98 research outputs found

    The Sulfolobus database

    Get PDF
    The Sulfolobus database () integrates, for the first time, all currently available Sulfolobus chromosome sequences with annotations. It also includes all the sequence data for the extrachromosomal elements which can propagate in Sulfolobus organisms. All genomes and annotations deposited in GenBank are included in the database and a genefinder has been run on the sequences to ensure that all potential genes are present, and identifiable, in the database. Every month, all genes are searched against a range of external databases and new results are incorporated. The Sulfolobus database was developed as an asset to the rapidly-growing international community working with Sulfolobus as a model organism for the kingdom Crenarchaeota of the Archaea. It was accessed more that 46 000 times in its first year. The database aims to provide researchers easy access to sequence and gene information and the web-interface includes various searches, free text and BLAST, as well as genome browsing and data extraction. Updated annotations are incorporated regularly and the database will continue to expand as new information becomes available. This includes new sequences, newly identified genes, annotations and other related information

    DNA Methylation Age Acceleration Is Not Associated with Age of Onset in Parkinson's Disease

    Get PDF
    Background Epigenetic clocks using DNA methylation (DNAm) to estimate biological age have become popular tools in the study of neurodegenerative diseases. Notably, several recent reports have shown a strikingly similar inverse relationship between accelerated biological aging, as measured by DNAm, and the age of onset of several neurodegenerative disorders, including Parkinson's disease (PD). Common to all of these studies is that they were performed without control subjects and using the exact same measure of accelerated aging: DNAm age minus chronological age. Objective We aimed to assess the validity of these findings in PD, using the same dataset as in the original study, blood DNAm data from the Parkinson's Progression Markers Initiative cohort, but also including control samples in the analyses. Methods We replicated the analyses and findings of the previous study and then reanalyzed the dataset incorporating control samples to account for underlying age-related biases. Results Our reanalysis shows that there is no correlation between age of onset and DNAm age acceleration. Conversely, there is a pattern of overestimating DNAm age in younger and underestimating DNAm age in older individuals in the dataset that entirely explains the previously reported association. Conclusions Our findings refute the previously reported inverse relationship between DNAm age acceleration and age of onset in PD. We show that these findings are fully accounted for by an expected over/underestimation of DNAm age in younger/older individuals. Furthermore, this effect is likely to be responsible for nearly identical findings reported in other neurodegenerative diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.publishedVersio

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex

    Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

    Get PDF
    The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery

    Lipids under stress - a lipidomic approach for the study of mood disorders

    Get PDF
    The emerging field of lipidomics has identified lipids as key players in disease physiology. Their physicochemical diversity allows precise control of cell structure and signaling events through modulation of membrane prop- erties and trafficking of proteins. As such, lipids are important regulators of brain function and have been implicated in neurodegenerative and mood disorders. Importantly, environmental chronic stress has been associated with anxiety and depression and its exposure in rodents has been extensively used as a model to study these diseases. With the accessibility to modern mass- spectrometry lipidomic platforms, it is now possible to snapshot the extensively interconnected lipid network. Here, we review the fundamentals of lipid biology and outline a framework for the interpretation of lipidomic studies as a new approach to study brain pathophysiology. Thus, lipid profiling provides an exciting avenue for the identification of disease signatures with important implications for diagnosis and treatment of mood disorders.We would like to thank Nuno Sousa for critical reading of the manuscript. André Miranda is funded by Fundação para a Ciência e Tecnologia (PD/BD/105915/2014). Tiago Gil Oliveira is funded by Fundação para a Ciência e Tecnologia (PTDC/ SAU-NMC/118971/2010)

    Molecular Design, Functional Characterization and Structural Basis of a Protein Inhibitor Against the HIV-1 Pathogenicity Factor Nef

    Get PDF
    Increased spread of HIV-1 and rapid emergence of drug resistance warrants development of novel antiviral strategies. Nef, a critical viral pathogenicity factor that interacts with host cell factors but lacks enzymatic activity, is not targeted by current antiviral measures. Here we inhibit Nef function by simultaneously blocking several highly conserved protein interaction surfaces. This strategy, referred to as “wrapping Nef”, is based on structure-function analyses that led to the identification of four target sites: (i) SH3 domain interaction, (ii) interference with protein transport processes, (iii) CD4 binding and (iv) targeting to lipid membranes. Screening combinations of Nef-interacting domains, we developed a series of small Nef interacting proteins (NIs) composed of an SH3 domain optimized for binding to Nef, fused to a sequence motif of the CD4 cytoplasmic tail and combined with a prenylation signal for membrane association. NIs bind to Nef in the low nM affinity range, associate with Nef in human cells and specifically interfere with key biological activities of Nef. Structure determination of the Nef-inhibitor complex reveals the molecular basis for binding specificity. These results establish Nef-NI interfaces as promising leads for the development of potent Nef inhibitors

    Decoding Plant–Environment Interactions That Influence Crop Agronomic Traits

    Get PDF
    To ensure food security in the face of increasing global demand due to population growth and progressive urbanization, it will be crucial to integrate emerging technologies in multiple disciplines to accelerate overall throughput of gene discovery and crop breeding. Plant agronomic traits often appear during the plants’ later growth stages due to the cumulative effects of their lifetime interactions with the environment. Therefore, decoding plant–environment interactions by elucidating plants’ temporal physiological responses to environmental changes throughout their lifespans will facilitate the identification of genetic and environmental factors, timing and pathways that influence complex end-point agronomic traits, such as yield. Here, we discuss the expected role of the life-course approach to monitoring plant and crop health status in improving crop productivity by enhancing the understanding of plant–environment interactions. We review recent advances in analytical technologies for monitoring health status in plants based on multi-omics analyses and strategies for integrating heterogeneous datasets from multiple omics areas to identify informative factors associated with traits of interest. In addition, we showcase emerging phenomics techniques that enable the noninvasive and continuous monitoring of plant growth by various means, including three-dimensional phenotyping, plant root phenotyping, implantable/injectable sensors and affordable phenotyping devices. Finally, we present an integrated review of analytical technologies and applications for monitoring plant growth, developed across disciplines, such as plant science, data science and sensors and Internet-of-things technologies, to improve plant productivity

    Annexin A6-Induced Alterations in Cholesterol Transport and Caveolin Export from the Golgi Complex

    Get PDF
    Annexin A6 (AnxA6) belongs to a family of Ca2+-dependent membrane-binding proteins and is involved in the regulation of endocytic and exocytic pathways. We previously demonstrated that AnxA6 regulates receptor-mediated endocytosis and lysosomal targeting of low-density lipoproteins and translocates to cholesterol-enriched late endosomes (LE). As cholesterol modulates the membrane binding and the cellular location of AnxA6, but also affects the intracellular distribution of caveolin, we investigated the localization and trafficking of caveolin in AnxA6-expressing cells. Here, we show that cells expressing high levels of AnxA6 are characterized by an accumulation of caveolin-1 (cav-1) in the Golgi complex. This is associated with a sequestration of cholesterol in the LE and lower levels of cholesterol in the Golgi and the plasma membrane, both likely contributing to retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. Further strengthening these findings, knock down of AnxA6 and the ectopic expression of the Niemann–Pick C1 protein in AnxA6-overexpressing cells restore the cellular distribution of cav-1 and cholesterol, respectively. In summary, this study demonstrates that elevated expression levels of AnxA6 perturb the intracellular distribution of cholesterol, which indirectly inhibits the exit of caveolin from the Golgi complex
    corecore