393 research outputs found

    Los espacios pĂșblicos de la literatura contemporĂĄnea

    Get PDF
    Este artĂ­culo propone una crĂ­tica de la nociĂłn habermasiana de esfera pĂșblica ; esta, desde sus orĂ­genes, se encuentra estrechamente ligada a la literatura. La esfera pĂșblica es descrita como una idealizaciĂłn en la cual el pĂșblico de la literatura es concebido a partir de una triple supresiĂłn (el cuerpo, el espacio y el sonido). Esta representaciĂłn no describe correctamente las prĂĄcticas contemporĂĄneas, entre las cuales las performances literarias, las lecturas pĂșblicas y las publicaciones fuera del libro se encuentran cada vez mĂĄs en el centro de la producciĂłn.Cet article propose une critique de la notion habermasienne de « sphĂšre publique », une notion Ă©troitement liĂ©e, depuis ses origines, Ă  la littĂ©rature. La sphĂšre publique est dĂ©crite comme une idĂ©alisation dans laquelle le public de la littĂ©rature est conçu Ă  partir d’une triple suppression (celle du corps, de l’espace et du son). Cette reprĂ©sentation ne dĂ©crit pas correctement les pratiques contemporaines, parmi lesquelles les performances littĂ©raires, les lectures publiques et les publications hors du livre se trouvent de plus en plus au centre de la production.This article aims at criticizing Habermas’ notion of “public sphere”, a concept which, since its origins, has been closely linked with literature. The public sphere is described as an idealization in which the public of literature is defined as the result of a triple suppression (that of body, sound, and space). This representation does not describe accurately the contemporary practices, among which literary performances, public readings and non-print publications are increasingly taking centre stage

    Procédé de co-atomisation séchage pour l'encapsulation d'un principe actif au sein de nanoparticules de silice mésoporeuse

