73 research outputs found

    pH-triggered phase inversion and separation of hydrophobised bacterial cellulose stabilised Pickering emulsions

    Get PDF
    The pH-triggered transitional phase behaviour of Pickering emulsions stabilised by hydrophobised bacterial cellulose (BC) is reported in this work. Neat BC was esterified with acetic (C2–), hexanoic (C6–) and dodecanoic (C12–) acids, respectively. We observed that C6– and C12–BC stabilised emulsions exhibited a pH-triggered reversible transitional phase separation. Water-in-toluene emulsions containing of 60 vol.% dispersed phase stabilised by C6– and C12–BC were produced at pH 5. Lowering the pH of the aqueous phase to 1 did not affect the emulsion type. Increasing the pH to 14, however, caused the emulsions to phase separate. This phase separation was caused by electrostatic repulsion between modified BC due to dissociable acidic surface groups at high pH, which lowered the surface coverage of the water droplets by modified BC. When the pH was re-adjusted to 1 again, w/o emulsions re-formed for C6– and C12–BC stabilised emulsions. C2–BC stabilised emulsions, on the other hand, underwent an irreversible pH-triggered transitional phase separation and inversion. This difference in phase behaviour between C2–BC and C6–/C12–BC was attributed to the hydrolysis of the ester bonds of C2–BC at high pH. This hypothesis is in good agreement with the measured degree of surface substitution (DSS) of modified BC after the pH-triggered experiments. The DSS of C2–BC decreased by 20% whilst the DSS remained constant for C6– and C12–BC

    Defining normal liver stiffness range in a normal healthy Chinese population without liver disease

    Get PDF
    BACKGROUND: For patients with chronic liver disease, different optimal liver stiffness cut-off values correspond to different stages of fibrosis, which are specific for the underlying liver disease and population. AIMS: To establish the normal ranges of liver stiffness in the healthy Chinese population without underlying liver disease. METHODS: This is a prospective cross sectional study of 2,528 healthy volunteers recruited from the general population and the Red Cross Transfusion Center in Hong Kong. All participants underwent a comprehensive questionnaire survey, measurement of weight, height, and blood pressure. Fasting liver function tests, glucose and cholesterol was performed. Abdominal ultrasound and transient elastography were performed on all participants. RESULTS: Of the 2,528 subjects, 1,998 were excluded with either abnormal liver parenchyma on ultrasound, chronic medical condition, abnormal blood tests including liver enzymes, fasting glucose, fasting cholesterol, high body mass index, high blood pressure, or invalid liver stiffness scan. The reference range for the 530 subjects without known liver disease was 2.3 to 5.9 kPa (mean 4.1, SD 0.89). The median liver stiffness was higher in males compared with females (4.3 vs 4.0 kPa respectively, p55 years (p=0.001). CONCLUSIONS: The healthy reference range for liver stiffness in the Chinese population is 2.3 to 5.9 kPa. Female gender and older age group was associated with a lower median liver stiffness.published_or_final_versio

    Sequence Variations of Full-Length Hepatitis B Virus Genomes in Chinese Patients with HBsAg-Negative Hepatitis B Infection

    Get PDF
    BACKGROUND: The underlying mechanism of HBsAg-negative hepatitis B virus (HBV) infection is notoriously difficult to elucidate because of the extremely low DNA levels which define the condition. We used a highly efficient amplification method to overcome this obstacle and achieved our aim which was to identify specific mutations or sequence variations associated with this entity. METHODS: A total of 185 sera and 60 liver biopsies from HBsAg-negative, HBV DNA-positive subjects or known chronic hepatitis B (CHB) subjects with HBsAg seroclearance were amplified by rolling circle amplification followed by full-length HBV genome sequencing. Eleven HBsAg-positive CHB subjects were included as controls. The effects of pivotal mutations identified on regulatory regions on promoter activities were analyzed. RESULTS: 22 and 11 full-length HBV genomes were amplified from HBsAg-negative and control subjects respectively. HBV genotype C was the dominant strain. A higher mutation frequency was observed in HBsAg-negative subjects than controls, irrespective of genotype. The nucleotide diversity over the entire HBV genome was significantly higher in HBsAg-negative subjects compared with controls (p = 0.008) and compared with 49 reference sequences from CHB patients (p = 0.025). In addition, HBsAg-negative subjects had significantly higher amino acid substitutions in the four viral genes than controls (all p<0.001). Many mutations were uniquely found in HBsAg-negative subjects, including deletions in promoter regions (13.6%), abolishment of pre-S2/S start codon (18.2%), disruption of pre-S2/S mRNA splicing site (4.5%), nucleotide duplications (9.1%), and missense mutations in "alpha" determinant region, contributing to defects in HBsAg production. CONCLUSIONS: These data suggest an accumulation of multiple mutations constraining viral transcriptional activities contribute to HBsAg-negativity in HBV infection.published_or_final_versio

    Surface modification of natural fibers using bacteria: Depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites

    No full text
    Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test

    Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis

    Get PDF
    AbstractPeriplasmic copper, zinc superoxide dismutases (Cu,ZnSOD) of several Gram-negative pathogens have been shown to play an important role in protection against exogenous superoxide radicals and in determining virulence of the pathogens. Here we report the cloning and characterization of the sodC gene, encoding Cu,ZnSOD, from the Gram-positive Mycobacterium tuberculosis. The predicted protein sequence contains 240 amino acids with a putative signal peptide at the N-terminus and shows ∌25% identity to other bacterial sodC. Recombinant proteins of a full-length sodC and a truncated form lacking the putative signal peptide were overexpressed in Escherichia coli and affinity purified. Renatured recombinant M. tuberculosis sodC protein possessed characteristics of a Cu,ZnSOD. Immunoblotting with an antiserum against the recombinant M. tuberculosis Cu,ZnSOD allowed detection of a single polypeptide in the lysate of M. tuberculosis. This polypeptide has a similar size as the recombinant protein without the putative signal peptide indicating that the endogenous Cu,ZnSOD in M. tuberculosis might be processed and secreted. Furthermore, immunogold electron microscopic image showed that Cu,ZnSOD is located in the periphery of M. tuberculosis. The enzymatic activity and subcellular localization of this novel Cu,ZnSOD suggest that it may play a role in determining virulence of M. tuberculosis

    Single molecule trapping and sensing using dual nanopores separated by a zeptoliter nanobridge

    Get PDF
    There is a growing realization, especially within the diagnostic and therapeutic community, that the amount of information enclosed in a single molecule can not only enable a better understanding of biophysical pathways, but also offer exceptional value for early stage biomarker detection of disease onset. To this end, numerous single molecule strategies have been proposed, and in terms of label-free routes, nanopore sensing has emerged as one of the most promising methods. However, being able to finely control molecular transport in terms of transport rate, resolution, and signal-to-noise ratio (SNR) is essential to take full advantage of the technology benefits. Here we propose a novel solution to these challenges based on a method that allows biomolecules to be individually confined into a zeptoliter nanoscale droplet bridging two adjacent nanopores (nanobridge) with a 20 nm separation. Molecules that undergo confinement in the nanobridge are slowed down by up to 3 orders of magnitude compared to conventional nanopores. This leads to a dramatic improvement in the SNR, resolution, sensitivity, and limit of detection. The strategy implemented is universal and as highlighted in this manuscript can be used for the detection of dsDNA, RNA, ssDNA, and proteins

    Large Intragenic Deletion in DSTYK Underlies Autosomal-Recessive Complicated Spastic Paraparesis, SPG23

    Get PDF
    SPG23 is an autosomal-recessive neurodegenerative subtype of lower limb spastic paraparesis with additional diffuse skin and hair dyspigmentation at birth followed by further patchy pigment loss during childhood. Previously, genome-wide linkage in an Arab-Israeli pedigree mapped the gene to an approximately 25 cM locus on chromosome 1q24–q32. By using whole-exome sequencing in a further Palestinian-Jordanian SPG23 pedigree, we identified a complex homozygous 4-kb deletion/20-bp insertion in DSTYK (dual serine-threonine and tyrosine protein kinase) in all four affected family members. DSTYK is located within the established linkage region and we also found the same mutation in the previously reported pedigree and another Israeli pedigree (total of ten affected individuals from three different families). The mutation removes the last two exons and part of the 3â€Č UTR of DSTYK. Skin biopsies revealed reduced DSTYK protein levels along with focal loss of melanocytes. Ultrastructurally, swollen mitochondria and cytoplasmic vacuoles were also noted in remaining melanocytes and some keratinocytes and fibroblasts. Cultured keratinocytes and fibroblasts from an affected individual, as well as knockdown of Dstyk in mouse melanocytes, keratinocytes, and fibroblasts, were associated with increased cell death after ultraviolet irradiation. Keratinocytes from an affected individual showed loss of kinase activity upon stimulation with fibroblast growth factor. Previously, dominant mutations in DSTYK were implicated in congenital urological developmental disorders, but our study identifies different phenotypic consequences for a recurrent autosomal-recessive deletion mutation in revealing the genetic basis of SPG23.The Centre for Dermatology and Genetic Medicine is supported by a Wellcome Trust Strategic Award (reference 098439/Z/12/Z). The work was supported by the MRC (MR/M018512/1) and the UK National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre (BRC) award to Guy’s and St. Thomas’ NHS Foundation Trust, in partnership with the King’s College London and King’s College Hospital NHS Foundation Trust. This study was also supported by UK Medical Research Council Project Grant (MR/M00046X/1) and Action Research grant SP3706 as well as medical student grants from the Jean Shanks Foundation and the British Association of Dermatologists

    Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.

    Get PDF
    BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m2 per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4-1·2) in 1975 to 5·6% (4·8-6·5) in 2016 in girls, and from 0·9% (0·5-1·3) in 1975 to 7·8% (6·7-9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0-12·9) in 1975 to 8·4% (6·8-10·1) in 2016 in girls and from 14·8% (10·4-19·5) in 1975 to 12·4% (10·3-14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7-29·6) among girls and 30·7% (23·5-38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44-117) million girls and 117 (70-178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24-89) million girls and 74 (39-125) million boys worldwide were obese. INTERPRETATION: The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. FUNDING: Wellcome Trust, AstraZeneca Young Health Programme
    • 

    corecore