sub-optimal locations in the search space.

54

PSO Algorithm – Algorithm Termination

Algorithms are normally designed to terminate when at least one of the stopping

criteria is satisfied. The stopping criteria are specified conditions under which the

algorithm terminates. Examples of termination conditions commonly found in the

literature are:

• Number of iterations reaches a preset maximum number.

• Preset maximum length of clock time passes.

• Preset maximum amount of CPU time consumed.

• Preset maximum number of iterations passes since last change to the best

solution.

• Best solution comes within a delta of a predetermined fitness function value.

According to Barr, Golden, Kelly, Resende, and Stewart (1995), unlike

straightforward algorithms, which usually have well-defined termination criteria,

complex algorithms tend not to have standard termination rules; instead, simply searching

for improved solutions until reaching an arbitrary stopping point. Though longer

searches tend to produce better results, in the case of the standard PSO algorithm,

premature convergence to local minimum usually occurs. At this point, no amount of

additional time will improve the result. Nevertheless, this study used a preset maximum

number of iterations criterion, specified at the outset of each experiment, as the algorithm

requires a deterministic method of termination.

Testing

Ensuring that necessary and sufficient testing takes place requires a methodology.

Greenberg (1990) identifies two methods of computational testing, which are:

55

• statistical analysis – presumes random generation over a problem space and

collects performance values of replicated trials.

• library analysis – uses a fixed library generally available to the professional

community and whose properties are already known or are reported along with

the computational test results. (p. 95)

The former method corresponds to our use of stochastically generated data sets and

the latter to our use of the publicly available university examination timetabling data sets.

Both testing methods were used to analyze the PSO algorithm’s suitability in solving the

university examination timetabling problem.

Testing – Data Sets

Nearly all timetabling research results are based on studies performed against

artificial data sets that were programmatically fabricated (Carter, Laporte, & Lee, 1996).

The reason for this is twofold. First, one invariably wants more control and variation

over the data set than provided by actual data. Secondly, there is an underlying

assumption that controlled sets of input data offer better opportunities to exercise the

algorithm than is obtainable through a snapshot of real world data. This study used both

fabricated data and real world university examination timetabling data.

Testing – Data Sets – Real World

Barr, Golden, Kelly, Resende, and Stewart (1995, p. 20) state, “Real-world

problems reflect the ultimate purpose of heuristic methods, and are important for

assessing the effectiveness of a given approach.” As such, real world data for this study

came from the University of Melbourne, Department of Mathematics and Statistics Web

site, Operations Research Group (13 October 2003), under the “Public Data” section. In

56

particular, we used the University of Toronto data set. This data set contains 13

university examination timetable sets from 11 different institutions and it afforded us

many opportunities to make comparisons against other university examination

timetabling research efforts. The extensive use of this university examination data set,

first used by Carter (1986) and commonly referred to as the “Carter data set,” makes

comparison with other heuristic research heuristic methods straightforward. In addition,

the set’s public availability allowed us to know the precise input for these alternate

methods.

The Operations Research Group web site also contains two other data sets: one

from the University of Nottingham and the other one from the University of Melbourne

used by Merlot, Boland, Hughes, and Stuckey (2002). These sets were not included in

this study.

The following is only a partial listing of previous research efforts that used the

Carter data sets:

� Burke, Eckersley, McCollum, Petrovic, & Qu (2003a, 2003b)

� Burke & Newall (1999)

� Burke & Newall (2004)

� Burke, Newall, & Weare (1995)

� Carter & Laporte (1996)

� Carter, Laporte, & Lee (1996)

� Di Gaspero & Schaerf (2000)

� Ross, Hart, & Corne (1998)

57

Testing - Data Sets - Real World - Other Attributes

Table 4 through Table 6 present many other attributes related to the 13

examination data sets found in the Carter data set. The meanings should be self-

explanatory based upon column headings. The features were extracted from the data sets

to provide a detailed view of the test data attributes for use during the analysis phase of

this research effort. These tables represent, to the author’s knowledge, the first

comprehensive feature listing across all data sets. Some of the listed features are found

throughout various reported research articles. For example, the “Maximum Clique” and

“# of periods” columns listed in Table 5 come from Carter and Johnson (2001) and

Burke, Eckersley, McCollum, Petrovic, and Qu (2003a), respectively.

58

T
a
b

le
 4

.
A

tt
ri

b
u

te
s

o
f

C
a
rt

er
 D

a
ta

 S
et

s
–
 1

 o
f

3

D
a

ta
 S

et

In
st

it
u

ti
o

n

#
 o

f

ex
a

m
s

#
 o

f

st
u

d
en

ts

en
ro

ll
m

en
t

#
 o

f
ex

a
m

s

h
a

v
in

g
 a

cl
a

sh

co
n

fl
ic

t

m
a

tr
ix

d
en

si
ty

#
 o

f

co
n

fl
ic

t
ed

g
es

st
u

d
en

ts

w
it

h

≤ ≤≤≤
 1

 e
x
a

m

C
A

R
-F

-9
2

C
ar

le
to

n
U

ni
ve

rs
it

y,
 O

tt
aw

a

54
3

 1
84

19

55

52
2

54

2
0.

13
8

20

30
5

39

69

C
A

R
-S

-9
1

C
ar

le
to

n
U

ni
ve

rs
it

y,
 O

tt
aw

a

68
2

 1
69

25

56

87
7

67

8
0.

12
8

29

81
4

34

09

E
A

R
-F

-8
3

E
ar

l H
ai

g
C

ol
le

gi
at

e
In

st
it

ut
e,

T

or
on

to

19

0

11
25

81
09

19
0

0.
26

6

47
93

1

H
E

C
-S

-9
2

É
co

le
 d

es
 H

au
te

s
É

tu
de

s
C

om
m

er
ci

al
es

, M
on

tr
ea

l

81

28

23

10

63
2

81

0.

41
5

13

63

32

1

K
F

U
-S

-9
3

K
in

g
F

ah
d

U
ni

ve
rs

it
y

of

P
et

ro
le

um
 a

nd
 M

in
er

al
s,

 D
ha

ra
n

46

1

53
49

25
11

3

44
4

0.
05

5

58
93

27
6

L
S

E
-F

-9
1

L
on

do
n

S
ch

oo
l o

f
E

co
no

m
ic

s

38
1

27

26

10

91
8

37

9
0.

06
2

45

31

99

P
U

R
-S

-9
3

P
ur

du
e

U
ni

ve
rs

it
y,

 I
nd

ia
na

24
19

 3

00
32

12
06

81

24

13

0.
02

9

86
26

1

26
30

R
Y

E
-S

-9
3

R
ye

rs
on

 U
ni

ve
rs

it
y,

 T
or

on
to

48
6

 1
14

83

45

05
1

48

5
0.

07
5

88

72

20

25

S
T

A
-F

-8
3

S
t.

A
nd

re
w

’s
 J

un
io

r
H

ig
h

S
ch

oo
l,

T
or

on
to

13
9

61

1

57
51

13
9

0.
14

3

13
81

0

T
R

E
-S

-9
2

T
re

nt
 U

ni
ve

rs
it

y,
 P

et
er

bo
ro

ug
h,

O

nt
ar

io

26

1

43
60

14
90

1

26
0

0.
18

0

61
31

66
7

U
T

A
-S

-9
2

F
ac

ul
ty

 o
f

A
rt

s
an

d
S

ci
en

ce
s,

U

ni
ve

rs
it

y
of

 T
or

on
to

62
2

 2
12

66

58

97
9

62

2
0.

12
5

24

24
9

61

80

U
T

E
-S

-9
2

F
ac

ul
ty

 o
f

E
ng

in
ee

ri
ng

,
U

ni
ve

rs
it

y
of

 T
or

on
to

18
4

27

50

11

79
3

18

4
0.

08
4

14

30

79

Y
O

R
-F

-8
3

Y
or

k
M

il
ls

 C
ol

le
gi

at
e

In
st

it
ut

e,

T
or

on
to

18
1

94

1

60
34

18
1

0.
28

7

47
06

1

59

T
a
b

le
 5

.
A

tt
ri

b
u

te
s

o
f

C
a
rt

er
 D

a
ta

 S
et

s
–
 2

 o
f

3

M
a

x
im

u
m

 C
li

q
u

e
en

ro
ll

m
en

ts
 p

er
 s

tu
d

en
t

D
a

ta
 S

et

In
st

it
u

ti
o

n

S
iz

e
N

u
m

b
er

#
 o

f

p
er

io
d

s

a
v

g
.
(m

a
x
)

#

o
f

cl
a

sh
es

p
er

 s
tu

d
en

t
a

v
er

a
g

e
st

a
n

d
a

rd

d
ev

ia
ti

o
n

m
a

x

(c
o

u
n

t)

C
A

R
-F

-9
2

C
ar

le
to

n
U

ni
ve

rs
it

y,
 O

tt
aw

a

24

3

32

2.
57

(6

)
3.

01

1.
46

7
(2

9)

C
A

R
-S

-9
1

C
ar

le
to

n
U

ni
ve

rs
it

y,
 O

tt
aw

a

23

15

6

35

2.

96

(8
)

3.
36

1.

57

9

(1
)

E
A

R
-F

-8
3

E
ar

l H
ai

g
C

ol
le

gi
at

e
In

st
it

ut
e,

T

or
on

to

21

7

24

6.

21

(9
)

7.
21

1.

20

10

(9

)

H
E

C
-S

-9
2

É
co

le
 d

es
 H

au
te

s
É

tu
de

s
C

om
m

er
ci

al
es

, M
on

tr
ea

l

17

1

18

3.
12

(6

)
3.

77

1.
44

7
(1

)

K
F

U
-S

-9
3

K
in

g
F

ah
d

U
ni

ve
rs

it
y

of

P
et

ro
le

um
 a

nd
 M

in
er

al
s,

 D
ha

ra
n

19

2

20

3.

90

(7
)

4.
69

1.

36

8

(1
1)

L
S

E
-F

-9
1

L
on

do
n

S
ch

oo
l o

f
E

co
no

m
ic

s

17

2

18

3.
12

(7

)
4.

01

0.
99

8
(3

)

P
U

R
-S

-9
3

P
ur

du
e

U
ni

ve
rs

it
y,

 I
nd

ia
na

3.

31

(8
)

4.
02

1.

42

9

(1
)

R
Y

E
-S

-9
3

R
ye

rs
on

 U
ni

ve
rs

it
y,

 T
or

on
to

3.

55

(9
)

3.
92

2.

08

10

(1

)

S
T

A
-F

-8
3

S
t.

A
nd

re
w

’s
 J

un
io

r
H

ig
h

S
ch

oo
l,

T
or

on
to

13

60

13

8.

41
 (

10
)

9.
41

1.

22

11

(2

09
)

T
R

E
-S

-9
2

T
re

nt
 U

ni
ve

rs
it

y,
 P

et
er

bo
ro

ug
h,

O

nt
ar

io

20

4

23

2.

85

(5
)

3.
42

1.

41

6

(2
0)

U
T

A
-S

-9
2

F
ac

ul
ty

 o
f

A
rt

s
an

d
S

ci
en

ce
s,

U

ni
ve

rs
it

y
of

 T
or

on
to

26

12

8

35

2.

50

(6
)

2.
77

1.

50

7

(2
3)

U
T

E
-S

-9
2

F
ac

ul
ty

 o
f

E
ng

in
ee

ri
ng

,
U

ni
ve

rs
it

y
of

 T
or

on
to

10

4

10

3.
39

(5

)
4.

29

1.
01

6
(2

0)

Y
O

R
-F

-8
3

Y
or

k
M

il
ls

 C
ol

le
gi

at
e

In
st

it
ut

e,

T
or

on
to

18

32

21

5.

42
 (

13
)

6.
41

1.

80

14

(1

)

60

T
a
b

le
 6

.
A

tt
ri

b
u

te
s

o
f

C
a
rt

er
 D

a
ta

 S
et

s
–
 3

 o
f

3

en
ro

ll
m

en
ts

 p
er

 e
x
a

m

D
a

ta
 S

et

In
st

it
u

ti
o

n

a
v

g
.
(m

a
x
)

#

ed
g

e
w

ei
g

h
t

p
er

 e
x
a

m

a
v

g
.
(m

a
x
)

#
 o

f

cl
a

sh
es

 p
er

ex
a

m

a
v

g
.
(m

a
x
)

ed
g

e
w

ei
g

h
t

p
er

 c
la

sh

a
v

er
a

g
e

st
a

n
d

a
rd

d
ev

ia
ti

o
n

m

a
x
im

u
m

C
A

R
-F

-9
2

C
ar

le
to

n
U

ni
ve

rs
it

y,
 O

tt
aw

a
 2

78
.6

0
(4

73
0)

74
.9

3
(3

81
)

3.

72

(2
90

)
10

2.
25

14

2.
02

15
66

C
A

R
-S

-9
1

C
ar

le
to

n
U

ni
ve

rs
it

y,
 O

tt
aw

a
 2

59
.3

9
(4

71
8)

87
.9

5
(4

72
)

2.

95

(3
21

)
83

.4
0

10
1.

18

13

85

E
A

R
-F

-8
3

E
ar

l H
ai

g
C

ol
le

gi
at

e
In

st
it

ut
e,

T

or
on

to

 2
73

.4
9

(1
66

5)

50

.4
5

(1
34

)

5.
42

(1

92
)

42
.6

8
44

.3
7

23

2

H
E

C
-S

-9
2

É
co

le
 d

es
 H

au
te

s
É

tu
de

s
C

om
m

er
ci

al
es

, M
on

tr
ea

l
 4

35
.2

6
(2

31
5)

33
.6

5
(6

2)

12

.9
3

(5
35

)
13

1.
26

13

1.
72

63
4

K
F

U
-S

-9
3

K
in

g
F

ah
d

U
ni

ve
rs

it
y

of

P
et

ro
le

um
 a

nd
 M

in
er

al
s,

 D
ha

ra
n

 2
31

.1
4

(5
08

9)

26

.5
5

(2
47

)

8.
71

(9

97
)

54
.4

8
13

5.
87

12
80

L
S

E
-F

-9
1

L
on

do
n

S
ch

oo
l o

f
E

co
no

m
ic

s

93
.6

7
(1

22
9)

23
.9

1
(1

34
)

3.

92

(2
04

)
28

.6
6

48
.9

5

38
2

P
U

R
-S

-9
3

P
ur

du
e

U
ni

ve
rs

it
y,

 I
nd

ia
na

 1

76
.2

3
(6

78
9)

71
.5

0
(8

57
)

2.

46

(9
66

)
49

.8
9

10
5.

75

19

61

R
Y

E
-S

-9
3

R
ye

rs
on

 U
ni

ve
rs

it
y,

 T
or

on
to

 3

73
.8

9
(5

11
8)

36
.5

9
(2

74
)

10

.2
2

(6
17

)
92

.7
0

12
1.

98

94

3

S
T

A
-F

-8
3

S
t.

A
nd

re
w

’s
 J

un
io

r
H

ig
h

S
ch

oo
l,

T
or

on
to

 3

54
.6

0
(2

09
0)

19
.8

7
(6

1)

17

.8
5

(2
09

)
41

.3
7

45
.2

2

23
7

T
R

E
-S

-9
2

T
re

nt
 U

ni
ve

rs
it

y,
 P

et
er

bo
ro

ug
h,

O

nt
ar

io

 1
71

.8
6

(1
26

7)

47

.1
6

(1
45

)

3.
64

(1

50
)

57
.0

9
67

.9
3

40

7

U
T

A
-S

-9
2

F
ac

ul
ty

 o
f

A
rt

s
an

d
S

ci
en

ce
s,

U

ni
ve

rs
it

y
of

 T
or

on
to

 2

44
.7

0
(4

38
2)

77
.9

7
(3

03
)

3.

14

(8
24

)
94

.8
2

14
9.

92

13

14

U
T

E
-S

-9
2

F
ac

ul
ty

 o
f

E
ng

in
ee

ri
ng

,
U

ni
ve

rs
it

y
of

 T
or

on
to

 2

26
.0

9
(1

84
7)

15
.5

4
(5

8)

14

.5
5

(3
01

)
64

.0
9

71
.3

9

48
2

Y
O

R
-F

-8
3

Y
or

k
M

il
ls

 C
ol

le
gi

at
e

In
st

it
ut

e,

T
or

on
to

 1

97
.2

6
(7

79
)

52

.0
0

(1
17

)

3.
79

(8

0)

33
.3

4
26

.5
3

17

5

61

Testing – Data Sets – Real World – Data Set Structure

In mathematical terminology, a graph is a set of lines that connect a possibly

empty set of points. These graph points are commonly known as vertices or nodes and

the lines as arcs or edges. A clique is any subset of graph nodes having every node pair

in the subset connected by an edge. A maximal clique is a clique that is not contained in

any other clique and a maximum clique is a graph’s largest maximal clique.

As mentioned elsewhere in this document, the basic examination timetabling

problem can be mapped to a graph coloring problem where a graph node corresponds to

an exam and an edge indicates that at least one student is taking both connected exams.