    Get PDF
    Les nanosystĂšmes Ă  visĂ©e biomĂ©dicale sont de plus en plus Ă©tudiĂ©s en tant qu’outil thĂ©rapeutique pour la dĂ©livrance contrĂŽlĂ©e de substances actives. GrĂące Ă  leurs propriĂ©tĂ©s de surface, leur morphologie, leur rĂ©seau poreux organisĂ© ainsi que leur biocompatibilitĂ©, les nanoparticules de silice mĂ©soporeuse de type MCM-41 (notĂ©es MSN) font partie des nanovecteurs les plus rĂ©pandus. Leur synthĂšse et leur fonctionnalisation externe/interne ont Ă©tĂ© largement Ă©tudiĂ©es ainsi que leurs propriĂ©tĂ©s biologiques. NĂ©anmoins, les procĂ©dĂ©s conventionnels de charge en molĂ©cules actives de MSN, comme l'imprĂ©gnation, ne prĂ©sentent pas une efficacitĂ© de charge suffisante et sont difficiles Ă  envisager Ă  l'Ă©chelle industrielle. Pour surmonter ces limitations, nous avons mis en place un procĂ©dĂ© innovant de co-sĂ©chage par atomisation pour les MSN, utilisant le Nano Spray Dryer B-90. L’ibuprofĂšne a Ă©tĂ© choisi comme molĂ©cule modĂšle en raison de ses propriĂ©tĂ©s physico-chimiques, dont son caractĂšre trĂšs faiblement hydrosoluble, de sa taille molĂ©culaire et de la littĂ©rature abondante associĂ©e. Des techniques complĂ©mentaires, telles que DLS, MEB, MET, SAXS, RMN du solide, Adsorption d’azote, ATG/ATD, 
 etc ont Ă©tĂ© utilisĂ©es pour effectuer une caractĂ©risation multi-Ă©chelle des particules chargĂ©es. Les poudres sĂ©chĂ©es par atomisation ont Ă©tĂ© analysĂ©es du point de vue de la taille et de la morphologie des agrĂ©gats de MSN formĂ©s lors de l’atomisation, de la charge des pores et de la conformation de l'ibuprofĂšne et de ses interactions avec la silice. La caractĂ©risation de poudre atomisĂ©e dans des conditions considĂ©rĂ©es comme rĂ©fĂ©rentes prouve que l’ibuprofĂšne se charge dans les pores des MSN et se trouve dans un Ă©tat qualifiĂ© de pseudo-liquide au sein du rĂ©seau, interagissant de maniĂšre non prĂ©fĂ©rentielle avec la matrice de silice. Un mĂ©canisme de charge en deux Ă©tapes a Ă©tĂ© proposĂ©.Une premiĂšre Ă©tape de charge au sein de la suspension initiale rĂ©sulte de l’équilibre entre les molĂ©cules d’ibuprofĂšne libres en solution et celles physisorbĂ©es Ă  l’intĂ©rieur des pores des MSN. La seconde Ă©tape est rĂ©alisĂ©e au cours du sĂ©chage provoquant l’évaporation du solvant et la diffusion des molĂ©cules d’ibuprofĂšne libres dans le rĂ©seau de pores. Le rapport massique ibuprofĂšne/silice dans la suspension initiale affecte fortement la localisation (dans les mĂ©sopores ou en dehors) et l’état physique (cristallisĂ©, amorphe ou pseudo-liquide) de l'ibuprofĂšne. La quantification de chacune de ces phases a permis de calculer des taux de charge prĂ©cis. Ainsi, pour des ratios Ă©levĂ©s en ibuprofĂšne dans la suspension initiale, il a Ă©tĂ© dĂ©montrĂ© que le remplissage des pores continue de s’exercer, alors mĂȘme que de l’ibuprofĂšne cristallin se forme Ă  l’extĂ©rieur des pores. L’augmentation du taux de remplissage des pores s’accompagne dans ce cas d’une densification de l’ibuprofĂšne dans le rĂ©seau poreux, passant d’un Ă©tat pseudo-liquide Ă  un Ă©tat amorphe. La concentration initiale en solide dans la suspension ainsi que la composition du solvant modifient la densitĂ© des agglomĂ©rats de MSN. En outre, les paramĂštres liĂ©s au procĂ©dĂ© : la taille des pores de la buse d’atomisation, le dĂ©bit de suspension d’alimentation, la tempĂ©rature et le dĂ©bit du gaz sĂ©cheur ont un effet moindre sur la charge en principe actif mais impactent la taille, la morphologie et la densitĂ© des agglomĂ©rats, ainsi que le rendement de rĂ©cupĂ©ration de la poudre en fin d’opĂ©ration. Ces effets rĂ©sultent de l’influence de ces paramĂštres sur la composition des gouttes formĂ©es par la buse d’atomisation et sur la cinĂ©tique de sĂ©chage. Une Ă©tude prĂ©liminaire a permis d’évaluer les propriĂ©tĂ©s de libĂ©ration des MSN chargĂ©es et de mettre en Ă©vidence une libĂ©ration rapide et complĂšte de l’ibuprofĂšne encapsulĂ©

    Ibuprofen loading into mesoporous silica nanoparticles using Co-Spray drying: A multi-scale study

    Get PDF
    Mesoporous Silica Nanoparticles (MSN) are used in an increasing number of applications in nanomedicine. Their synthesis and external/internal functionalization have been extensively studied as well as their biological properties. Nevertheless, the conventional drug loading processes of MSN (such as impregnation), do not enable sufficient efficiency and are difficult to consider on an industrial scale. To overcome these limitations, we implemented an innovative co-spray-drying process, using a nano spray-dryer, to load MSN with ibuprofen molecules. In this contribution, complementary techniques were used to perform a multi-scale characterization of the loaded particles. Spray-dried powders have been analysed from aggregates size and morphology to pore loading and ibuprofen conformation. This study demonstrates that ibuprofen/silica weight ratio in the initial suspension strongly affects the location (into mesopores or external) and the conformation (crystallized, amorphous or liquid-like) of ibuprofen. The quantification of each phase has allowed calculating precise loading rates and demonstrate tunable pore filling

    ProcĂ©dĂ© innovant pour la formulation de nanovecteurs d’agents anticancĂ©reux par co-spray drying

    Get PDF
    Les nanosystĂšmes prĂ©sentent un intĂ©rĂȘt important dans le monde biomĂ©dical, pour leur utilisation comme outilsdiagnostiquesou thĂ©rapeutiquesafin de rĂ©aliser une dĂ©livrance contrĂŽlĂ©e de principes actifs. Parmi tous ces systĂšmes, les nanoparticules de silice mĂ©soporeuse (MSN), biocompatibles et capablesde se dĂ©grader naturellement dans le corps(Lu et al. 2007, Slowing et al. 2008), possĂšdent un vĂ©ritable potentiel en tant que vecteurs de molĂ©cules actives.Leur capacitĂ© d’encapsulation par physisorption ou chimisorption est Ă©galement un atout majeur. La silice de type MCM-41 est l’une des plus synthĂ©tisĂ©eset utilisĂ©es, notammentgrĂące Ă  sa forteporositĂ© et Ă  satrĂšs grande surface spĂ©cifique (Vallet-Regi etal. 2001, Wilczewska et al. 2012)

    EcoTILLING in Capsicum species: searching for new virus resistances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The EcoTILLING technique allows polymorphisms in target genes of natural populations to be quickly analysed or identified and facilitates the screening of genebank collections for desired traits. We have developed an EcoTILLING platform to exploit <it>Capsicum </it>genetic resources. A perfect example of the utility of this EcoTILLING platform is its application in searching for new virus-resistant alleles in <it>Capsicum </it>genus. Mutations in translation initiation factors (eIF4E, eIF(iso)4E, eIF4G and eIF(iso)4G) break the cycle of several RNA viruses without affecting the plant life cycle, which makes these genes potential targets to screen for resistant germplasm.</p> <p>Results</p> <p>We developed and assayed a cDNA-based EcoTILLING platform with 233 cultivated accessions of the genus <it>Capsicum</it>. High variability in the coding sequences of the <it>eIF4E </it>and <it>eIF(iso)4E </it>genes was detected using the cDNA platform. After sequencing, 36 nucleotide changes were detected in the CDS of <it>eIF4E </it>and 26 in <it>eIF(iso)4E</it>. A total of 21 <it>eIF4E </it>haplotypes and 15 <it>eIF(iso)4E </it>haplotypes were identified. To evaluate the functional relevance of this variability, 31 possible eIF4E/eIF(iso)4E combinations were tested against <it>Potato virus Y</it>. The results showed that five new <it>eIF4E </it>variants (<it>pvr2<sup>10</sup></it>, <it>pvr2<sup>11</sup></it>, <it>pvr2<sup>12</sup></it>, <it>pvr2<sup>13 </sup></it>and <it>pvr2<sup>14</sup></it>) were related to PVY-resistance responses.</p> <p>Conclusions</p> <p>EcoTILLING was optimised in different <it>Capsicum </it>species to detect allelic variants of target genes. This work is the first to use cDNA instead of genomic DNA in EcoTILLING. This approach avoids intronic sequence problems and reduces the number of reactions. A high level of polymorphism has been identified for initiation factors, showing the high genetic variability present in our collection and its potential use for other traits, such as genes related to biotic or abiotic stresses, quality or production. Moreover, the new <it>eIF4E </it>and <it>eIF(iso)4E </it>alleles are an excellent collection for searching for new resistance against other RNA viruses.</p

    IdentiïŹcation of molecular integrators shows that nitrogen activelycontrolsthephosphatestarvationresponseinplants

    Get PDF
    Nitrogen (N) and phosphorus (P) are key macronutrients sustaining plant growth and crop yield and ensuring food security worldwide. Understanding how plants perceive and interpret the combinatorial nature of these signals thus has important agricultural implications within the context of (1) increased food demand, (2) limited P supply, and (3) environmental pollution due to N fertilizer usage. Here, we report the discovery of an active control of P starvation response (PSR) by a combination of local and long-distance N signaling pathways in plants. We show that, in Arabidopsis (Arabidopsis thaliana), the nitrate transceptor CHLORINA1/NITRATE TRANSPORTER1.1 (CHL1/NRT1.1) is a component of this signaling crosstalk. We also demonstrate that this crosstalk is dependent on the control of the accumulation and turnover by N of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), a master regulator of P sensing and signaling. We further show an important role of PHOSPHATE2 (PHO2) as an integrator of the N availability into the PSR since the effect of N on PSR is strongly affected in pho2 mutants. We finally show that PHO2 and NRT1.1 influence each other’s transcript levels. These observations are summarized in a model representing a framework with several entry points where N signal influence PSR. Finally, we demonstrate that this phenomenon is conserved in rice (Oryza sativa) and wheat (Triticum aestivum), opening biotechnological perspectives in crop plants.This work was supported in the Honude group (Biochemistry & Plant Molecular Physiology) by Agence Nationale de la Recherche (IMANA ANR-14-CE19-0008 with a doctoral fellowship to A.S.), by the Centre National de la Recherche Scientifique (CNRS LIA-CoopNet to G.K.), and by the National Science Foundation (NSF IOS 1339362-NutriNet). Research in V.R.’s laboratory was funded by the Ministry of Economy and Competitiveness and AEI/FEDER/European (grants BIO2013-46539-R and BIO2016-80551-R)

    An Induced Mutation in Tomato eIF4E Leads to Immunity to Two Potyviruses

    Get PDF
    BACKGROUND: The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS: To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE: Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study

    Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants

    Get PDF
    Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T(2) generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T(3) lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes

    Regulation of translation initiation under biotic and abiotic stresses

    Get PDF
    [EN] Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.This work was supported by the ERC Starting Grant 260468 to M. Mar Castellano.Echevarria-Zomeno, S.; Yanguez, E.; Fernandez-Bautista, N.; Castro-Sanz, AB.; Ferrando MonleĂłn, AR.; Castellano, MM. (2013). Regulation of translation initiation under biotic and abiotic stresses. International Journal of Molecular Sciences. 14(3):4670-4683. https://doi.org/10.3390/ijms14034670S46704683143Dever, T. E., & Green, R. (2012). The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 4(7), a013706-a013706. doi:10.1101/cshperspect.a013706Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042Graber, T. E., & Holcik, M. (2007). Cap-independent regulation of gene expression in apoptosis. Molecular BioSystems, 3(12), 825. doi:10.1039/b708867aAl-Fageeh, M. B., & Smales, C. M. (2006). Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal, 397(2), 247-259. doi:10.1042/bj20060166Braunstein, S., Karpisheva, K., Pola, C., Goldberg, J., Hochman, T., Yee, H., 
 Schneider, R. J. (2007). A Hypoxia-Controlled Cap-Dependent to Cap-Independent Translation Switch in Breast Cancer. Molecular Cell, 28(3), 501-512. doi:10.1016/j.molcel.2007.10.019Castelli, L. M., Lui, J., Campbell, S. G., Rowe, W., Zeef, L. A. H., Holmes, L. E. A., 
 Ashe, M. P. (2011). Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Molecular Biology of the Cell, 22(18), 3379-3393. doi:10.1091/mbc.e11-02-0153Gilbert, W. V., Zhou, K., Butler, T. K., & Doudna, J. A. (2007). Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast. Science, 317(5842), 1224-1227. doi:10.1126/science.1144467Liu, L., & Simon, M. C. (2004). Regulation of Transcription and Translation by Hypoxia. Cancer Biology & Therapy, 3(6), 492-497. doi:10.4161/cbt.3.6.1010Sun, J., Conn, C. S., Han, Y., Yeung, V., & Qian, S.-B. (2010). PI3K-mTORC1 Attenuates Stress Response by Inhibiting Cap-independent Hsp70 Translation. Journal of Biological Chemistry, 286(8), 6791-6800. doi:10.1074/jbc.m110.172882Walsh, D., Mathews, M. B., & Mohr, I. (2012). Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harbor Perspectives in Biology, 5(1), a012351-a012351. doi:10.1101/cshperspect.a012351Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., & Menand, B. (2009). Post-transcriptional Regulation of Gene Expression in Plants during Abiotic Stress. International Journal of Molecular Sciences, 10(7), 3168-3185. doi:10.3390/ijms10073168Jackson, R. J., Hellen, C. U. T., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), 113-127. doi:10.1038/nrm2838Clemens, M. J. (2001). Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. Journal of Cellular and Molecular Medicine, 5(3), 221-239. doi:10.1111/j.1582-4934.2001.tb00157.xWek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007Holcik, M., & Sonenberg, N. (2005). Translational control in stress and apoptosis. Nature Reviews Molecular Cell Biology, 6(4), 318-327. doi:10.1038/nrm1618Muñoz, A., & Castellano, M. M. (2012). Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes? Comparative and Functional Genomics, 2012, 1-8. doi:10.1155/2012/406357Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000). Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Molecular Cell, 6(5), 1099-1108. doi:10.1016/s1097-2765(00)00108-8Ventoso, I., Kochetov, A., Montaner, D., Dopazo, J., & Santoyo, J. (2012). Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells. PLoS ONE, 7(5), e35915. doi:10.1371/journal.pone.0035915Sudhakar, A., Ramachandran, A., Ghosh, S., Hasnain, S. E., Kaufman, R. J., & Ramaiah, K. V. A. (2000). Phosphorylation of Serine 51 in Initiation Factor 2α (eIF2α) Promotes Complex Formation between eIF2α(P) and eIF2B and Causes Inhibition in the Guanine Nucleotide Exchange Activity of eIF2B†. Biochemistry, 39(42), 12929-12938. doi:10.1021/bi0008682GarcĂ­a, M. A., Meurs, E. F., & Esteban, M. (2007). The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89(6-7), 799-811. doi:10.1016/j.biochi.2007.03.001Katze, M. G., He, Y., & Gale, M. (2002). Viruses and interferon: a fight for supremacy. Nature Reviews Immunology, 2(9), 675-687. doi:10.1038/nri888Mohr, I. (2006). Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Research, 119(1), 89-99. doi:10.1016/j.virusres.2005.10.009Zhang, Y., Wang, Y., Kanyuka, K., Parry, M. A. J., Powers, S. J., & Halford, N. G. (2008). GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. Journal of Experimental Botany, 59(11), 3131-3141. doi:10.1093/jxb/ern169Lageix, S., Lanet, E., Pouch-PĂ©lissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & PĂ©lissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134Bilgin, D. D., Liu, Y., Schiff, M., & Dinesh-Kumar, S. . (2003). P58IPK, a Plant Ortholog of Double-Stranded RNA-Dependent Protein Kinase PKR Inhibitor, Functions in Viral Pathogenesis. Developmental Cell, 4(5), 651-661. doi:10.1016/s1534-5807(03)00125-4Gallie, D. R., Le, H., Caldwell, C., Tanguay, R. L., Hoang, N. X., & Browning, K. S. (1997). The Phosphorylation State of Translation Initiation Factors Is Regulated Developmentally and following Heat Shock in Wheat. Journal of Biological Chemistry, 272(2), 1046-1053. doi:10.1074/jbc.272.2.1046Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A., & Sonenberg, N. (1996). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proceedings of the National Academy of Sciences, 93(11), 5578-5583. doi:10.1073/pnas.93.11.5578Gingras, A.-C., & Sonenberg, N. (1997). Adenovirus Infection Inactivates the Translational Inhibitors 4E-BP1 and 4E-BP2. Virology, 237(1), 182-186. doi:10.1006/viro.1997.8757Freire, M. A. (2005). Translation initiation factor (iso) 4E interacts with BTF3, the ÎČ subunit of the nascent polypeptide-associated complex. Gene, 345(2), 271-277. doi:10.1016/j.gene.2004.11.030Freire, M. A., Tourneur, C., Granier, F., Camonis, J., El Amrani, A., Browning, K. S., & Robaglia, C. (2000). Plant Molecular Biology, 44(2), 129-140. doi:10.1023/a:1006494628892Dreher, T. W., & Miller, W. A. (2006). Translational control in positive strand RNA plant viruses. Virology, 344(1), 185-197. doi:10.1016/j.virol.2005.09.031Thivierge, K., Nicaise, V., