3,087 research outputs found

    Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (<it>n </it>= 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of <it>tet</it>, <it>sul </it>and <it>erm </it>resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified <it>16S-rRNA.</it></p> <p>Results</p> <p>The concentrations of <it>16S-rRNA </it>in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of <it>16S-rRNA </it>differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of <it>tet</it>(B), <it>tet</it>(C), <it>sul1, sul2</it>, <it>erm</it>(A) tended to increase, and decline thereafter, whereas <it>tet</it>(M) and <it>tet</it>(W) gradually declined over 175 days. At day 7, the concentration of <it>erm</it>(X) was greatest in feces from cattle fed tylosin, compared to all other treatments.</p> <p>Conclusion</p> <p>The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days with concentrations of some genes increasing with time. Management practices that accelerate DNA degradation such as frequent land application or composting of manure may reduce the extent to which bovine feces serves as a reservoir of antimicrobial resistance.</p

    Joint analysis of stressors and ecosystem services to enhance restoration effectiveness

    Get PDF
    With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213841110/-/DCSupplementa

    Ground-State of Charged Bosons Confined in a Harmonic Trap

    Full text link
    We study a system composed of N identical charged bosons confined in a harmonic trap. Upper and lower energy bounds are given. It is shown in the large N limit that the ground-state energy is determined within an accuracy of ±8\pm 8% and that the mean field theory provides a reasonable result with relative error of less than 16% for the binding energy .Comment: 15 page

    Haloes gone MAD: The Halo-Finder Comparison Project

    Full text link
    [abridged] We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends (FOF), spherical-overdensity (SO) and phase-space based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allows halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Via a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high resolution cosmological volume we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity, and peak of the rotation curve).Comment: 27 interesting pages, 20 beautiful figures, and 4 informative tables accepted for publication in MNRAS. The high-resolution version of the paper as well as all the test cases and analysis can be found at the web site http://popia.ft.uam.es/HaloesGoingMA

    Anderson Transitions

    Get PDF
    The physics of Anderson transitions between localized and metallic phases in disordered systems is reviewed. The term ``Anderson transition'' is understood in a broad sense, including both metal-insulator transitions and quantum-Hall-type transitions between phases with localized states. The emphasis is put on recent developments, which include: multifractality of critical wave functions, criticality in the power-law random banded matrix model, symmetry classification of disordered electronic systems, mechanisms of criticality in quasi-one-dimensional and two-dimensional systems and survey of corresponding critical theories, network models, and random Dirac Hamiltonians. Analytical approaches are complemented by advanced numerical simulations.Comment: 63 pages, 39 figures, submitted to Rev. Mod. Phy

    Redirection of SKN-1 abates the negative metabolic outcomes of a perceived pathogen infection

    Get PDF
    Early host responses toward pathogens are essential for defense against infection. In Caenorhabditis elegans, the transcription factor, SKN-1, regulates cellular defenses during xenobiotic intoxication and bacterial infection. However, constitutive activation of SKN-1 results in pleiotropic outcomes, including a redistribution of somatic lipids to the germline, which impairs health and shortens lifespan. Here, we show that exposing C. elegans to Pseudomonas aeruginosa similarly drives the rapid depletion of somatic, but not germline, lipid stores. Modulating the epigenetic landscape refines SKN-1 activity away from innate immunity targets, which alleviates negative metabolic outcomes. Similarly, exposure to oxidative stress redirects SKN-1 activity away from pathogen response genes while restoring somatic lipid distribution. In addition, activating p38/MAPK signaling in the absence of pathogens, is sufficient to drive SKN-1-dependent loss of somatic fat. These data define a SKN-1- and p38-dependent axis for coordinating pathogen responses, lipid homeostasis, and survival and identify transcriptional redirection, rather than inactivation, as a mechanism for counteracting the pleiotropic consequences of aberrant transcriptional activity

    The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    Get PDF
    (abridged:) The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) surveys the most populated ~5 square degrees of the Taurus star formation region, using the XMM-Newton X-ray observatory to study the thermal structure, variability, and long-term evolution of hot plasma, to investigate the magnetic dynamo, and to search for new potential members of the association. Many targets are also studied in the optical, and high-resolution X-ray grating spectroscopy has been obtained for selected bright sources. The X-ray spectra have been coherently analyzed with two different thermal models (2-component thermal model, and a continuous emission measure distribution model). We present overall correlations with fundamental stellar parameters that were derived from the previous literature. A few detections from Chandra observations have been added. The present overview paper introduces the project and provides the basic results from the X-ray analysis of all sources detected in the XEST survey.Comprehensive tables summarize the stellar properties of all targets surveyed. The survey goes deeper than previous X-ray surveys of Taurus by about an order of magnitude and for the first time systematically accesses very faint and strongly absorbed TMC objects. We find a detection rate of 85% and 98% for classical and weak-line T Tau stars (CTTS resp. WTTS), and identify about half of the surveyed protostars and brown dwarfs. Overall, 136 out of 169 surveyed stellar systems are detected. We describe an X-ray luminosity vs. mass correlation, discuss the distribution of X-ray-to-bolometric luminosity ratios, and show evidence for lower X-ray luminosities in CTTS compared to WTTS. Detailed analysis (e.g., variability, rotation-activity relations, influence of accretion on X-rays) will be discussed in a series of accompanying papers.Comment: 75 pg, 77 figs. Accepted by A&A, to appear in a special section/issue dedicated to the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST). V2: ASCII Table 14 added. Version with higher resolution figures at http://www.issibern.ch/teams/Taurus/papers.html or http://www.astro.phys.ethz.ch/papers/guedel/guedel_p_nf.htm

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals

    Observational evidence for gravitationally trapped massive axion(-like) particles

    Full text link
    Unexpected astrophysical observations can be explained by gravitationally captured massive particles, which are produced inside the Sun or other Stars and are accumulated over cosmic times. Their radiative decay in solar outer space would give rise to a `self-irradiation' of the whole star, providing the time-independent component of the corona heating source. In analogy with the Sun-irradiated Earth atmosphere, the temperature and density gradient in the corona - chromosphere transition region is suggestive for an omnipresent irradiation of the Sun. The same scenario fits other astrophysical X-ray observations. The radiative decay of a population of such elusive particles mimics a hot gas. X-ray observatories, with an unrivalled sensitivity below ~10 keV, can search for such particles. The elongation angle relative to the Sun is the relevant new parameter.Comment: 35 pages, LaTeX, 9 figures. Accepted by Astroparticle Physic

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software
    • 

    corecore