In this case, a clique corresponds to a set of examinations that must be scheduled in

distinct time slots. Given this, it is readily apparent that the number of nodes (exams),

within a timetable graph’s maximum clique, correspond to the minimum number of time

slots required in preventing a clash constraint violation. Hence, the maximum clique

provides us with a lower bound in the number of time slots required to schedule the

exams, regardless of the number of maximum cliques. Carter and Johnson (2001) point

out that the “graphs tend to have fairly large cliques compared with random graphs with

the same density” (p. 538). Using a graph’s maximum clique to initialize examination

timetabling problems is common and this approach has been studied by a number of

authors (Carter, Laporte, and Lee, 1996; Carter & Johnson, 2001; Petrovic, Yang, &

Dror, 2003). Unfortunately, the determination of a graph’s maximum clique is an NP-

Complete problem (Papadimitriou & Steiglitz, 1982/1998).

We use the aforementioned clique information to show that timetabling problems

exhibit a definite non-random structure. This structure is largely due to course selection

62

biases caused by degree curriculum requirements. That is, the probability of a student

selecting a particular course has a built in bias towards courses within a student’s chosen

degree program. This results in dense clusters—i.e., a set of nodes, or subgraph, within

the graph having higher probability of connectivity with other nodes within the same

subgraph—of university examinations in the graph with relatively sparse edge

connectivity between the clusters (Carter & Johnson, 2001; Erben, 2001; Newall, 1999).

As an example, Burke, Elliman, Ford, and Weare (1995) observed that the average

probability of an exam conflicting with an exam from a different department at the

University of Nottingham is 0.023 while the probability is 0.281 between exams from the

same department.

Carter, Laporte, and Lee (1996) devised a method, adopted by others (Petrovic,

Yang, & Dror, 2003; Burke, Petrovic, & Qu, 2004), which fabricates university

examination test data sets with specific conflict matrix densities. Carter et al. (1996)

constructed test data by “creating students one at a time, and then assigning them to r

randomly selected courses, where r follows a discrete uniform distribution in the interval

[2, 6]. This process ends when a specified density d is reached” (p. 376). These studies

generated data sets by altering the number n of examinations and the density d of a

conflict matrix. In the Carter et al. study, “ten different instances were generated for each

combination of n = 200, 400 and d = 0.05, 0.15, 0.25” (p. 376).

Unfortunately, for test purposes, data sets generated using the Carter, Laporte, and

Lee (1996) do not exhibit the fundamental non-random structure of actual university

examination timetabling data sets described earlier. To see this deficiency, we plot the

63

number of weighted examination conflicts (i.e., conflicts weighted by the number of

students enrolled in conflicting exams) for each exam in descending order of magnitude.

The data plotted in Figure 2 was generated using the method of Carter, Laporte,

and Lee (1996). We randomly picked examinations, as prescribed by the algorithm, from

the Carter data set’s London School of Economics (LSE-F-91) data. Thus, the number of

examinations, 381, matches the number found in the LSE-F-91 data set. Additionally,

the conflict matrix density matches the LSE-F-91 density, but the number of students and

enrollments differ.

0

10

20

30

40

50

60

1

2
2

4
3

6
4

8
5

1
0
6

1
2
7

1
4
8

1
6
9

1
9
0

2
1
1

2
3
2

2
5
3

2
7
4

2
9
5

3
1
6

3
3
7

3
5
8

3
7
9

Exams Sorted by Decreasing Number of Weighted Conflicts

N
u

m
b

e
r

o
f

W
e
ig

h
te

d
 C

o
n

fl
ic

ts

Figure 2. 381 LSE-F-91 exams, 2731 enrollments, 693 students, 0.062 density

Contrast this plot with the one found in Figure 3, which also shows the number of

weighted examination conflicts for each exam in descending order of magnitude, but for

the actual and complete LSE-F-91 data set. (The abscissa dimension ends at 379, instead

64

of 381, because two of the exams have no corresponding enrollment in this data set.) It is

readily apparent that the structures of these two plots differ considerably. In fact, if one

were to plot the other 12 data sets found in the Carter data set, representing other

universities, one would obtain plots having forms nearly identical to that of Figure 3,

irrespective of their conflict matrix density or data set sizes.

0

200

400

600

800

1000

1200

1400

1

2
3

4
5

6
7

8
9

1
1
1

1
3
3

1
5
5

1
7
7

1
9
9

2
2
1

2
4
3

2
6
5

2
8
7

3
0
9

3
3
1

3
5
3

3
7
5

Exams Sorted by Decreasing Number of Weighted Conflicts

N
u

m
b

e
r

o
f

W
e
ig

h
te

d
 C

o
n

fl
ic

ts

Figure 3. 381 LSE-F-91 exams, 10918 enrollments, 2726 students, 0.062 density

It is because of this disparity in data structures between that used by Carter,

Laporte, and Lee (1996) and that found in real world data sets that we additionally used

fabricated and reduced size real world data sets for testing; both describe more fully

below. Moreover, although real-world data sets provide realistic input for exercising an

algorithm, in the case of university examination timetabling at least, their sheer size tends

to make them unwieldy for analysis; that is, their size makes testing the effects of

65

variations in factors cumbersome because the testing cycle-time is so long. Providing

structurally similar data sets of varying sizes not only increased the number of available

test sets but also increased the range of sizes over which we exercised the algorithm,

which permitted us to see how measures change with variations in problem size.

Maintaining Structure while Removing Non-Conflicting Enrollments

An enrollment (i.e., a student registered in a course) takes part in an examination

conflict only if the related student is registered in at least one other course. Hence, an

enrollment participates in a conflict only if the student has other courses. To restate, for

our timetabling problem under consideration, every course has one and only one

examination; so, in the contexts of our discussion, course and examination are

synonymous. From this, it is apparent that removing enrollments not participating in

conflicts is equivalent, with respect to conflict generation, to removing students having

only one examination. This action does not alter the conflict matrix density of the

problem, as all entries within the conflict matrix are a result of students having more than

one exam.

Burke, Eckersley, McCollum, Petrovic, and Qu (2003a) observed that some of the

Carter data sets contained significant numbers of students who had only one enrollment.

For example, data sets UTA-S-92 and CAR-S-91 in Table 4 have greater than 29% and

20% of the students respectively with this quality. This is readily seen by comparing the

values in the “# of students” column against those in the “students with ≤ 1 exam”

column for these particular data sets. A quick comparison of the other data sets listed

show similar reductions possible. Removing these students from the data set will reduce

the computation overhead without altering the conflict matrix density or the structural

66

qualities of the graph problem that are of interest to us. As these authors point out,

students having only a single enrollment are able to take their examination any time

without possibility of an examination clash. Of course, this ignores soft-constraints that

might apply, such as the room-capacity constraint, but, like the authors, this study

ignored these constraints.

This study used a “reduced” real world data set for test. The set, referred to

throughout the rest of this dissertation as the Reduced Carter Data Set, was produced by

removing the students having only one exam, and does not represent a reduction in

exams. This reduction in students leads to a subsequent reduction in enrollments. The

attributes of this reduced data set are shown in Table 7. The suffix notation of “-R” on

the Data Set name indicates that it represents the reduced version of the full Carter set.

67

T
a
b

le
 7

.
A

tt
ri

b
u

te
s

o
f

R
ed

u
ce

d
 C

a
rt

er
 D

a
ta

 S
et

s

G
ra

ph

of

of

of

E

nr
ol

lm
en

ts

E
nr

ol
lm

en
ts

E

xa
m

s
C

on
fl

ic
t

D
at

a
S

et

D
en

si
ty

E

xa
m

s
S

tu
de

nt
s

E
nr

ol
lm

en
ts

/ S

tu
de

nt

/ E
xa

m

w
/ C

la
sh

E

dg
es

C

A
R

-F
-9

2-
R

0.

13
8

54
3

14
45

0
51

55
3

3.
57

94

.9
4

54
2

40
61

0
C

A
R

-S
-9

1-
R

0.

12
8

68
2

13
51

6
53

46
8

3.
96

78

.4
0

67
8

59
62

8
E

A
R

-F
-8

3-
R

0.

26
6

19
0

11
24

81

08

7.
21

42

.6
7

19
0

95
86

H

E
C

-S
-9

2-
R

0.

41
5

81

25
02

10

31
1

4.
12

12

7.
30

81

27

26

K
FU

-S
-9

3-
R

0.

05
5

46
1

50
73

24

83
7

4.
90

53

.8
8

44
4

11
78

6
L

S
E

-F
-9

1-
R

0.

06
2

38
1

26
27

10

81
9

4.
12

28

.4
0

37
9

90
62

P

U
R

-S
-9

3-
R

0.

02
9

24
19

27

40
5

11
80

54

4.
31

48

.8
0

24
13

17

25
22

R

Y
E

-S
-9

3-
R

0.

07
5

48
6

94
58

43

02
6

4.
55

88

.5
3

48
5

17
74

4
S

T
A

-F
-8

3-
R

0.

14
3

13
9

61
1

57
51

9.

41

41
.3

7
13

9
27

62

T
R

E
-S

-9
2-

R

0.
18

0
26

1
36

93

14
23

4
3.

85

54
.5

4
26

0
12

26
2

U
T

A
-S

-9
2-

R

0.
12

5
62

2
15

08
6

52
79

9
3.

50

84
.8

9
62

2
48

49
8

U
T

E
-S

-9
2-

R

0.
08

4
18

4
26

72

11
71

5
4.

38

63
.6

7
18

4
28

60

Y
O

R
-F

-8
3-

R

0.
28

7
18

1
94

0
60

33

6.
42

33

.3
3

18
1

94
12

68

Testing – Data Sets – Atypical Fabricated Data Sets

Carter, Laporte, and Lee (1996) devised a method, adopted by others (Petrovic,

Yang, & Dror, 2003; Burke, Petrovic, & Qu, 2004), which fabricates university

examination test data sets with specific conflict matrix densities. Carter et al. (1996)

constructed test data by “creating students one at a time, and then assigning them to r

randomly selected courses, where r follows a discrete uniform distribution in the interval

[2, 6]. This process ends when a specified density d is reached” (p. 376). These studies

generated data sets by altering the number n of examinations and the density d of a

conflict matrix. In the Carter et al. study, “ten different instances were generated for each

combination of n = 200, 400 and d = 0.05, 0.15, 0.25” (p. 376).

The Carter, Laporte, and Lee (1996) method for constructing timetabling data sets,

described earlier, is “typically” used by others. We chose to refer to the data set

produced via this method as “atypically” due to the fact the its structure, as shown earlier,

is in fact atypical of real world data sets. As such, we also chose not to use this data set

in our testing as any conclusions drawn from its use would be of questionable value.

Instead, we chose to devise an algorithmic approach that produces fabricated data sets

exhibiting structure similar to the real world data sets. We refer to these data sets

throughout the rest of this thesis as the Typical Fabricated Data Sets as their structure

typifies real world data set structures.

Testing – Data Sets – Typical Fabricated Data Sets

Our goal in constructing a fabricated data set that typified the real world data was

to construct data sets that emulate the structure found in Figure 3. Specially, a data set,

which when plotted in the same manner, produced a graph of similar form; unlike the

69

Carter, Laporte, and Lee (1996) method, which, though easily constructed, does not

produce a truly representative data set. That is to say, we generated test data sets that

more accurately mirror the associations between students and exams, expressed through

the enrollment relationship, found in real world data sets.

We used this algorithm to generate a number of examination sets. We chose the

values 100, 200, and 400 for the number of exams in the data sets, and 0.04, 0.08, 0.16,

and 0.32 for the conflict density values. The combination of these factors produced 12

distinct examination data sets, which we designated using the notation nnndd, where nnn

was a value from the set {100, 200, 400} and dd a value from the set {04, 08, 16, 32}.

For example, the designation “20016” refers to the data set having 200 exams and a

conflict matrix density of 0.16.

We now give an outline of the algorithm.

Given an objective to create a data set having nnn exams with dd density, do the

follow:

1. Create nnn exams.

2. Create a mapping between a real world examination data set and a data set containing

nnn exams. For this step, we used the PUR-S-93 data set, which has 2419 exams,

30032 students, 120681 enrollments, and a density of 0.029. We chose this set due to

its large number of exams, even though it also has the lowest density of the Carter set.

Any of the Carter data sets could have been used for this purpose.

2.1. Create a mapping table having the four columns as shown Table 8 below. The

Ordinal Position and Weighted Conflicts columns correspond to the abscissa and

ordinate axes respectively in Figure 3. The Real Exam # is the real world exam

70

number that gives rise to the associated weighted conflicts. Finally, the

Fabricated Exam # was determined in the following way:

2.1.1. Partition the Ordinal Positions into nnn equal groups.

2.1.2. Map each of these nnn Ordinal Position groups to one of the nnn exams

created in step 1. Though not a requirement, we mapped the first 2419/nnn

real world exams to the first fabricated exam, the second 2419/nnn real

world exams to the second fabricated exam, and so forth.

Table 8. Fabricated Data Set Mapping Table Example

Ordinal

Position

Weighted

Conflicts

Real

Exam #

Fabricated

Exam #

1 1961 637 1
2 1717 575 1
3 1439 1678 1
4 1382 1979 1

… … … …

24 481 2106 1
25 478 541 1
26 471 2068 2
27 451 2207 2
28 446 1986 2
… … … …

2419 1 889 100

3. Create a student record for the fabricated data set.

4. Determine the number of exams for this student by selecting a value from a discrete

uniform distribution in the interval [2, 6].

5. For each exam in this set, do the following:

5.1. Randomly select an enrollment record from the PUR-S-93 data set.

5.2. Use Table 8 to look up the fabricated exam associated with this real world exam.

71

5.3. If the fabricated exam determined in step 5.2 is already associated with this

student, then go to step 5.1.

5.4. Using this fabricated exam and student combination, create an enrollment record.

5.5. If conflict matrix density is greater than or equal to dd, then quit.

6. Otherwise, go to step 3.

Table 9 lists attributes for each of our constructed Typical Fabricated Data Sets.

The meanings of the column values should be self-explanatory.

72

T
a
b

le
 9

.
A

tt
ri

b
u

te
s

o
f

T
y
p

ic
a
l

F
a
b

ri
ca

te
d

 D
a
ta

 S
et

s

D
at

a
G

ra
ph

of

of

of

E
nr

ol
lm

en
ts

E

nr
ol

lm
en

ts

E
xa

m
s

C
on

fl
ic

t
S

et

D
en

si
ty

E

xa
m

s
S

tu
de

nt
s

E
nr

ol
lm

en
ts

/ S

tu
de

nt

/ E
xa

m

w
/ C

la
sh

E

dg
es

10
0

E
xa

m
s

10
00

4
0.

04

10
0

33

13
6

4.
12

1.

36

54

40
2

10
00

8
0.

08

10
0

88

34
1

3.
88

3.

41

78

80
4

10
01

6
0.

16

10
0

19
2

77
4

4.
03

7.

74

92

16
00

10

03
2

0.
32

10

0
57

5
22

66

3.
94

22

.6
6

10
0

32
00

20
0

E
xa

m
s

20
00

4
0.

04

20
0

15
4

59
9

3.
89

3.

00

14
6

16
04

20

00
8

0.
08

20

0
31

9
12

89

4.
04

6.

45

18
2

32
02

20

01
6

0.
16

20

0
84

2
33

42

3.
97

16

.7
1

19
6

64
00

20

03
2

0.
32

20

0
25

15

10
06

1
4.

00

50
.3

1
20

0
12

80
0

40
0

E
xa

m
s

40
00

4
0.

04

40
0

60
4

23
69

3.

92

5.
92

34

7
64

00

40
00

8
0.

08

40
0

13
76

55

03

4.
00

13

.7
6

38
7

12
80

2
40

01
6

0.
16

40

0
35

56

14
29

4
4.

02

35
.7

4
39

8
25

60
0

40
03

2
0.

32

40
0

10
73

8
42

76
1

3.
98

10

6.
90

40

0
51

20
0

73

Testing – Environment

Hardware

The author’s personal computer, used for this study, contains of a 1.8 GHz Intel

Pentium 4 processor with 512MB of memory running on Microsoft Windows XP SP2

Home Edition.

Software

This study used Microsoft’s Visual Basic .NET 2002. Microsoft's Visual Basic

.NET is highly readable, generates optimized executable code, and is expressive

enough for the algorithms under consideration. Additionally, other software products,

such as Microsoft Access, were used when and where deemed appropriate for the

analysis of the algorithm.

Persistent Storage

A database management system was be used for persistent storage (e.g., to store

exam, student and room information). Though any number of the current relational

database management systems (RDBMS) would have sufficed for this purpose, we

used Microsoft’s SQL Server 2000.

Technically speaking, a RDBMS was not required for persistent storage as this

was doable entirely within Visual Basic in conjunction with XML, for example.

Regardless, it was felt that a database management system was better suited to

handling the large data sets efficiently.

74

Research Steps

The following subparagraphs call out the major steps performed during our

research effort. These are high-level steps and not an exhaustive listing.

Research Steps – Setup Environment

A software implementation requires both a hardware and software environment to

operate. The hardware platform was the author’s personal desktop computer running

Microsoft Windows XP SP2 Home Edition. Different languages were used depending on

the needs of the testing or analysis and included Microsoft’s VB.NET for the algorithm’s

overall structure and testing environment, Microsoft SQL Server T-SQL for data base

procedures, and Microsoft Visual Basic for Applications within the Microsoft Access

2000 environment.

Research Steps – Established Tests

We settled on three groups of experiments, designed to ascertain the canonical

PSO algorithm’s ability in handling real world university examination sets. The

objectives of the three groups were:

Selecting PSO Parameters

Experiments were designed to determine appropriate PSO algorithm values for

the Cognitive/Social Ratio, Inertia Weight, Swarm Size, and 1st Order Conflict Weight

parameters.

Constraint Handling

Experiments were constructed to investigate how the handling of constraints

influenced the algorithm’s ability during the optimization phase.

75

Real World Data

Experiments were fashioned to assess the algorithm’s effectiveness against real

world examination data sets.

Research Steps – Exercised Tests

After establishment of the tests, the testing portion of this research proceeded in a

methodically controlled and documented manner.

We constructed test matrices, where each row in the matrix defined a test case and

the columns defined parameters. Each cell in the matrix contained a test case parameter’s

argument value where these values normally correspond to algorithmic and problematic

factors. We then created a test harness around the algorithm with the problem’s factors

acting as the harness input parameters; thus, providing a well-defined interface for each

test. Finally, we placed each test’s initial harness arguments, defined in the test matrix,

into a database table, and used this table to direct the algorithm. This method allowed us

to document the primary inputs for each test and, additionally, permitted unattended test

execution.

Besides capturing the usual output from the algorithm, we recorded additional

relevant information, such as timing, into the database for use during the analysis phase.

Performed Analysis and Interpretation

According to Barr, Golden, Kelly, Resende, and Stewart (1995), “Data Analysis

refers to evaluating the recorded empirical data with statistical and nonstatistical

techniques with respect to the experiment’s purpose and goals” (p. 21). In particular, we

76

looked for correlations between factors or factor combinations and measures such as

solution quality.

Besides using the work of Barr, Golden, Kelly, Resende, and Stewart (1995) as a

guide, our research also used the publications by Bartz-Beielstein (2003), Dolan and

Moré (2002), and Beielstein, Parsopoulos, and Vrahatis (2001) as standard for directing

the analysis and interpretation phases.

Report Results

This research effort uses the guidelines put forward by Barr, Golden, Kelly,

Resende, and Stewart (1995) for reporting computational results. As pointed out by these

authors, the research report provides necessary and sufficient information to convince a

reader the experiment has scientific merit, is reproducible, and addresses the goal. The

guidelines are:

Reproducibility – Real world data sets are accessible from the Internet and

methods used to generate artificial data sets are documented.

Specify influential factors in detail – The algorithm, all algorithm parameters,

random number generation, and test environment parameters are fully documented.

Precise timing – Testing factored out timing as much as possible so timing

precision was not a problem. Reporting instead focused on progress of the algorithm per

iteration. Using time as a metric introduces many uncontrollable variables that tend to

obfuscate the truth rather than illuminate it. For example, one may not have direct

control over items such as background processing for operating system processes or

garbage collection events in a programming environment. In addition, with the rate of

increase in machine processing speed, one can easily reduce the processing time by

77

simply using a computer with a faster processor or, in some cases, by just adding more

RAM memory. Though we did perform some reporting on time, algorithms that have

distinct generations or iterations cycles most often report based on iterations.

Show how algorithm parameters are set – The reasoning beyond parameter

settings was documented. For example, if generally accepted parameter values from

peer-reviewed literature are chosen, then the source was cited and rationale given to

justify the decision. If instead, parameters are empirically derived, then the method used

to produce them was documented and justification given.

Use of statistical experimental design techniques – Techniques similar to those

used by Burke, Eckersley, McCollum, Petrovic, and Qu (2003b) are used for reporting

purposes.

Compare the heuristic with other methods – The results of our experiments, using

the Carter data set, are compared against the results from other heuristic techniques

applied to the same data set.

Reduce variability of results – This was accomplished by using the same testing

environment throughout and by factoring out uncontrollable environmental influenced

variables such as timing.

Produce a comprehensive report of the results – Experimental test results are

reported in tabular form and show items similar to those reported in Burke, Eckersley,

McCollum, Petrovic, and Qu (2003b). Performance profiles are shown in graphical form

similar to those shown in Peram, Veeramachaneni, and Mohan (2003).

In addition to the tabular and graphical reports, we performed a narrative analysis

the observations by comparing and contrasting results from the range of test cases. From

78

this, we drew conclusions, with respect to the research’s goal and, finally, provided

recommendations for further research and areas of study.

Resource Requirements

As is the case with almost all timetabling investigations (Schaerf, 1999), this study

required a software implementation in order to perform tests of the algorithms. Hence,

hardware and software components were required to support the implementation and

their descriptions follow.

Reliability and Validity

Reliability refers to the consistency of test results in different experiments or

statistical trials. That is, by using the same experimental setup, one should consistently

arrive at similar results regardless of who performs them or when. This study

implemented a number of measures to guarantee the reliability and repeatability of the

test results. These include the following research conventions:

• Real World Data Sets – This study used the Carter benchmark data set, which is a

publicly available collection of thirteen real world examination timetabling data

sets.

• Fabricated Data Sets -- Methods used for fabrication of examination timetabling

data sets are documented, permitting others to construct similar data sets.

• Algorithms -- All algorithms and methods used during the study are documented

and source code will available from the author.

79

• Algorithmic Parameters -- All input parameters used for algorithms are

documented.

• Configuration -- A complete list of all software, hardware, and third-party utilities

used by the algorithm or during data analysis is documented.

• Environmental Consistency -- The same software and hardware environment was

used throughout all test runs.

• Multiple Runs -- Multiple test runs were performed using the same input

parameters to obtain typical algorithm behavior. Variations in test results are a

byproduct of the algorithm’s stochastic nature.

Validity refers to the degree to which the study’s conclusions are logically deduced

from its premises. This study followed steps to guarantee that its experimental

procedures actually tested the efficacy of the PSO algorithm when applied to the

university examination timetabling problem.

• Real World Data Sets -- Use of real world examination timetabling data sets

employed in other timetabling research permitted us the opportunity to verify the

legitimacy of our results through comparison.

• Fabricated Data Sets -- Fabricated data sets were constructed to mimic the

structure of real world data sets whenever possible.

• Established Procedures -- Valid test methods, established by other university

examination timetabling problem researchers, were used as guides.

• Causality -- The relationship between independent variables (factors) and the

dependent variables (measures) was analyzed to determine causality.

80

• Generalizability -- This means how well do the results of the experiment

generalize beyond the suite of test cases studied to the rest of the possible

scenarios of the real world. This study tested this quality through its use of

thirteen real world data sets and fabricated data sets spanning a wide range of

sizes and conflict densities.

Summary

In this chapter, we outlined the research methodology, relevant problem factors,

and measures. Additionally, we detailed the research aspects for each of the PSO

algorithm features. These features included, among others, initialization methods,

objectives, constraints, and control parameters. Testing was covered, with reasoning and

justification provided for real world data set choices, data set reduction methods, artificial

data set construction procedures, and testing environment specifications. Of particular

significance, we covered details and importance of maintaining the underlying real world

data sets’ structural similarity. Finally, individual research steps, analysis and

interpretation techniques, report results prescriptive methods, and testing reliability and

validity processes were formalized.

81

Chapter 4

Results

Data Analysis

We performed three basis suites of experiments, each in turn designed for a

specific task. These high-level groups consisted of Selecting PSO parameters, constraint

handling, and testing with real world data sets.

Selecting PSO Parameters

These tests PSO parameter experiments to determine appropriate PSO algorithm

values for the Cognitive/Social Ratio, Inertia Weight, Swarm Size, and 1st Order Conflict

Weight parameters.

Selecting PSO Parameters – Cognitive/Social Ratio Experiment

We looked first at the effect of variations in the cognitive/social ratio, φ1 : φ2. To

do this we varied the relationship between the cognitive and social ratios across three

values: (1.3:2.8), (2.05:2.05), and (2.8:1.3). We chose these ratios based on the findings

of Carlisle and Dozier (2001) that discovered, even though the (2.05:2.05) ratio is

commonly used, a better value appears to be (2.8:1.3). We included the additional

(1.3:2.8) ratio for comparison.

Selecting PSO Parameters – “Best” Inertia Weight Experiment

Having determined a cognitive/social ratio, we used it in determination of an

Inertia Weight value. We were interested in finding one that worked well across the wide

range of conflict densities and data set sizes presented by the Typical Fabricated Data

82

Sets. To do this we varied the inertia weight value across five values: 1, 0.825, 0.75,

0.625, and 0.5. We chose these values based on initial trials performed by the author,

which suggested that the commonly used value of one might not be the most appropriate

one in the majority of cases.

Selecting PSO Parameters – “Best” Swarm Size Experiment

Having decided on the cognitive/social ratio and inertia weight values, we turned

our attention to arriving at a good swarm size based on the Typical Fabricated Data Sets.

To do this, we experimented with four different swarm size values: 5, 10, 20, and 40. We

chose these values for a variety of reasons. The value of 10 was selected next as it is the

value commonly used in the literature when exercising the PSO algorithm’s abilities. We

chose the two values of 20 and 40 to encompass the value of 30 chosen by Carlisle and

Dozier (2001). These authors suggested 30 particles as a good all-around value based on

their research. It was felt that these 20 and 40 particles provided a better range and,

furthermore, the algorithm’s behavior for 30 particles would be evident through simple

interpolation of the results. Finally, we decided on using a value of five to determine

how well the PSO would perform in this problem domain with very few swarm particles.

Selecting PSO Parameters – 1
st
 Order Conflict Weight Experiment

The 1st Order Conflict Weight (i.e., ws, where s = 0) was the last factor

investigated. Here our goal was to measure the 1st Order Conflict Weight (see Equation

5) value’s effect on the number of first order conflicts. One might assume that a larger

value for the weight would produce a lower number of first order conflicts due to the

resulting larger penalty value pressuring particles away from less desirable solutions.

The design of this experiment was meant to shed some light on this assumption.

83

Once more, we used the Typical Fabricated Data Sets and experimented with four

different weight values: 32, 64, 2048, and 131072. These particular values were selected

for a couple of reasons. We chose the 2048 and 131072 values in keeping with the power

of two nature of our selected objective function, these values equaling 211 and 217

respectively. The value of 32 is the one specified by our specific objective function and,

finally, the value of 64 was chosen because it was the next higher power of two;

permitting us to see how a slightly higher value than 32 affects the results.

Constraint Handling

Experiments were constructed to investigate how the handling of constraints

influenced the algorithm’s ability during the optimization phase.

Constraint Handling – Feasible/Infeasible Experiment

We then use the parameter values determined above to investigate the abilities of

the Feasible/Infeasible hybrid approach. As detailed earlier in this thesis, this approach

first extracts candidate solutions from the feasible search space for the initialization phase

and then follows with the canonical PSO algorithm, whose solutions are not limited to the

feasible search space, in order to optimize the objective function.

Constraint Handling – Feasible/Feasible Experiment

We next performed tests using the Feasible/Feasible hybrid approach. To reiterate

from earlier, this approach first extracts candidate solutions from the feasible search

space for the initialization phase and then we used a modified PSO algorithm to optimize

the objective function while only accepting feasible solutions. We described this

algorithm more fully in the Perform Optimization Process subparagraph found on page

84

50. For the purposes of our discussion here, we will refer to this optimization process as

the PSO-NoConflicts approach.

We used the same initial swarms as those used in the previous Feasible/Infeasible

Experiment in order to permit comparisons between the optimization methods of these

two approaches. This was possible because these two approaches use the exact same

Least Saturation Degree method for initialization.

Real World Data

Experiments were fashioned to assess the algorithm’s effectiveness against real

world examination data sets.

Real World Data – Full PSO Random Experiment

We then turned our attention to real data sets, looking first at the Full Carter Data

Set. This experiment used the canonical PSO algorithm with random swarm

initialization.

Real World Data – Reduced PSO Random Experiment

We next ran the PSO algorithm using the Reduced Carter Data Set to provide data

for comparison against the previous full set. In the same fashion as above, this

experiment used the canonical PSO algorithm with random swarm initialization. This set

is identical to the full Carter set except it contains no students having only a single

enrollment. A solution to this data set is also a solution to the full set, but we performed

this test to see if its convergence differed significantly from the full data set.

Real World Data – Reduced LSD No Conflicts Experiment

This experiment used the Least Saturation Degree swarm initialization method

combined with the PSO-NoConflicts optimization algorithm. This hybridization showed

85

some promise earlier when applied against the fabricated data and its capability against

real world data was therefore of interest.

Unlike our tests using fabricated data, we did not consider the combination of

Least Saturation Degree swarm initialization followed by the canonical PSO algorithm,

as this coupling did not show promise during earlier tests.

Findings

The following subparagraphs report the findings from each experiment.

Selecting PSO Parameters – Cognitive/Social Ratio Experiment

Table 10 lists the values used for each experimental attribute. We ran the

experiment for each of the 12 data sets found in the Typical Fabricated Data Sets,

described earlier in this document. Additionally, we limited each run to 300 iterations.

This was done to reduce the experimental time required and because we only needed to

get a sense of the factor’s effect. As for the other parameter values (e.g., Inertia Weight),

we chose their settings based on preliminary testing.

In order to see the effect each ratio has on the algorithm, each experiment was

repeated (i.e., replicated) 10 times and the Average Particle Best Penalty value plotted

across iterations. Here we define the Average Particle Best Penalty value as each

particle’s penalty value, at their respective previous best positions (pid in Equation 1),

averaged across all particles and replications for each iteration step.

Figure 4 through Figure 15 present the results.

We see from the results that the (2.8:1.3) ratio:

86

• generally does not converge as quickly as the (2.05:2.05) ratio and about

the same rate as the (1.3:2.8) ratio choice, and

• produces the minimum more often than the other choices, within the 300

iterations used.

Table 11 shows the results from the last iteration grouped into sections according

to the number of exams. This table alone does not give a feel for how things change over

time, thus the graphs, but the table does give us some hard numbers to consider. From

this we see that the (2.8:1.3) ratio provides the best results, at this point, more often than

the other two ratios, having a slight edge of 7 out of 12 best values (indicated by the bold

and italicized font).

As these tests were designed to find an appropriate, not necessarily an optimal

choice, we will use the (2.8:1.3) ratio throughout the rest of the experiments. As this is in

agreement with Carlisle and Dozier (2001), the choice is a reasonable one.

Table 10. Cognitive/Social Ratio (φ1 : φ2) Experiment Attributes

Attribute Value(s)

Initialization Method Random

Optimization Algorithm Canonical PSO

Swarm Size 10 particles

Max Iterations 300

Cognitive/Social Ratios (φ1 : φ2) 1.3 : 2.8, 2.05 : 2.05, 2.8 : 1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32

Replications 10

Dataset Used Typical Fabricated Data Sets

87

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
120

180

240

300

360

420

480

540

600

660

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

 Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
450

600

750

900

1050

1200

1350

1500

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

Figure 4. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 100,

d = 0.04, and r = 10

Figure 5. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 100,

d = 0.08, and r = 10

Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
1750

2000

2250

2500

2750

3000

3250

3500

3750

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

 Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

Figure 6. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 100,

d = 0.16, and r = 10

Figure 7. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 100,

d = 0.32, and r = 10

Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

 Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
3200

3600

4000

4400

4800

5200

5600

6000

6400

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

Figure 8. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 200,

d = 0.04, and r = 10

Figure 9. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 200,

d = 0.08, and r = 10

88

Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
10200

10800

11400

12000

12600

13200

13800

14400

15000

15600

16200

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

 Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
34500

36000

37500

39000

40500

42000

43500

45000

46500

48000

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

Figure 10. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 200,

d = 0.16, and r = 10

Figure 11. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 200,

d = 0.32, and r = 10

Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

 Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
19000

20000

21000

22000

23000

24000

25000

26000

27000

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

Figure 12. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 400,

d = 0.04, and r = 10

Figure 13. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 400,

d = 0.08, and r = 10

Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
54000

56000

58000

60000

62000

64000

66000

68000

70000

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

 Iteration

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
172000

176000

180000

184000

188000

192000

196000

200000

204000

208000

Cognitive and Social Ratios (ϕ1 : ϕ2)

(1.3 : 2.8)

(2.05 : 2.05)

(2.8 : 1.3)

Figure 14. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 400,

d = 0.16, and r = 10

Figure 15. Cognitive/Social Ratio Results for

Fabricated Data Set having n = 400,

d = 0.32, and r = 10

89

Table 11. Cognitive/Social Ratio (φ1 : φ2) Experiment

Results

 Conflict Matrix Density

φ1 : φ2 0.04 0.08 0.16 0.32

100 Exams

1.3 : 2.8 152 567 1854 6276

2.05 : 2.05 131 484 1779 6046

2.8 : 1.3 128 492 1786 6168

200 Exams

1.3 : 2.8 1215 3666 10710 36231

2.05 : 2.05 1246 3534 10873 35564

2.8 : 1.3 1129 3330 10525 36231

400 Exams

1.3 : 2.8 7603 20305 57307 178212

2.05 : 2.05 7444 19928 56592 175786

2.8 : 1.3 7069 19308 55557 176976

Selecting PSO Parameters – “Best” Inertia Weight Experiment

Table 12 lists the values used for each experimental attribute. We again ran the

experiment for each of the 12 data sets found in the Typical Fabricated Data Sets; this

time limiting the number of iterations to 200 to reduce the experimental time required.

Each experimental run was repeated 10 times and the results were then used to

compute the Average Particle Best Penalty. Figure 16 through Figure 27 present the

results.

We observe from these figures that an inertia weight of 0.75 provides swarm

convergence that is not too overly aggressive and yet aggressive enough that the swarms’

90

average overtakes the other inertia weight values for the majority of experiments; and

that within only 200 iterations.

Table 13 shows the results from the last iteration. From this, we see that the 0.75

value provides the best results, at this point, more often than the other inertia weights

chosen, 10 out of the 12 experiments (indicated by the bold and italicized font).

As the 0.75 value performs satisfactorily across all data set sizes and for all

conflict densities of the Typical Fabricated Data Sets, this is the value used throughout

the rest of the testing.

Table 12. “Best” Inertia Weight Experiment Attributes

Attribute Value(s)

Initialization Method Random

Optimization Algorithm Canonical PSO

Swarm Size 10 particles

Max Iterations 200

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 1, 0.825, 0.75, 0.625, 0.5

1st Order Conflict Weight 32

Replications 10

Dataset Used Typical Fabricated Data Sets

91

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
150

200

250

300

350

400

450

500

550

600

650

Inertia Weight

1

0.875

0.75

0.625

0.5

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
500

600

700

800

900

1000

1100

1200

1300

1400

1500

Inertia Weight

1

0.875

0.75
0.625

0.5

Figure 16. Best Inertia Weight Results for Fabricated

Data Set having n = 100, d = 0.04, and

r = 10

Figure 17. Best Inertia Weight Results for Fabricated

Data Set having n = 100, d = 0.08, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

Inertia Weight

1

0.875

0.75
0.625

0.5

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
6000

6400

6800

7200

7600

8000

8400

8800

9200

9600

10000

10400

Inertia Weight
1

0.875

0.75

0.625

0.5

Figure 18. Best Inertia Weight Results for Fabricated

Data Set having n = 100, d = 0.16, and

r = 10

Figure 19. Best Inertia Weight Results for Fabricated

Data Set having n = 100, d = 0.32, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
1200

1350

1500

1650

1800

1950

2100

2250

2400

2550

2700

Inertia Weight

1

0.875

0.75
0.625

0.5

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
3300

3600

3900

4200

4500

4800

5100

5400

5700

6000

6300

Inertia Weight

1

0.875

0.75
0.625

0.5

Figure 20. Best Inertia Weight Results for Fabricated

Data Set having n = 200, d = 0.04, and

r = 10

Figure 21. Best Inertia Weight Results for Fabricated

Data Set having n = 200, d = 0.08, and

r = 10

92

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
11000

11500

12000

12500

13000

13500

14000

14500

15000

15500

16000

Inertia Weight
1

0.875

0.75

0.625

0.5

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
36000

37500

39000

40500

42000

43500

45000

46500

48000

Inertia Weight
1

0.875

0.75

0.625

0.5

Figure 22. Best Inertia Weight Results for Fabricated

Data Set having n = 200, d = 0.16, and

r = 10

Figure 23. Best Inertia Weight Results for Fabricated

Data Set having n = 200, d = 0.32, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
7200

7600

8000

8400

8800

9200

9600

10000

10400

10800

11200

Inertia Weight
1

0.875

0.75

0.625

0.5

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
19200

20000

20800

21600

22400

23200

24000

24800

25600

26400

27200

Inertia Weight
1

0.875

0.75

0.625

0.5

Figure 24. Best Inertia Weight Results for Fabricated

Data Set having n = 400, d = 0.04, and

r = 10

Figure 25. Best Inertia Weight Results for Fabricated

Data Set having n = 400, d = 0.08, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
57000

58500

60000

61500

63000

64500

66000

67500

69000

70500

Inertia Weight
1

0.875

0.75

0.625

0.5

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 25 50 75 100 125 150 175 200 225
177000

180000

183000

186000

189000

192000

195000

198000

201000

204000

207000

Inertia Weight

1

0.875

0.75

0.625

0.5

Figure 26. Best Inertia Weight Results for Fabricated

Data Set having n = 400, d = 0.16, and

r = 10

Figure 27. Best Inertia Weight Results for Fabricated

Data Set having n = 400, d = 0.32, and

r = 10

93

Table 13. “Best” Inertia Weight Experiment Results

 Conflict Matrix Density

w 0.04 0.08 0.16 0.32

100 Exams

1 271 850 2471 7949

0.875 196 634 2101 7184

0.75 152 530 1779 6386

0.625 154 551 1897 6439

0.5 189 620 2034 6689

200 Exams

1 1931 4928 13479 42017

0.875 1484 3999 12038 39504

0.75 1222 3546 11398 36763

0.625 1378 3652 11012 36769

0.5 1387 4154 11505 37102

400 Exams

1 9568 24029 64449 192077

0.875 8673 22161 61080 186737

0.75 7269 19896 57686 179193

0.625 7687 20419 57573 179569

0.5 7879 21072 59972 178752

94

Selecting PSO Parameters – “Best” Swarm Size Experiment

Table 14 lists the values used for each experimental attribute. As before, we ran

the experiment for each of the 12 data sets found in the Typical Fabricated Data Sets;

using a value of 200 iterations as the limit. Each experimental run was repeated 10 times

and the results were then used to compute the Average Particle Best Penalty. Figure 28

through Figure 39 present the results.

The experimental results are in keeping with our expectations. That is, the greater

the number of particles available for searching the problem domain, the greater the

probability of finding a better solution sooner. What was interesting is the observation

that doubling the number of particles from 20 to 40 did not necessarily lead to an

appreciably better solution. This is evident in Figure 37 through Figure 39 where the

results are similar for these two values. This close tracking between these two values

also occurs in Figure 29, Figure 30, and Figure 33. Yet, from Figure 34 and Figure 36 we

see that this is not always the case.

Table 15 shows the results from the last iteration. In this case, there is no “best”

parameter value, as one would expect, because a greater number of particles tends to lead

to better solutions faster. As this is a computational cost versus solution value trade-off,

it is a largely subjective decision.

Given this, we decided to use a swarm size of 20 throughout the rest of the testing.

This is due to this swarm size’s perceived ability to handle the larger data sets, as seen in

Figure 37 through Figure 39. Our choice of swarm size is less than the 30 particles

suggested by Carlisle and Dozier (2001) but, from our experiments, it appears that the

95

additional computational effort required by a 50% increase in swarm size is not

satisfactorily justified by solution quality.

Table 14. “Best” Swarm Size Experiment Attributes

Attribute Value(s)

Initialization Method Random

Optimization Algorithm Canonical PSO

Swarm Size (particles) 5, 10, 20, 40

Max Iterations 300

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32

Replications 10

Dataset Used Typical Fabricated Data Sets

96

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
60

120

180

240

300

360

420

480

540

600

660

Swarm Size

5

10

20

40

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
300

450

600

750

900

1050

1200

1350

1500

Swarm Size

5

10

20
40

Figure 28. Best Swarm Size Results for Fabricated

Data Set having n = 100, d = 0.04, and

r = 10

Figure 29. Best Swarm Size Results for Fabricated

Data Set having n = 100, d = 0.08, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

Swarm Size

5

10

20
40

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
4800

5400

6000

6600

7200

7800

8400

9000

9600

10200

10800

Swarm Size
5

10

20

40

Figure 30. Best Swarm Size Results for Fabricated

Data Set having n = 100, d = 0.16, and

r = 10

Figure 31. Best Swarm Size Results for Fabricated

Data Set having n = 100, d = 0.32, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
750

1000

1250

1500

1750

2000

2250

2500

2750

Swarm Size

5

10

20
40

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
2800

3200

3600

4000

4400

4800

5200

5600

6000

6400

Swarm Size

5

10

20
40

Figure 32. Best Swarm Size Results for Fabricated

Data Set having n = 200, d = 0.04, and

r = 10

Figure 33. Best Swarm Size Results for Fabricated

Data Set having n = 200, d = 0.08, and

r = 10

97

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
8800

9600

10400

11200

12000

12800

13600

14400

15200

16000

Swarm Size
5

10

20

40

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
34000

36000

38000

40000

42000

44000

46000

48000

Swarm Size
5

10

20

40

Figure 34. Best Swarm Size Results for Fabricated

Data Set having n = 200, d = 0.16, and

r = 10

Figure 35. Best Swarm Size Results for Fabricated

Data Set having n = 200, d = 0.32, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
6000

6600

7200

7800

8400

9000

9600

10200

10800

11400

Swarm Size
5

10

20

40

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
18000

19000

20000

21000

22000

23000

24000

25000

26000

27000

Swarm Size
5

10

20

40

Figure 36. Best Swarm Size Results for Fabricated

Data Set having n = 400, d = 0.04, and

r = 10

Figure 37. Best Swarm Size Results for Fabricated

Data Set having n = 400, d = 0.08, and

r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
52000

54000

56000

58000

60000

62000

64000

66000

68000

70000

Swarm Size
5

10

20

40

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
172000

176000

180000

184000

188000

192000

196000

200000

204000

208000

Swarm Size

5

10

20

40

Figure 38. Best Swarm Size Results for Fabricated

Data Set having n = 400, d = 0.16, and

r = 10

Figure 39. Best Swarm Size Results for Fabricated

Data Set having n = 400, d = 0.32, and

r = 10

98

Table 15. “Best” Swarm Size Experiment Results

 Conflict Matrix Density

N 0.04 0.08 0.16 0.32

100 Exams

5 169 599 2075 6554

10 132 497 1711 6069

20 104 374 1574 5588

40 84 342 1485 5318

200 Exams

5 1418 3909 11006 37029

10 1110 3577 10272 35619

20 978 3066 10063 34835

40 879 2917 9495 34043

400 Exams

5 7556 20481 58324 178928

10 6943 19869 56717 176310

20 6621 18784 54352 173361

40 6200 18422 53666 172196

Selecting PSO Parameters – 1
st
 Order Conflict Weight Experiment

Table 16 lists the values used for each experimental attribute. We ran this

experiment for each of the 12 data sets found in the Typical Fabricated Data Sets; again,

using a value of 300 iterations as the limit. Each experimental run was repeated 10 times

and the results were then used to compute the Average 1
st
 Order Conflicts. Here we

define the Average 1
st
 Order Conflicts value as each particle’s total number of first order

conflicts averaged across all particles and replications for each iteration step.

99

The results of these twelve experiments are shown in Figure 40 through Figure 51.

In all cases, the value of 32 performed well, producing the least number of first order

conflicts in the majority of experiments. Of course, these experiments only looks out 300

iterations and the value of 64 may very well produce fewer conflicts if permitted more

iterations. From just the visual appearance of these plots, it looks as if the value of 64

would eventually surpass the quality of the 32 value. We look at this later.

As mentioned earlier, the goal of this set of experiments was not to find an optimal

value, as our objective function already has a value defined, but to investigate how the

value of 32 faired compared to some larger values. If during this experiment we

discovered better values, then this would indicate that better results might be possible

using different weights; in which case, this would warrant future experimentation, if one

desired to find the optimal weight.

One thing we do notice immediately from these graphs is that a much larger 1st

Order Conflict Weight does not automatically produce fewer first order conflicts. In fact,

the values 2048 and 131072 consistently produce very similar results and, in some cases,

results significantly higher in first order conflicts. Therefore, an assumption that a larger

weight would lead to fewer conflicts is not valid.

100

Table 16. 1
st
 Order Conflict Weight Experiment Attributes

Attribute Value(s)

Initialization Method Random

Optimization Algorithm Canonical PSO

Swarm Size (particles) 20

Max Iterations 300

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32 (25), 64 (26), 2048 (211),
131072 (217)

Replications 10

Dataset Used Typical Fabricated Data Sets

101

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300
0

1.5

3

4.5

6

7.5

9

10.5

12

32

64

2048

131072

 Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

32

64

2048

131072

Figure 40. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 100,

d = 0.04, and r = 10

Figure 41. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 100,

d = 0.08, and r = 10

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

0

6

12

18

24

30

36

42

48

54

60

66

32
64

2048

131072

 Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

30

45

60

75

90

105

120

135

150

165

180

32

64

2048

131072

Figure 42. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 100,

d = 0.16, and r = 10

Figure 43. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 100,

d = 0.32, and r = 10

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

0

5

10

15

20

25

30

35

40

45

50

32

64 2048

131072

 Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

10

20

30

40

50

60

70

80

90

100

110

32

64

2048

131072

Figure 44. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 200,

d = 0.04, and r = 10

Figure 45. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 200,

d = 0.08, and r = 10

102

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

40

60

80

100

120

140

160

180

200

220

240

260

280

32

64

2048

131072

 Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

240

300

360

420

480

540

600

660

720

780

840

32

64

2048

131072

Figure 46. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 200,

d = 0.16, and r = 10

Figure 47. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 200,

d = 0.32, and r = 10

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

30

45

60

75

90

105

120

135

150

165

180

195

32

64

2048

131072

 Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

120

150

180

210

240

270

300

330

360

390

420

450

32
64

2048

131072

Figure 48. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 400,

d = 0.04, and r = 10

Figure 49. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 400,

d = 0.08, and r = 10

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

400

480

560

640

720

800

880

960

1040

1120

1200

32 64

2048

131072

 Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 30 60 90 120 150 180 210 240 270 300

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

32

64

2048

131072

Figure 50. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 400,

d = 0.16, and r = 10

Figure 51. 1st Order Conflict Weight Results for

Fabricated Data Set having n = 400,

d = 0.32, and r = 10

103

Selecting PSO Parameters – 1
st
 Order Conflict Weight Experiment – 1200 Iterations

A number of additional experiments were run using the 1st Order Conflict Weights

of 32 and 64. We reran the previous experiments out to 1200 iterations but limited

ourselves to those weights and data sets with a conflict density value of 0.16. The results

are displayed in Figure 52 through Figure 54.

A value of 64 did produce fewer first order conflicts by the last iteration in all

cases. The effect is more prominent as the number of exams increases. This outcome is

not significant enough for us to consider altering our objective function definition but it

may warrant future research.

104

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 150 300 450 600 750 900 1050 1200

0

8

16

24

32

40

48

56

64

32

64

Figure 52. 1st Order Conflict Weight Results for

Fabricated Data Set having 1200

Iterations, n = 100, d = 0.16, and r = 10

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 150 300 450 600 750 900 1050 1200

0

30

60

90

120

150

180

210

240

270

300

32

64

Figure 53. 1st Order Conflict Weight Results for

Fabricated Data Set having 1200

Iterations, n = 200, d = 0.16, and r = 10

Iterations

A
v
e
ra
g
e
 1
s
t
O
rd
e
r
C
o
n
fl
ic
ts

0 150 300 450 600 750 900 1050 1200

300

400

500

600

700

800

900

1000

1100

1200

32

64

Figure 54. 1st Order Conflict Weight Results for

Fabricated Data Set having 1200

Iterations, n = 400, d = 0.16, and r = 10

105

Constraint Handling – Feasible/Infeasible Experiment

Table 17 lists the values used for each experimental attribute. We ran the

experiment for the 12 data sets found in the Typical Fabricated Data Sets, limiting the

number of iterations to 50. This limitation was more than sufficient to observe the

characteristics of this approach. In addition, we limited the replications to five due to the

computationally higher cost the of Least Saturation Degree initialization method.

Figure 55 through Figure 57 plot the Average Particle Best Penalty value, which is

the average value across all replicas. We only show 11 of the 12 data sets because our

Least Saturation Degree implementation was unable to find even a single feasible

solution for the 40032 data set.

This first set of graphs appear to have no visually perceptible change in the best

value over the entire set of iterations, regardless of the number of exams or conflict

density used. We did not plot the data set having 400 exams and conflict density equal to

0.32 due to initialization failure. That is, the Least Saturation Degree algorithm was

unable to find a single solution for this data set given our restriction of 32 time slots.

Figure 58 through Figure 60 plot the Average 1
st
 Order Conflict Penalty value for

each iteration averaged across all particles and replicas. We compute the Average 1
st

Order Conflict Penalty by multiplying the average number of 1st Order Conflicts by the

1st Order Conflict Weight value, which equals 32.

This second set of graphs visually indicate no substantive change in the number of

1st Order Conflicts over the entire set of iterations, regardless of the number of exams or

conflict density used. Like the previous set of graphs, and for the same reason, this set is

missing the data set having 400 exams and conflict density equal to 0.32.

106

Table 18 presents some results for the Feasible/Infeasible experiment. Values

under the 1st Order Conflicts subsection correspond to the experiment’s last iteration and

are represents averages across all particles and replicas. For example, the 1st Order

Conflicts’ “avg.” column displays, for each data set, the average number of first order

conflicts averaged across all 20 particles and 5 replications of this experiment. Some of

the other columns under the 1st Order Conflicts section have the following meanings:

• avg % – what percent the average value represents of the enrollment value

• max. – the maximum number of 1st Order Conflicts

• min. – the minimum number of 1st Order Conflicts

• stdevp – the population standard deviation value

The Average Penalties subsection indicates the overall penalty value for the initial

and final iterations averaged across all particles and replicas. The “reduced by” column

shows the percent reduction in overall penalty between the initial and final values. The

last two columns have the following meanings:

• 1st order – penalty value due solely to first order conflicts. This value

equals the “avg.” value multiplied by the first order penalty weight, which

equals 32.

• % 1st of final – what percent the 1st order value represents of the final. In

other words, it indicates how much first order conflicts contribute to the

overall penalty value.

These tabular results show, with the slight exception in the case of the 10004 data

set, no improvement in the average best value over the set of iterations.

107

It is obvious from the results that the initial swarm is unable to break free from the

optimal point discovered through the Least Saturation Degree method. The hope was that

the swarm would be able to fine-tune this initial solution, but this is not the case. Even

though the swarm is still searching the solution space, evident from the changes in the 1st

Order Conflict Penalty graphs, it never discovers a better solution. Consequently, it

never updates its best solution value. As this occurred across all replicas, particles,

exams, and conflict densities, it strongly indicates that using the LSD method to initialize

the canonical form of the PSO does not assist it in its search. Quite the contrary, it locks

its search to the initial solution.

Table 17. Feasible/Infeasible Experiment Attributes

Attribute Value(s)

Initialization Method Least Saturation Degree

Optimization Algorithm Canonical PSO

Swarm Size (particles) 20

Max Iterations 50

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32

Replications 5

Dataset Used Typical Fabricated Data Set

108

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55
20

30

50

70

100

200

300

500

700

1000

2000

3000

5000

7000

10000

20000

Conflict Density

0.32

0.16

0.08
0.04

Figure 55. Feasible/Infeasible Experimental Results

for Fabricated Data Set having n = 100

and r = 5

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55
500

700

1000

2000

3000

5000

7000

10000

20000

30000

50000

70000

100000

Conflict Density
0.32
0.16

0.08
0.04

Figure 56. Feasible/Infeasible Experimental Results

for Fabricated Data Set having n = 200

and r = 5

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55
3000

4000

5000

6000

7000

10000

20000

30000

40000

50000

60000

70000
80000

Conflict Density

0.16

0.08
0.04

Figure 57. Feasible/Infeasible Experimental Results

for Fabricated Data Set having n = 400

and r = 5

109

Iterations

A
v
e
ra
g
e
 1
st
 O
rd
e
r
C
o
n
fl
ic
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50

20

30

50

70

100

200

300

500

700

1000

2000

3000

5000

7000

10000

20000

0.32

0.16

0.08

0.04

Figure 58. 1st Order Conflict Penalty for

Feasible/Infeasible Experiment, using

Fabricated Data Set with n = 100 and r = 5

Iterations

A
v
e
ra
g
e
 1
st
 O
rd
e
r
C
o
n
fl
ic
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50

500

700

1000

2000

3000

5000

7000

10000

20000

30000

50000

70000

100000

0.32

0.16

0.08

0.04

Figure 59. 1st Order Conflict Penalty for

Feasible/Infeasible Experiment, using

Fabricated Data Set with n = 200 and r = 5

Iterations

A
v
e
ra
g
e
 1
st
 O
rd
e
r
C
o
n
fl
ic
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50

3000

4000

5000

6000

7000

10000

20000

30000

40000

50000

60000

70000
80000

0.16

0.08

0.04

Figure 60. 1st Order Conflict Penalty for

Feasible/Infeasible Experiment, using

Fabricated Data Set with n = 400 and r = 5

11
0

T
a
b

le
 1

8
.
F

ea
si

b
le

/I
n

fe
a
si

b
le

 E
x
p

er
im

en
t

R
es

u
lt

s

1st
 O

rd
er

 C
on

fl
ic

ts

A

ve
ra

ge
 P

en
al

ti
es

da

ta

se
t

en
ro

ll
.

av
g.

av

g
%

m

ax
.

m
in

.
st

de
vp

in
it

ia
l

fi
na

l
re

du
ce

d
by

1st

or

de
r

%
 1

st

of
 f

in
al

10
0

E
xa

m
s

10
00

4
13

6
7.

9
5.

77
%

22

1

3.
69

33
6

33
0

2%

25
1

76
.2

%

10
00

8
34

1
17

.2

5.
04

%

32

3
6.

47

87

4
87

3
0%

55

0
63

.0
%

10

01
6

77
4

45

5.
79

%

94

10

15
.6

22
90

22

90

0%

14
34

62

.6
%

10

03
2

22
66

13

0
5.

75
%

25

7
45

37

.7

67

57

67
57

0%

41

70

61
.7

%

20
0

E
xa

m
s

20
00

4
59

9
32

.0

5.
34

%

59

8
9.

14

16

77

16
77

0%

10

24

61
.1

%

20
00

8
12

89

73
.8

5.

73
%

12

8
19

20

.6

39

74

39
74

0%

23

62

59
.4

%

20
01

6
33

42

19
1

5.
72

%

31
0

79

44
.5

10
39

2
10

39
2

0%

61
12

58

.8
%

20

03
2

10
06

1
59

2
5.

88
%

17

36

19
5

17
9.

4

32
20

5
32

20
5

0%

18
94

4
58

.8
%

40

0
E

xa
m

s
40

00
4

23
69

13

2
5.

57
%

19

1
54

26

.1

71

93

71
93

0%

42

24

58
.7

%

40
00

8
55

03

31
8

5.
78

%

54
0

12
7

62
.6

17
38

1
17

38
1

0%

10
17

6
58

.5
%

40

01
6

14
29

4
81

8
5.

72
%

11

73

32
6

14
7.

1

46
17

0
46

17
0

0%

26
17

6
56

.7
%

40

03
2

42
76

1
IN

IT
IA

L
IZ

A
T

IO
N

 F
A

IL
U

R
E

111

Constraint Handling – Feasible/Feasible Experiment

Table 19 lists the values used for each experimental attribute. We ran the

experiment for the 12 data sets found in the Typical Fabricated Data Sets, limiting the

number of iterations to 50. As in the case with the Feasible/Infeasible approach, this

limitation was sufficient to observe the characteristics of this approach. In like manner,

we also limited the replications to five in order to make comparisons between these two

methods possible.

Figure 61 through Figure 63 plot the Average Particle Best Penalty value against

the iteration for all replicas and particles for 11 of the 12 data sets. These sets of graphs

appear to show a slight change in the best value for a number of test parameter

combinations. We did not plot the data set having 400 exams and conflict density equal

to 0.32 due to the same initialization failure as reported under the previous

Feasible/Infeasible section.

Table 20 presents some results for the Feasible/Feasible experiment. The columns

having the same title as those in the Feasible/Infeasible experiment’s result table also

have the same meaning. These tabular results show, unlike the previous experiment,

definite improvements in the average penalty values due to our use of the PSO-

NoConflicts algorithm.

These results are significant seeing as how we used the same initial swarms as

were used in the previous Feasible/Infeasible experiment. In contrast though to the

previous experiment, not only do we realize improved solutions here, but also all

solutions discovered are feasible. This experiment demonstrates that the PSO-

112

NoConflicts optimization algorithm is able to move the particle between feasible solution

points, finding better solution along the way.

The Least Saturation Degree heuristic, by itself, is commonly used to solve the

examination timetable problem as it produces near optimal feasible solutions. This

experiment suggests that the hybridization of LSD with PSO-NoConflicts optimization

produce better results without a substantial increase in computational time. Of course, it

also demonstrates that the optimization phase is less successful as the data sets become

more constrained, as it is less able to find better solutions. This makes sense, as even the

LSD, with our implementation of backtracking, was unable to find a solution to the

highly constrained 40032 data set. By definition, fewer available feasible solutions exist

for the optimization algorithm to discover as the data set becomes more constrained.

Table 19. Feasible/Feasible Experiment Attributes

Attribute Value(s)

Initialization Method Least Saturation Degree

Optimization Algorithm PSO-NoConflicts

Swarm Size (particles) 20

Max Iterations 50

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32

Replications 5

Dataset Used Typical Fabricated Data Sets

113

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55

20

30

50

70

100

200

300

500

700

1000

2000

3000

5000

7000

10000

20000

0.32

0.16

0.08

0.04

Figure 61. Feasible/Feasible Experimental Results for

Fabricated Data Set having n = 100 and

r = 5

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55

500

700

1000

2000

3000

5000

7000

10000

20000

30000

50000

70000

100000

0.04
0.08

0.16

0.32

Figure 62. Feasible/Feasible Experimental Results for

Fabricated Data Set having n = 200 and

r = 5

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55

3000

4000

5000

6000

7000

10000

20000

30000

40000

50000

60000

70000
80000

0.16

0.08

0.04

Figure 63. Feasible/Feasible Experimental Results for

Fabricated Data Set having n = 400 and

r = 5

114

Table 20. Feasible/Feasible Experiment Results

 Average Penalties avg. secs.

dataset enroll. initial final reduced by per pass

100 Exams
10004 136 336 261 22.3% 3.31
10008 341 874 685 21.6% 3.66
10016 774 2290 2074 9.4% 4.51
10032 2266 6757 6436 4.7% 4.78

200 Exams
20004 599 1677 1450 13.6% 7.75
20008 1289 3974 3688 7.2% 9.13
20016 3342 10392 10113 2.7% 10.02
20032 10061 32205 31983 0.7% 12.02

400 Exams
40004 2369 7193 6788 5.6% 19.00
40008 5503 17381 17069 1.8% 22.60
40016 14294 46170 46011 0.3% 24.52
40032 42761 INITIALIZATION FAILURE

Real World Data – Full PSO Random Experiment

Table 21 lists the values used for each experimental attribute. We ran the

experiment for the 13 data sets found in the Full Carter Data Sets, limiting the number of

iterations to 300 and 10 replications.

Figure 64 through Figure 66 plot the Average Particle Best Penalty value against

the iteration for all replicas and particles for the 13 data sets. The results are broken up

across these three plots to better show the results. Because of the magnitude differences

of results, placing them all on a single plot would obscure the changes over time.

Table 22 presents some results for the Full PSO Random Experiment. The

meanings of the individual columns were covered earlier in this thesis.

115

Table 23 displays the minimum, maximum, average, and population standard

deviation of the values from four columns within Table 22: “avg %”, “reduced by”, “%

1st of total”, and “avg. secs. per pass”.

It is visually apparent from the figures that the PSO algorithm was able to reduce

the penalty across all examination data sets and, according to Table 23, this reduction

ranged from 18.6% to 75.4% with an average reduction of 42.9% within the allotted 300

iterations. We also see from Table 23 that the 1st Order Conflicts range from 0.5% to

4.1%, having an average of 2.3% and a standard deviation of 1.0%.

Let us now look at the data set CAR-F-92 as a representative example set.

According to Burke and Newall (2004), the solution to this data set takes 32 periods (i.e.,

time slots), which is not the case for the other data sets. Therefore, as we also used 32

time slots for our testing, this test provides realistic results.

From Table 4, we see that the CAR-F-92 data set has 543 exams, 18419 students,

55522 enrollments, 3.01 enrollments per student. Given, from Table 22, that this exam

had an 1st Order Conflicts “avg %” value 2.3 percent, one can compute that there are, on

average, 6.9 (2.3 x 3.01) 1st order conflicts per every 100 students, or about seven percent

of the students are involved in a conflict. Given that there are 18419 students in this data

set, on average, approximately 1275 students are involved in a 1st order conflict.

Figure 50, from a previous experiment, displays how the number of 1st order

conflicts decrease over iterations for an data set with 400 exams and a density of 0.16;

closely matching this case. In fact, the 1st order conflicts are reduced to the point where

they only contribute to 28.1% of the total penalty value in this examination’s case. Even

116

though, as we can see from Figure 50, there is a substantial decrease in 1st order conflicts,

most universities would probably consider seven percent far too high to be acceptable.

If we look at the rest of the “avg %” values in Table 22, we do notice examinations

having lower percentages such as the UTE-S-92 examination with a value of only 0.5%.

Unfortunately, this does not truly represent a real world case as we statically set our

number of exam time slots to 32 regardless of the exam. According to Burke and Newall

(2004), this particular exam’s realistic number of time slots is 10.

In the end, we have three conclusions:

1. The PSO algorithm is able to consistently reduce the value of the penalty

function over a wide range of real world examinations; an average of

42.9% according to Table 23, given our parameters.

2. Though there is good convergence, as is typical of the canonical PSO

algorithm, it unfortunately converges too quickly to suboptimal solutions.

Other, more modern, versions of the PSO may prevent this, but the simple

canonical form obviously struggles.

3. The penalty function used for testing is incapable of guiding the algorithm

enough to significantly reduce 1st order conflicts. As was shown earlier,

increasing the 1st Order Conflict Weight may help some, but a different

penalty function would be a more realistic line of attack for improvement

as the choice of penalty function can have a significant impact on the PSO

algorithm’s success rate.

117

Table 21. Full PSO Random Experiment Attributes

Attribute Value(s)

Initialization Method Random

Optimization Algorithm PSO

Swarm Size (particles) 20

Max Iterations 300

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32

Replications 10

Dataset Used Full Carter Data Set

118

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
0

20000

40000

60000

80000

of Exams

381

261

190

184

181

139

81

Figure 64. Full PSO Random Results with n between

81 and 381, and r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

of Exams

682

622

543

486

461

Figure 65. Full PSO Random Results with n between

461 and 682, and r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
360000

380000

400000

420000

440000

460000

480000

500000

520000

540000

560000

580000

600000

of Exams
2419

Figure 66. Full PSO Random Results with n = 2419

and r = 10

11
9

T
a
b

le
 2

2
.
F

u
ll

 P
S

O
 R

a
n

d
o
m

 E
x
p

er
im

en
t

R
es

u
lt

s

1st
 O

rd
er

 C
on

fl
ic

ts

A

ve
ra

ge
 P

en
al

ti
es

da
ta

 s
et

en

ro
ll

.
av

g.

av
g

%

m
ax

.
m

in
.

st
de

vp

in

it
ia

l
pa

ss

fi
na

l
pa

ss

re
du

ce
d

by

1st
 a

t
fi

na
l

%
 1

st

of
 to

ta
l

av
g.

 s
ec

s.

pe
r

pa
ss

C
A

R
-F

-9
2

55
52

2
12

86

2.
3%

30

34

11
28

20

3

20
62

64

14
66

13

28
.9

%

41
15

2
28

.1
%

8.

16

C
A

R
-S

-9
1

56
87

7
16

94

3.
0%

30

07

15
32

17

0

24
30

02

18
47

65

24
.0

%

54
20

8
29

.3
%

11

.9
0

E
A

R
-F

-8
3

81
09

29

0
3.

6%

10
89

19

8
11

4

70
43

3
42

68
4

39
.4

%

92
80

21

.7
%

2.

52

H
E

C
-S

-9
2

10
63

2
96

0.

9%

11
61

38

13

4

44
63

4
14

37
9

67
.8

%

30
72

21

.4
%

1.

15

K
FU

-S
-9

3
25

11
3

44
1

1.
8%

21

21

26
0

25
8

13

36
99

64

82
4

51
.5

%

14
11

2
21

.8
%

5.

02

L
S

E
-F

-9
1

10
91

8
15

9
1.

5%

58
7

10
8

50

47

24
5

23
74

4
49

.7
%

50

88

21
.4

%

4.
10

P

U
R

-S
-9

3
12

06
81

48

89

4.
1%

63

22

45
56

23

7

59
04

58

48
07

40

18
.6

%

15
68

54

32
.6

%

39
.8

7
S

T
A

-F
-8

3
45

05
1

89
6

2.
0%

12

17

59
3

17
5

24

46
83

12

35
71

49

.5
%

30

31
9

24
.5

%

5.
78

S

T
A

-F
-8

3
57

51

13
2

2.
3%

95

8
37

10

0

65
50

3
31

85
9

51
.4

%

42
24

13

.3
%

1.

84

T
R

E
-S

-9
2

14
90

1
27

2
1.

8%

81
0

20
3

90

61

04
6

37
82

6
38

.0
%

87

04

23
.0

%

3.
28

U

T
A

-S
-9

2
58

97
9

12
76

2.

2%

25
74

11

35

15
3

20

57
51

14

43
37

29

.8
%

41

50
7

28
.8

%

9.
30

U

T
E

-S
-9

2
11

79
3

61

0.
5%

39

7
13

57

53
67

0
13

21
1

75
.4

%

19
52

14

.8
%

2.

06

Y
O

R
-F

-8
3

60
34

22

1
3.

7%

62
4

16
6

62

48

55
5

31
99

4
34

.1
%

70

72

22
.1

%

2.
39

120

Table 23. Some Full PSO Random Result Statistics

 avg % reduced by
% 1st

of total
avg. secs.
per pass

min. 0.5% 18.6% 13.3% 1.15

max. 4.1% 75.4% 32.5% 39.87

avg. 2.3% 42.9% 23.1% 7.49

stdevp 1.0% 16.0% 5.2% --

Real World Data – Reduced PSO Random Experiment

Table 24 lists the values used for each experimental attribute. We ran the

experiment for the 13 data sets found in the Reduced Carter Data Sets, limiting the

number of iterations to 300 and 10 replications.

Figure 67 through Figure 69 plot the Average Particle Best Penalty value against

the iteration for all replicas and particles for the 13 data sets. The results are broken up

across the same three plots as the previous experiment to make comparisons easier.

Table 25 presents some results for the Reduced PSO Random Experiment. Table

26 displays the minimum, maximum, average, and population standard deviation of the

values from four columns within Table 25. The format of these two tables is identical to

the previous experiment for comparison purposes.

A comparison of the figures and tables of this experiment against those of the

previous experiment make it quite clear that there is no appreciable difference in results

between these two data sets. This is readily apparent by comparing the values of Table

23 against Table 26. Therefore, any tests performed using the reduced data set should be

considered equivalent to the full Carter data set, as we original hypothesized.

121

Table 24. Reduced PSO Random Experiment Attributes

Attribute Value(s)

Initialization Method Random

Optimization Algorithm PSO

Swarm Size (particles) 20

Max Iterations 300

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32

Replications 10

Dataset Used Reduced Carter Data Set

122

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
0

20000

40000

60000

80000

of Exams

381

261

190

184

181

139

81

Figure 67. Reduced PSO Random Results with n

between 81 and 381, and r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

of Exams

682

622

543

486
461

Figure 68. Reduced PSO Random Results with n

between 461 and 682, and r = 10

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 40 80 120 160 200 240 280 320
360000

380000

400000

420000

440000

460000

480000

500000

520000

540000

560000

580000

600000

of Exams

2419

Figure 69. Reduced PSO Random Results with n =

2419 and r = 10

12
3

 T
a
b

le
 2

5
.
R

ed
u

ce
d

 P
S

O
 R

a
n

d
o
m

 E
x
p

er
im

en
t

R
es

u
lt

s

1st
 O

rd
er

 C
on

fl
ic

ts

A

ve
ra

ge
 P

en
al

ti
es

da
ta

 s
et

en

ro
ll

.
av

g.

av
g

%

m
ax

.
m

in
.

st
de

vp

in

it
ia

l
pa

ss

fi
na

l
pa

ss

re
du

ce
d

by

1st
 a

t
fi

na
l

%
 1

st

of
 to

ta
l

av
g.

 s
ec

s.

pe
r

pa
ss

C
A

R
-F

-9
2-

R

51
55

3
12

27

2.
4%

25

86

10
28

13

8

20
84

97

14
49

30

30
.5

%

39
26

4
27

.1
%

8.

12

C
A

R
-S

-9
1-

R

53
46

8
16

25

3.
0%

27

35

15
06

12

7

24
27

28

18
29

18

24
.6

%

52
00

0
28

.4
%

10

.9
7

E
A

R
-F

-8
3-

R

81
08

28

1
3.

5%

10
40

20

7
95

70
32

1
42

00
6

40
.3

%

89
92

21

.4
%

2.

66

H
E

C
-S

-9
2-

R

10
31

1
94

0.

9%

75
8

31

95

44

67
5

14
25

9
68

.1
%

30

08

21
.1

%

1.
09

K

FU
-S

-9
3-

R

24
83

7
44

1
1.

8%

28
63

30

3
21

6

13
26

77

65
57

0
50

.6
%

14

11
2

21
.5

%

4.
94

L

S
E

-F
-9

1-
R

10

81
9

18
1

1.
7%

82

5
14

1
79

47
35

9
23

96
6

49
.4

%

57
92

24

.2
%

4.

09

P
U

R
-S

-9
3-

R

11
80

54

48
76

4.

1%

70
90

46

87

27
1

58

86
99

48

05
80

18

.4
%

15

60
32

32

.5
%

38

.6
3

R
Y

E
-S

-9
3-

R

43
02

6
88

0
2.

0%

30
97

66

4
21

5

24
35

26

12
64

63

48
.1

%

28
16

0
22

.3
%

5.

62

S
T

A
-F

-8
3-

R

57
51

13

5
2.

3%

10
42

35

12

0

65
05

3
31

57
8

51
.5

%

43
20

13

.7
%

1.

63

T
R

E
-S

-9
2-

R

14
23

4
28

9
2.

0%

83
7

19
9

11
1

60

55
4

37
68

5
37

.8
%

92

48

24
.5

%

3.
28

U

T
A

-S
-9

2-
R

52

79
9

13
61

2.

6%

29
05

11

81

17
9

20

66
23

14

63
26

29

.2
%

43

55
2

29
.8

%

9.
75

U

T
E

-S
-9

2-
R

11

71
5

67

0.
6%

71

2
20

82

53
53

1
13

49
2

74
.8

%

21
44

15

.9
%

2.

43

Y
O

R
-F

-8
3-

R

60
33

20

1
3.

3%

74
5

16
0

73

48

31
3

31
67

4
34

.4
%

64

32

20
.3

%

2.
41

124

Table 26. Some Reduced PSO Random Result Statistics

 avg % reduced by
% 1st

of total
avg. secs.
per pass

min. 0.6% 18.4% 13.7% 1.09

max. 4.1% 74.8% 32.5% 38.63

avg. 2.3% 42.9% 23.3% 7.36

stdevp 1.0% 15.8% 5.1% --

Real World Data – Reduced LSD No-Conflicts Experiment

Finding no significant difference in results between the Reduced and Full Carter

Data Sets, we settled on using the reduced set for this experiment as it had slightly less

data to handle.

Table 27 lists the values used for each experimental attribute. We ran the

experiment for the 13 data sets found in the Reduced Carter Data Sets, limiting the

number of iterations to 50. We again limited the replications to five due to the

computationally higher cost the of Least Saturation Degree initialization method.

Figure 70 and Figure 71 plot the Average Particle Best Penalty value against the

iteration for all replicas and particles for 12 of the 13 data sets. These sets of graphs

appear to show a slight change in the best value for a number of test parameter

combinations, which is more evident if one looks at the “reduced by” column of Table

28.

Table 28 presents some results for this experiment and includes columns found in

Table 20 with the exception of the “Average Penalty per Student” section. The “Average

Penalty per Student” metric is the one originally used by Carter, M. W., Laporte, & Lee,

S. Y. (1996).

125

Table 27. Reduced LSD No-Conflicts Experiment Attributes

Attribute Value(s)

Initialization Method Least Saturation Degree

Optimization Algorithm PSO-NoConflicts

Swarm Size (particles) 20

Max Iterations 50

Cognitive/Social Ratios (φ1 : φ2) 2.8:1.3

Inertia Weight (w) 0.75

1st Order Conflict Weight 32

Replications 5

Dataset Used Reduced Carter Data Set

Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55

0

20000

40000

60000

of Exams

381

261
190

184

181

139
81

 Iterations

A
v
e
ra
g
e
 P
a
rt
ic
le
 B
e
s
t
P
e
n
a
lt
y

0 5 10 15 20 25 30 35 40 45 50 55

60000

80000

100000

120000

140000

160000

180000

of Exams

682
622

543

486

461

Figure 70. Reduced LSD No-Conflicts Results with n

between 81 and 381, and r = 5
Figure 71. Reduced LSD No-Conflicts Results with n

between 461 and 682, and r = 5

12
6

T
a
b

le
 2

8
.
R

ed
u

ce
d

 L
S

D
 N

o
-C

o
n

fl
ic

ts
 E

x
p

er
im

en
t

R
es

u
lt

s

A

ve
ra

ge
 P

en
al

ti
es

A
ve

ra
ge

 P
en

al
ty

pe

r
S

tu
de

nt

da
ta

 s
et

en

ro
ll

.
de

ns
it

y
in

it
ia

l
fi

na
l

re
du

ce
d

by

st

ud
en

ts

in
it

ia
l

fi
na

l
av

g.
 s

ec
s.

pe

r
pa

ss

C
A

R
-F

-9
2-

R

51
55

3
0.

13
8

13
47

52

13
31

37

1.
2%

18
41

9
7.

32

7.
23

33

.5
3

C
A

R
-S

-9
1-

R

53
46

8
0.

12
8

15
78

17

15
72

78

0.
3%

16
92

5
9.

32

9.
29

46

.9
0

E
A

R
-F

-8
3-

R

81
08

0.

26
6

45
33

2
44

53
1

1.
8%

11
25

40

.3
0

39
.5

8
9.

88

H
E

C
-S

-9
2-

R

10
31

1
0.

41
5

26
23

8
22

03
9

16
.0

%

28

23

9.
29

7.

81

3.
83

K

FU
-S

-9
3-

R

24
83

7
0.

05
5

82
94

4
73

31
5

11
.6

%

53

49

15
.5

1
13

.7
1

24
.0

4
L

S
E

-F
-9

1-
R

10

81
9

0.
06

2
30

30
9

28
35

1
6.

5%

27

26

11
.1

2
10

.4
0

18
.2

9
P

U
R

-S
-9

3-
R

11

80
54

0.

02
9

IN
IT

IA
L

IZ
A

T
IO

N
 F

A
IL

U
R

E

R
Y

E
-S

-9
3-

R

43
02

6
0.

07
5

13
61

21

13
54

56

0.
5%

11
48

3
11

.8
5

11
.8

0
26

.6
2

S
T

A
-F

-8
3-

R

57
51

0.

14
3

36
76

7
36

61
5

0.
4%

61
1

60
.1

8
59

.9
3

5.
77

T

R
E

-S
-9

2-
R

14

23
4

0.
18

0
39

72
9

38
79

6
2.

3%

43

60

9.
11

8.

90

14
.5

6
U

T
A

-S
-9

2-
R

52

79
9

0.
12

5
13

54
30

13

50
19

0.

3%

21

26
6

6.
37

6.

35

40
.1

5
U

T
E

-S
-9

2-
R

11

71
5

0.
08

4
27

12
2

24
88

0
8.

3%

27

50

9.
86

9.

05

8.
45

Y

O
R

-F
-8

3-
R

60

33

0.
28

7
31

68
9

31
01

6
2.

1%

94

1
33

.6
8

32
.9

6
9.

61

127

Summary of Results

Discovering PSO Parameters

As this is the first time the PSO algorithm has been applied to any timetabling

problem, we had to discover appropriate algorithmic parameters for this problem domain

in order to achieve reasonable and acceptable experimental results. The values we

derived are shown in Table 29 and the arguments for the final values are detailed in the

Findings section of the Results chapter.

Table 29. Final PSO Algorithmic Parameter Choices

Algorithmic Parameter Value for Experiments

Cognitive/Social Ratio (2.8 : 1.3)

“Best” Inertia Weight 0.75

“Best” Swarm Size 20

1st Order Conflict Weight 32

We also discovered that a much larger 1st Order Conflict Weight does not

automatically produce fewer first order conflicts. In fact, the values 2048 and 131072

consistently produced very similar results and, in some cases, results significantly higher

ones. Therefore, an assumption that a larger weight would lead to fewer conflicts was

not valid.

Constraint Handling

We then used the parameter values determined above to investigate the abilities of

the Feasible/Infeasible and Feasible/Feasible approaches at handling constraints.

The Feasible/Infeasible results demonstrated that the Least Saturation Degree

initial swarm was unable to break free from the optimal point it found. The experiment

128

strongly implied that using the LSD method to initialize the canonical form of the PSO

does not assist it in its search. On the contrary, it locked its search to the initial solution.

However, these results do not tell us how well some of the newer versions of the PSO

algorithm, specifically designed to prevent premature stagnation, would fare given this

same scenario. It does tell us though that, published assertions to the contrary, better

initial solutions do not necessarily lead to better results.

The results from the Feasible/Feasible method established that we were able to

discover solutions exceeding the quality of those found by the Least Saturation Degree

initialization phase. This was a direct result of our original PSO-NoConflicts

optimization approach. Unlike the Feasible/Infeasible approach, not only were we able to

find improved solutions, but these solutions were feasible. This experiment suggests that

the hybridization of LSD with PSO-NoConflicts optimization produce better results. Of

course, it also demonstrated that the optimization phase is less successful as the data sets

become more constrained, as it is less able to find better solutions.

Real World Data Sets

Our last section of experiments tested the algorithm against real world data sets.

We first tested it against the full Carter data set and, in the end, came to the conclusion

that:

1. The PSO algorithm is able to consistently reduce the value of the penalty function

over a wide range of real world examinations.

2. Though there is good convergence, as is typical of the canonical PSO algorithm, it

unfortunately converges too quickly to suboptimal solutions.

129

3. The penalty function used for testing is incapable of guiding the algorithm enough

to significantly reduce 1st order conflicts.

Our next experiment was designed to compare the results from the reduced Carter

data set against the previous results from the full Carter data set. A comparison of the

results made it clear that there were no appreciable differences between these two data

sets. Therefore, any tests performed using the reduced data set should be considered

equivalent to the full Carter data set.

Finally, we performed an experiment using Least Saturation Degree for

initialization, the PSO-NoConflicts algorithm for optimization, and the reduced Carter

data set, with the intent of comparing these results against those of other researchers.

Table 30 lists a number of published Average Penalty per Student values for the

CAR-F-92 examination data set and our result for the same set. We only show the values

for this particular examination data set, as it is the only one of the thirteen real world data

sets having 32 periods (i.e., timeslots) as we used. Others have either more or fewer than

this number, according to Burke and Newall (2004).

130

Table 30. Average Penalty per Student Comparisons for CAR-F-92

Average Penalty
per Student Reference

7.23 “final” value from Table 28

5.6 Di Gaspero, L., & Schaerf, A. (2000)

6.2 – 8.2 Carter, M. W., Laporte, & Lee, S. Y. (1996)

4.86 – 6 Burke, E. K., & Newall, J. P. (2004)

6.82 Burke, E. K., Eckersley, A., McCollum, B., Petrovic, S., & Qu, R.
(2003a)

5.77 – 5.86 Computed from penalty values given in Burke, E. K., Eckersley, A.,
McCollum, B., Petrovic, S., & Qu, R. (2003b)

Our final value of 7.23 is only slightly better than the initial value of 7.32

computed through our Least Saturation Degree initialization phase, which represents a

reduction of just a little over 1.2%. We do see data sets in Table 28 having better

improvements, but these correspond to real world data sets that would normally map to

far fewer timeslots. For example, according to Burke and Newall (2004), the HEC-S-92

and KFU-S-93 data sets really only require 18 and 20 timeslots respectively. Therefore,

these are nowhere nearly as constrained as the CAR-F-92 data set and our PSO-

NoConflicts optimization algorithm is easily able to find valid solutions, as there are

more available in the vicinity.

We should also point out here that the Least Saturation Degree method, by itself,

found better solutions than even our Reduced PSO Random experiment did in the case of

the CAR-F-92 data set. From Table 25 we see that this data set had a final penalty of

144930, which translates to an Average Penalty per Student value of approximately 7.87.

This is not only greater, though not by much, but 27.1% of this penalty value represents

131

first order conflicts. Therefore, the PSO algorithm does get one close to existing

published values, but at a cost.

132

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

The goal of this study was to investigate the suitability and effectiveness of the

relatively new Particle Swarm Optimization techniques when applied to the University

Examination Timetabling class of problems.

We limited this study to determining the efficacy of the canonical PSO algorithm.

Though additional research has evolved the PSO algorithm far beyond this form, it was

thought best to start with this model of the particle swarm as no published research exists

even for this simplified model. Analyzing the capability of the particle swarm with the

standard model kept the research unencumbered by extraneous and potentially

superfluous algorithmic features.

This work also ignored soft-constraints even though these are important in any real

world university examination timetabling scenario. Though easily added to the

algorithm’s objective function, the complexity they add to the analysis would not have

been compensated for by an equivalent amount of insight into the basic workings of the

PSO in this problem domain.

This study demonstrated that, even though the algorithm was able to reduce

penalty function values of examination timetabling problems having relatively few

examinations and enrollments, it did not satisfactorily scale up into timetabling problems

beyond modest proportions. We believe this to be partly due to the PSO algorithm’s

known premature convergence tendency, which would hamper its ability to find the

133

global minimum in a strongly multi-modal search space. Other researchers have recently

put forth PSO variants in an attempt to tackle this problem, but this work did not

investigate this issue directly.

Another reason the algorithm may have failed to perform well deals with the

mapping between the objective and parameter spaces. As Fieldsend and Singh (2002)

point out, if there is little or no correlation between ‘closeness’ in objective space and

‘closeness’ in parameter space, PSO methods may experience problems. We assumed

that there was some degree of correlation between the two spaces so that the objective

function could adequately direct the swarm’s movement. A mismatch can occur when

the model—direct-representation in our case—turns out to be an unsatisfactory

representation. Our tests showed that convergence did indeed occur with our

representation but its efficacy appears limited by premature converge.

A further reason this algorithm may have struggled with the timetabling problem

comes from the research of Tsou and MacNish (2003). They studied the PSO

algorithm’s efficacy in high-dimensional highly convex search spaces and found that the

algorithm breaks down in this problem space. Our sense is that variants of the university

examination timetabling problem may fall under the classification of “highly convex” but

this is undoubtedly dependent on the set of soft and hard constraints. Fortunately, even in

this special problem case, the authors found a modified PSO algorithm, referred to as the

Adaptive Particle Swarm Optimizer (APSO), which contains an adaptive learning rate

function and produced higher success rates than the original PSO. It is the ease with

which one can extend the PSO that makes it appealing to researchers. Regardless, our

134

current research effort did not investigate PSO extensions. Extensions to the canonical

form of the PSO are left for future studies.

We knew from the outset that finding solutions to the Carter data sets was a difficult

problem. As pointed out by Burke, Newall, and Weare (1998b), the data sets “offer a

challenge from an optimization point of view” (p. 95). They go on to state that “the data

used here present a challenge merely to find a feasible solution” (p. 98). We therefore

did not expect this study to show that the PSO algorithm was best or better than other

approaches, but instead, the goal was to provide insight into its ability to tackle the truly

large, highly multi-modal, and disconnected search spaces of the single-objective

university examination timetabling problem, which is what we accomplished.

135

Implications

Contributions to the Field of Study

With respect to contributions to the field of study and advancement of knowledge,

our research systematically investigated the influence of problem and algorithm factors in

solving this particular timetabling problem and determined the algorithm's performance

profile under the specified test environment. Keys factors employed for discovering the

algorithm’s timetabling utility, ability, and limitations included problem size (i.e.,

number of enrollments), conflict matrix density, and swarm size.

Additionally, this work presented insight into how well the PSO algorithm

performs compared with other algorithms used to attack the same problem and data sets,

providing understanding on the PSO algorithm’s efficacy on university examination

timetabling problems.

There were two additional contributions made during this research: a better way to

fabricate examination timetabling data sets and the introduction of the PSO-NoConflicts

optimization approach.

Firstly, the algorithm under the Typical Fabricated Data Set section (see page 68)

describes a new method that produces data sets more representative of real world

examination timetabling data sets. This approach not only permitted us to construct data

sets spanning a wide range of sizes and densities, but it allowed us to have confidence in

the results of experiments using these sets.

Secondly, our derived PSO-NoConflicts algorithm, described under the

Feasible/Feasible Approach section of this thesis (see page 49), permits the PSO

136

algorithm to perform searches while still satisfying constraints. This approach shows

promise and its ability to handle other constraint satisfaction problems is worth

investigating further.

Benefits

According to Angeline (1998), the “Particle swarm often locates near optima

significantly faster than evolutionary optimization but can not dynamically adjust its

velocity step size to continue optimization at a finer grain of search once in the general

region of the optima. This causes its performance to flatten out dramatically in almost

every case tested” (pp. 608, 610). Angeline goes on to state that even though

evolutionary optimization surpassed the performance of particle swarm on nearly every

function in their test suite, when the gradient of the search space indicated the direction to

the optima, performance of PSO algorithm was exceptional. Regardless, as pointed out

by Burke and Newall (2004), one could consider the PSO approach a success if it just

gets into the “ballpark” of the other heuristics. The PSO’s real strength lies in it being

more general, much quicker, and much easier to implement.

Determining the simple or canonical PSO’s performance profile—the quality of

the solution as a function of the execution time—on the university examination

timetabling problem also provides a benefit. Knowing the algorithm’s strengths and

limitations is useful in determining its value in attacking timetabling problems in general

and the university examination timetabling problem in particular. As far as the author

can determine, the PSO algorithm has never been applied to any kind of timetabling

problem before. This research provides insight into its suitability as an approach against

137

university examination timetabling problems. To this end, we employed the following

problem and algorithm factors to probe the algorithm’s efficacy:

• Conflict Matrix Density – measured the impact conflict matrix density has on the

algorithm’s ability over a range of problem sizes.

• Problem Size – measured the relationship between the size of the problem, as

determined by enrollment, and the algorithm’s effectiveness.

• Swarm Size – measured the relationship between the size of the swarm (i.e.,

number of particles), the size of the problem, and the algorithm’s effectiveness.

• Objective Function Weight – measured the affect of altering the 1st order conflict

weight value (i.e., ws, where s = 0) in the spread examination objective function

(see Equation 5).

Besides the benefit of now knowing how well the canonical form of the algorithm

handles the university examination timetabling problem, the information garnered

provides insight into the algorithm’s applicability to timetabling problems.

Recommendations

Recommendations for Additional Studies

This research could take a number of different future directions, given the results

established by this effort, and we mention but a few here.

PSO variants – There have been many variants and extensions to the standard PSO

algorithm proposed since the algorithm’s original introduction. They include attempts to

mitigate premature convergence (Blackwell, 2003a; Blackwell, 2003b; Peram,

Veeramachaneni, & Mohan, 2003; Riget & Vesterstrøm, 2002; Silva, Silva, & Costa,

138

2002), handle dynamic environments (Carlisle & Dozier, 2002; Hu & Eberhart, 2002),

provide self-adapting parameters (Clerc, 2002a; Clerc, 2002b), use multiple swarms

(Parsopoulos & Vrahatis, 2002c; Al-kazemi & Mohan, 2002a; Al-kazemi & Mohan,

2002b), and enlist PSO/GA hybrids (Robinson, Sinton, & Rahmat-Samii, 2002).

Studying one or more of these modified algorithms on this problem domain would

provide insight into how each performs within the problem class.

Encoded representation – Using a non-direct representation for the particles

would no doubt produce different results. Terashima-Marín, Ross, and Valenzuela-

Rendón (1999) use a non-direct chromosome representation in their genetic algorithm

approach to the timetabling problem, instead of the direct chromosome, and found

performance improvement. Instead of the chromosome representing a timetable solution

to the problem, the non-direct representation encoded instructions and parameters for

guiding the algorithm’s search for a timetable solution. This approach may be a good

match for the particle swarm algorithm as well and is worth investigating.

Penalty function – The form of penalty functions, used in the objective function,

appear to have a significant impact on the outcome, based on preliminary tests performed

by the author. Studying the correlation between the form of the penalty function and the

results would give guidance to others on how best to formulate the functions. (Burke,

Eckersley, McCollum, Petrovic, & Qu, 2003b)

Soft-Constraints – Any future work should incorporate a number of typical

university examination timetabling soft-constraints. Their inclusion would require

extending the objective function using our approach. Other PSO variants handle soft-

constraints in different fashions and this too would be insightful.

139

Premature Convergence – A possible reason our implementation of the PSO

algorithm struggled with the timetabling problem comes from the research of Tsou and

MacNish (2003). They studied the PSO algorithm’s efficacy in high-dimensional highly

convex search spaces and found that the algorithm breaks down in this problem space.

Our sense is that variants of the university examination timetabling problem may fall

under the classification of “highly convex” but this is undoubtedly dependent on the set

of soft and hard constraints. Fortunately, even in this special problem case, the authors

found a modified PSO algorithm, referred to as the Adaptive Particle Swarm Optimizer

(APSO), which contains an adaptive learning rate function and produced higher success

rates than the original PSO. It is the ease with which one can extend the PSO that makes

it appealing to researchers. Extensions to the canonical form of the PSO that slow down

converge would be ideal for future studies.

PSO-NoConflicts Approach – It would be useful to determine the value of using

our PSO-NoConflicts optimization approach in other problem domains requiring

constraint satisfaction. Al-kazemi and Mohan (2002b) incorporated a similar idea into

their version of the PSO. They calculated new potential positions by considering a subset

of the dimensions at the same time and “the fitness change resulting from updating the

position along these dimensions is calculated, and then a decision is made whether to

implement the corresponding change of position” (p. 490). Their approach does not

guarantee feasible solutions as it was not designed to handle constraint satisfaction in

addition to optimization as is the case with our approach.

140

Summary

The general timetabling problem consists of assigning resources to objects in space

and time while satisfying a set of hard constraints and, as nearly as possible, a set of soft

constraints. The three most common academic timetabling problems are the school

timetabling, university timetabling, and examination timetabling problems. The

examination timetabling problem consists of assigning a set of examinations to a limited

number of time slots while satisfying the hard constraints. The most commonly cited

hard constraint is the prevention of double booking; i.e., no student should be required to

take more than one exam during any single time slot. Many times this requirement is

unobtainable and is therefore relaxed. When this happens, the objective is to minimize

the number of double booking conflicts.

The sheer size of university student bodies makes examination timetabling a

complex combinatorial problem. Even in moderately sized universities, the manual

solution of timetabling usually requires many person-days of effort. As a result, much

research has been conducted over the last forty years and many papers related to the

automation of academic timetabling have been published. Numerous approaches to

solving the timetabling problem have been proposed in the literature. The earliest

approaches were heuristic in nature, next came more general methods such as graph

coloring, and then came the more recent attempts using simulated annealing and genetic

algorithms. Despite enormous effort expended over the last four decades to uncover

efficient methods for solving timetabling problems, these problems are nevertheless still

the focus of intense research.

141

The overriding reason the school timetabling problems have been the focus of such

prolonged and intense research is the inescapable fact that, except for the most trivial

non-real world cases, these problems are all NP-complete. Hence, it should come as no

surprise then that attempts are made to apply each newly discovered and relevant

algorithmic approach to this challenge. In like manner, the goal of this study was to

investigate the suitability and effectiveness of the Particle Swarm Optimization

techniques when applied to the University Examination Timetabling class of problems.

We accomplished this by analyzing experimentally the performance profile of the

standard form of the PSO algorithm when brought to bear against the university

examination timetabling problem. This study systematically investigated the impact of

various factors in solving this particular class of timetabling problems and determined the

algorithm's performance profile under the specified test environment.

As this was the first time the PSO algorithm was applied to any timetabling

problem, we had to discover appropriate algorithmic parameters for this problem domain

in order to achieve reasonable and acceptable experimental results. Values were

experimentally determined for the PSO algorithm factors such as the cognitive/social

ratio, “best” inertia weight, “best” swarm size, and 1st order conflict weight.

These parameters were then used to investigate the abilities of the canonical PSO

algorithm’s ability in handling constraints through two main methods we called the

Feasible/Infeasible and Feasible/Feasible approaches.

The Feasible/Infeasible results demonstrated that the Least Saturation Degree

initial swarm was unable to break free from the optimal point it found. The experiment

142

strongly implied that using the LSD method to initialize the canonical form of the PSO

does not assist it in its search. On the contrary, it locked its search to the initial solution.

The results from the Feasible/Feasible method established that we were able to

discover solutions exceeding the quality of those found by the Least Saturation Degree

initialization phase. This was a direct result of our original PSO-NoConflicts

optimization approach.

Our last set of experiments tested the algorithm against real world data sets. We

first tested it against the full Carter data set and, in the end, came to the conclusion that,

though the PSO is able to consistently reduce the value of the penalty function over a

wide range of real world examinations, it unfortunately converges too quickly to

suboptimal solutions. Additionally, the experiments implied that the penalty function

used for testing is incapable of guiding the algorithm enough to significantly reduce 1st

order conflicts.

Our next experiment compared the results from the reduced Carter data set against

the previous results from the full Carter data set. A comparison of the results made it

clear that there were no appreciable differences between these two data sets. Therefore,

any tests performed using the reduced data set should be considered equivalent to the full

Carter data set.

Finally, we performed an experiment using Least Saturation Degree for

initialization, the PSO-NoConflicts algorithm for optimization, and the reduced Carter

data set, with the intent of comparing these results against those of other researchers. Our

results were near those of other published works, but only because of our use of the Least

Saturation Degree for initialization. This experiment suggested that the hybridization of

143

LSD with PSO-NoConflicts optimization produce better results. Of course, it also

demonstrated that the optimization phase is less successful as the data sets become more

constrained, as it is less able to find better solutions.

We also discovered through our set of experiments that the Least Saturation

Degree method, by itself, found better solutions than even our reduced Carter data set that

used random initialization experiment did in the case of the CAR-F-92 data set, though

not by much, but 27.1% of the penalty value was due to first order conflicts. Therefore,

the PSO algorithm does get one close to existing published values, but at a cost.

In addition to the above findings, we derived a better way to fabricate examination

timetabling data sets and introduced a new optimization approach referred to as PSO-

NoConflicts method.

Our new method for fabricating examination timetabling data sets produces values

more representative of real world examination timetabling data sets. This approach not

only permitted us to construct data sets spanning a wide range of sizes and densities, but

it allowed us to have confidence in the results of experiments using these sets.

The newly derived PSO-NoConflicts algorithm permits the PSO algorithm to

perform searches while still satisfying constraints. This approach shows promise and its

ability to handle other constraint satisfaction problems is worth investigating further.

Finally, we knew from the outset that finding solutions to the Carter data sets was

a difficult problem. We therefore did not expect this study to show that the PSO

algorithm was best or better than other approaches, but instead, the goal was to provide

insight into its ability to tackle the truly large, highly multi-modal, and disconnected

144

search spaces of the single-objective university examination timetabling problem, which

is what we accomplished.

145

Reference List

Abido, M. A. (2001). Particle Swarm Optimization for Multimachine Power System
Stabilizer Design. Power Engineering Society Summer Meeting, 3, 1346-2001.

Al-kazemi, B., & Mohan, C. K. (2002a). Multi-Phase Discrete Particle Swarm
Optimization. JCIS 2002 Proceedings of the 6th Joint Conference on Information

Science (622-625). Association for Intelligent Machinery, Inc.

Al-kazemi, B., & Mohan, C. K. (2002b). Multi-Phase Generalization of the Particle
Swarm Optimization Algorithm. CEC2002 Proceedings of the 2002 Congress on

Evolutionary Computation (489-494). Piscataway, NJ, USA: IEEE Press.

Angeline, P. J. (1998). Evolutionary Optimization Versus Particle Swarm Optimization:
Philosophy and Performance Differences. Evolutionary Programming VII:

Proceedings of the Seventh Annual Conference on Evolutionary Programming 601-
610. San Diego: Springer.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G., & Stewart, W. R. (1995).
Designing and Reporting on Computational Experiments with Heuristic Methods.
Journal of Heuristics, 1, 9-32.

Bartz-Beielstein, T. (2003). Experimental Analysis of Evolution Strategies - Overview
and Comprehensive Introduction. (Reihe CI 157/03, SFB 531), Universität
Dortmund.

Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2001). Tuning PSO Parameters
Through Sensitivity Analysis. Reihe Computational Intelligence CI 124/02,

Collaborative Research Center (CI-124/01), University of Dortmund.

Blackwell, T. M. (2003a). Particle Swarms and Population Diversity I Analysis. GECCO

2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary

Computation Conference 103-107.

Blackwell, T. M. (2003b). Particle Swarms and Population Diversity II Experiments.
GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and

Evolutionary Computation Conference 108-112.

Burke, E. K., Bykov, Y., Newall, J. P., & Petrovic, S. (in press). A Time-Predefined
Local Search Approach to Exam Timetabling Problems. Accepted for publication in

IIE Transactions on Operations Engineering.

Burke, E. K., Bykov, Y., & Petrovic, S. (2001). A Multicriteria Approach to Examination
Timetabling. The Practice and Theory of Automated Timetabling III, Lecture Notes in

Computer Science: 2079. Lecture Notes in Computer Science (118-131). Berlin:
Springer-Verlag.

146

Burke, E. K., Eckersley, A., McCollum, B., Petrovic, S., & Qu, R. (2003a). Similarity
Measures for Exam Timetabling Problems. 1st Multidisciplinary Intl. Conf. on

Scheduling: Theory and Applications (MISTA 2003) Nottingham, UK:.

Burke, E. K., Eckersley, A., McCollum, B., Petrovic, S., & Qu, R. (2003b). Using
Simulated Annealing to Study Behaviour of Various Exam Timetabling Data Sets.
Accepted by The 4th Metaheurisitcs International Conference (MIC2003) Kyoto,
Japan:.

Burke, E. K., Elliman, D. G., Ford, P., & Weare, R. F. (1995). Examination Timetabling
in British Universities - A Survey. Proc. of the 1st Int. Conf. on the Practice and

Theory of Automated Timetabling 76-90. Napier University, Edinburgh: ICPTAT'95.

Burke, E. K., Elliman, D. G., & Weare, R. F. (1993). Extensions to a University Exam
Timetabling System. Proceedings of the IJCAI-93 workshop on Knowledge-Based

Production, Planning, Scheduling and Control Chambery, France:.

Burke, E. K., Elliman, D. G., & Weare, R. F. (1994). A University Timetabling System
based on Graph Colouring and Constraint Manipulation. Journal of Research on

Computing in Education, 27(1), 1-18.

Burke, E. K., & Newall, J. P. (1999). A Multi-Stage Evolutionary Algorithm for the
Timetable Problem. IEEE Transactions on Evolutionary Computation, 3(1), 63-74.

Burke, E. K., & Newall, J. P. (2004). Solving Examination Timetabling Problems
through Adaptation of Heuristic Orderings. Annals of Operations Research, 129(1-4),
107-134.

Burke, E. K., Newall, J. P., & Weare, R. F. (1995). A Memetic Algorithm for University
Exam Timetabling. Proceedings of the First International Conference on the Practice

and Theory of Automated Timetabling (ICPTAT-95): 1153. Lecture Notes in

Computer Science (241-250). Napier University, Edinburgh: Springer 1996.

Burke, E. K., Newall, J. P., & Weare, R. F. (1998a). A Simple Heuristically Guided
Search for the Timetable Problem. International ICSC Symposium on Engineering of

Intelligent Systems (EIS '98) 574-579. Canada/Switzerland: Academic Press.

Burke, E. K., Newall, J. P., & Weare, R. F. (1998b). Initialization Strategies and
Diversity in Evolutionary Timetabling. Evolutionary Computation, 6(1), 81-103.

Burke, E. K., & Petrovic, S. (2002). Recent Research Trends in Automated Timetabling.
European Journal of Operational Research (EJOR), 140(2), 266-280.

Burke, E. K., Petrovic, S., & Qu, R. (2002). Case-Based Heuristic Selection for Exam
Timetabling. Proceedings of ICONIP-SEAL-FSKD'02.

147

Burke, E. K., Petrovic, S., & Qu, R. (2004). Hybrid Graph Heuristics in Hyper-

Heuristics Applied to Exam Timetabling Problems. (Technical Report NOTTCS-TR-
2004-1), University of Nottingham: School of CSiT.

Bykov, Y. (2003). Time-Predefined and Trajectory-Based Search: Single and

Multiobjective Approaches to Exam Timetabling. Ph.D., University of Nottingham,
UK.

Carlisle, A., & Dozier, G. (2001). An Off-The-Shelf PSO. Proceedings of the Workshop

on Particle Swarm Optimization Indianapolis, IN: Purdue School of Engineering and
Technology, IUPUI.

Carlisle, A., & Dozier, G. (2002). Tracking Changing Extrema with Adaptive Particle
Swarm Optimizer. ISSCI, 2002 World Automation Congress Orlando, Florida, USA:.

Carter, M. W. (1986). A Survey of Practical Applications of Examination Timetabling
Algorithms. Operations Research, 34(2), 193-202.

Carter, M. W., & Johnson, D. G. (2001). Extended clique initialisation in examination
timetabling. Journal of the Operational Research Society, 52(5), 538-544.

Carter, M. W., & Laporte, G. (1996). Recent Developments in Practical Examination
Timetabling. In Edmund Burke & Mike Carter (Eds.), Proceedings of the Second

International Conference on the Practice and Theory of Automated Timetabling

(PATAT-95): 1153. Lecture Notes in Computer Science (3-21). Berlin Heidelberg
New York: Springer-Verlag.

Carter, M. W., Laporte, G., & Chinneck, J. W. (1994). A General Examination
Scheduling System. Interfaces, 24(3), 109-120.

Carter, M. W., Laporte, & Lee, S. Y. (1996). Examination Timetabling: Algorithmic
Strategies and Applications. Journal of Operational Research Society, 47(3), 373-
383.

Clerc, M. (1999). The Swarm and the Queen: Towards a Deterministic and Adaptive
Particle Swarm Optimization. Proc. Congress on Evolutionary Computation 1951-
1957. Washington D.C:.

Clerc, M. (2002a). Think Locally, Act Locally -- A Framework for Adaptive Particle

Swarm Optimizers. (Manuscript submitted for publication)

Clerc, M. (2002b). TRIBES -- A Parameter Free Particle Swarm Optimizer. Manuscript
in preparation.

Colorni, A., Dorigo, M., & Maniezzo, V. (1998). Metaheuristics for High-School
Timetabling. Computational Optimization and Applications Journal, 9(3), 275-298.

148

Connolly, B. (2004, March 1). Random Sampling in T-SQL. Last Retrieved June 21,
2005, from http://msdn.microsoft.com/ library/en-us/dnsqlpro04/html/sp04c1.asp

Cooper, T. B., & Kingston, J. H. (1995). The Complexity of Timetable Construction
Problems. In E. Burke & P. Ross (Eds.), Proceedings of the 1st International

Conference on the Practice and Theory of Automated Timetabling PATAT '95: 1153.

Lecture Notes in Computer Science (283-295). Springer-Verlag.

Corne, D., Fang, H. L., & Mellish, C. (1993). Solving the Modular Exam Scheduling
Problem with Genetic Algorithms. In Chung, Lovegrove, & Ali (Eds.), Proceedings

of the Sixth International Conference on Industrial and Engineering Applications of

Artificial Intelligence and Expert Systems 370-373. Gordon and Breach Science
Publishers.

Di Gaspero, L., & Schaerf, A. (2000). Tabu Search Techniques for Examination
Timetabling. Proc. of the 3rd Int. Conf. on the Practice and Theory of Automated

Timetabling 176-179.

Diestel, R. (2000). Graph Theory. New York: Springer-Verlag.

Dolan, E. D., & Moré, J. J. (2002). Benchmarking Optimization Software with
Performance Profiles. Mathematical Programming, 91(2), 201-213.

Elmohamed, S., Fox, G., & Coddington, P. (1997). A Comparison of Annealing
Techniques for Academic Course Scheduling. In Edmund Burke & Mike Carter
(Eds.), Practice and Theory of Automated Timetabling II, Selected Papers from the

2nd International Conference, PATAT'97 146-166. University of Toronto: Springer.

Erben, W. (2001). A Grouping Genetic Algorithm for Graph Colouring and Exam
Timetabling. The Practice and Theory of Automated Timetabling III: 2079. Lecture

Notes in Computer Science (132-158). Berlin: Springer-Verlag.

Even, S., Itai, A., & Shamir, A. (1976). On the Complexity of Timetable and
Multicommodity Flow Problems. SIAM Journal on Computing, 5(4), 691-703.

Fang, H. L. (1994). Genetic Algorithms in Timetabling and Scheduling. (PhD Thesis,
Department of Artificial Intelligence. University of Edinburgh, Scotland, 1994).
PT9410.

Fieldsend, J. E., & Singh, S. (2002). A Multi-Objective Algorithm based upon Particle
Swarm Optimisation, an Efficient Data Structure and Turbulence. Proceedings of the

2002 U.K. Workshop on Computational Intelligence 37-44. Birmingham, UK:.

Gotlieb, C. (1962). The construction of class-teacher timetables. Proc. IFIP Congress 62,
Munich, North Holland, Amsterdam, 73-77.

Greenberg, H. J. (1990). Computational Testing: Why, How and How Much. ORSA

Journal on Computing, 2(1), 7-11.

149

Hansen, M. P., & Vidal, R. V. (1995). Planning of High School Examinations in
Denmark. European Journal of Operational Research, 87, 519-534.

Hooker, J. N. (1996). Testing Heuristics: We Have It All Wrong. Journal of Heuristics,
32-42.

Hu, X., & Eberhart, R. C. (2002). Adaptive Particle Swarm Optimization: Detection and
Response to Dynamic Systems. Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2002) 1666-1670. Hawaii, USA:.

Junginger, W. (1986). Timetabling in Germany -- a Survey. Interfaces, 16, 66-74.

Kennedy, J. (1998). The Behavior of Particles. In V. W. Porto, N. Saravanan, D. Waagen,
& A. E. Eiben (Eds.), : 1447. Lecture Notes in Computer Science (581-589). Berlin:
Springer.

Kennedy, J., & Eberhart, R. C. (1995). Particle Swarm Optimization. Proceedings of the

1995 IEEE International Conference on Neural Networks 1942-1948. Piscataway,
NJ: IEEE Service Center.

Kennedy, J., & Eberhart, R. C. (1997). A Discrete Binary Version of the Particle Swarm
Algorithm. Proceedings of the 1997 Conference on Systems, Man, and Cybernetics
4104-4108. Piscataway, NJ: IEEE Service Center.

Kennedy, J., & Eberhart, R. C. (2001). Swarm Intelligence (Denise E.M. Penrose). San
Francisco: Morgan Kaufmann Publishers.

Kennedy, J., & Spears, W. M. (1998). Matching Algorithms to Problems: An
Experimental Test of the Particle Swarm and Some Genetic Algorithms on the
Multimodal Problem Generator. Proc. 1998 IEEE World Congress on Computational

Intelligence 74-77. Anchorage: Alaska: IEEE.

Kiaer, L., & Yellen, J. (1992). Weighted Graphs and University Course Timetabling.
Computers and Operations Research, 19(1), 59-67.

Laporte, G., & Desroches, S. (1984). Examination Timetabling by Computer. Computers

& Operations Research, 11(4), 351-360.

Laskari, E. C., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle Swarm
Optimization for Integer Programming. Proceedings of the 2002 IEEE Congress on

Evolutionary Computation 1582-1587.

Lim, A., Chin, A. J., Kit, H. W., & Oon, W. C. (2000). A Campus-Wide University
Examination Timetabling Application. Proceedings of the Seventeenth National

Conference on Artificial Intelligence and Twelfth Conference on Innovative

Applications of Artificial Intelligence 1020-1025. Austin, Texas, USA: AAAI Press /
The MIT Press.

150

Merlot, L., Boland, N., Hughes, B., & Stuckey, P. J. (2002). A Hybrid Algorithm for the
Examination Timetabling Problem. Proceedings of the 4th international conference

on the Practice and Theory of Automated Timetabling (PATAT2002) Lecture Notes in

Computer Science. Gent, Belgium: Springer-Verlag.

Newall, J. P. (1999). Hybrid Methods for Automated Timetabling. PhD Thesis,
Department of Computer Science, University of Nottingham, UK.

Novick, A. (2003, April 8). Retrieving a Random Record in SQL Server using

udf_Num_RanInt. Last Retrieved june 21, 2005, from
http://www.novicksoftware.com/UDFofWeek/Vol1/T-SQL-UDF-Volume-1-Number-
21-udf_Num_RandInt.htm

Operations Research Group. (13 October 2003). Timetabling Problem Database.
Retrieved March 11, 2004, from The University of Melbourne, Department of
Mathematics and Statistics Web site: http://www.or.ms.unimelb.edu.au/timetabling/

Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms

and Complexity (Unabridged). Mineola, New York: Dover Publications, Inc. (1982,
Prentice Hall, Inc., New Jersey)

Paquet, U., & Engelbrecht, A. P. (2003). A New Particle Swarm Optimiser for Linearly
Constrained Optimisation. IEEE Congress on Evolutionary Computation 227-233.
Canberra, Australia: IEEE.

Parsopoulos, K. E., Laskari, E. C., & Vrahatis M.N. (2001). Solving L1 norm errors-in-
variables problems using Particle Swarm Optimizer. In M.H. Hamza (Ed.), Artificial

Intelligence and Applications 185-190. Anaheim, CA, USA: IASTED/ACTA Press.

Parsopoulos, K. E., & Vrahatis, M. N. (2002a). Initializing the Particle Swarm Optimizer
Using the Nonlinear Simplex Method. Advances in Intelligent Systems, Fuzzy

Systems, Evolutionary Computation, 216-221.

Parsopoulos, K. E., & Vrahatis, M. N. (2002b). Particle Swarm Optimization Method for
Constrained Optimization Problems. In P. Sincak V. Kvasnicka, & J. Vascak (Eds.),
Intelligent Technologies - Theory and Applications: New Trends in Intelligent

Technologies (Frontiers in Artificial Intelligence and Applications, 76, 214-220). IOS
Press.

Parsopoulos, K. E., & Vrahatis, M. N. (2002c). Particle Swarm Optimization Method in
Multiobjective Problems. Proceedings of the 2002 ACM Symposium on Applied

Computing (SAC 2002) 603-607. Madrid, Spain: SAC 2002.

Parsopoulos, K. E., & Vrahatis, M. N. (2002d). Recent approaches to global optimization
problems through Particle Swarm Optimization. Natural Computing, 1(2-3), 235-306.

151

Peer, E. S., Engelbrecht, A. P., & van den Bergh, F. (2003). CIRG@UP OptiBench: A
Statistically Sound Framework for Benchmarking Optimisation Algorithms. IEEE

Congress on Evolutionary Computation 2386-2392. Canberra, Australia: IEEE.

Peram, T., Veeramachaneni, K., & Mohan, C. (2003). Fitness-Distance Ratio Based
Particle Swarm Optimization. IEEE Swarm Intelligence Symposium Indianapolis,
Indiana: IEEE.

Petrovic, S., Yang, Y., & Dror, M. (2003). Case-Based Initialisation of Metaheuristics for
Examination Timetabling. 1st Multidisci-plinary Intl. Conf. on Scheduling: Theory

and Applications (MISTA 2003) Nottingham, UK:.

Rardin, R. L. (1998). Optimization in Operations Research. Upper Saddle River, New
Jersey: Prentice Hall.

Ray, T., & Liew, K. M. (2002). A Swarm Metaphor for Multiobjective Design
Optimization. Engineering Optimization, 34(2), 141-153.

Reis, L. P., & Oliveira, E. (2001). A Language for Specifying Complete Timetabling
Problems. Practice and Theory of Automated Timetabling III, Third International

Conference, PATAT 2000: 2079. Lecture Notes in Computer Science (322-341).
Konstanz, Germany: Springer.

Riget, J., & Vesterstrøm, J. S. (2002). A Diversity-Guided Particle Swarm Optimizer --
the ARPSO. (EVALife Technical report no. 2002-02), Dept. of Computer Science,
University of Aarhus, Denmark: EVALife Project Group.

Robinson, J., Sinton, S., & Rahmat-Samii, Y. (2002). Particle Swarm, Genetic
Algorithms, and their Hybrids: Optimization of a Profiled Corrugated Horn Antenna.
IEEE International Symposium on Antennas & Propagation San Antonio, Texas:.

Ross, P. M., Hart, E., & Corne, D. (1998). Some Observations about GA-Based Exam
Timetabling. In E. Burke & M. Carter (Eds.), Practice and Theory of Automated

Timetabling II: 1408. Lecture Notes in Computer Science (115-129). Springer-Verlag,
Berlin.

Salman, A., Ahmad, I., & Al-Madani, S. (2002). Particle Swarm Optimization for Task
Assignment Problem. Microprocessors and Microsystems, 26, 363-371.

Schaerf, A. (1996). Tabu Search Techniques for Large High-School Timetabling
Problems. 13th National Conference on Artificial Intelligence 363-368. Portland,
USA: AAAI Press/MIT Press.

Schaerf, A. (1999). A Survey of Automated Timetabling. Artificial Intelligence Review,

13, 87-127.

152

Shi, Y., & Eberhart, R. C. (1998). A Modified Particle Swarm Optimizer. Proceedings of

the IEEE International Conference on Evolutionary Computation 69-73. Piscataway,
NJ: IEEE Press.

Shi, Y., & Eberhart, R. C. (1999). Empirical Study of Particle Swarm Optimization.
Proceedings of the 1999 Congress on Evolutionary Computation 1945-1950.
Piscataway, NJ: IEEE Service Center.

Silva, A. F., Silva, A. P., & Costa, E. (2002). Chasing the Swarm: A Predator-Prey
Approach to Function Optimisation. Proc. of the Mendel 2002 - 8th International

Conference on Soft Computing 103-110. Brno, Czech Republic: Mendel 2002.

Terashima-Marín, H., Ross, P., & Valenzuela-Rendón, M. (1999). Evolution of
Constraint Satisfaction Strategies in Examination Timetabling. Proceedings of the

Genetic and Evolutionary Conference 635-642. Orlando, FL:.

Thomson, J. M., & Dowsland, K. A. (1996). Variants of simulated annealing for the
examination timetabling problem. Annals of Operations Research, 63, 105-128.

Thomson, J. M., & Dowsland, K. A. (1998). A Robust Simulated Annealing Based
Examination Timetabling System. Computers Operational Research, 25(7/8), 637-
648.

Tsou, D., & MacNish, C. (2003). Adaptive Particle Swarm Optimisation for High-
Dimensional Highly Convex Search Spaces. Proceedings of IEEE Congress on

Evolutionary Computation (CEC 2003) 783-789, Canbella, Australia.

Welsh, D. J., & Powell, M. B. (1967). An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal, 10(1), 85-
86.

Willemen, R. J. (2002). School timetable construction algorithms and complexity. PhD
Thesis, Technische Universiteit Eindhoven.

van den Bergh, F. (2001, November). An Analysis of Particle Swarm Optimizers. PhD
Thesis, University of Pretoria.

van den Bergh, F., & Engelbrecht, A. P. (2002). A New Locally Convergent Particle
Swarm Optimizer. IEEE Conference on Systems, Man, and Cybernetics.

Veeramachaneni, K., Peram, T., Mohan, C. K., & Osadciw, L. A. (2003). Optimization
Using Particle Swarms with Near Neighbor Interactions. Lecture Notes in Computer

Science, 2723, 110-121. Heidelberg: Springer-Verlag.

153

Vesterstrøm, J. S., & Riget, J. (2002). Particle Swarms: Extensions for Improved Local,

Multi-modal, and Dynamic Search in Numerical Optimization. Masters Thesis.

Zhaohui, F., & Lim, A. (2000). Heuristics for the Exam Scheduling Problem.
Proceedings of the 12th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI'00) 172-175. IEEE.

	Nova Southeastern University
	NSUWorks
	2005

	Evaluating Particle Swarm Intelligence Techniques for Solving University Examination Timetabling Problems
	Daniel R. Fealko
	Share Feedback About This Item
	NSUWorks Citation

	Microsoft Word - Fealko - Final Report2a.doc

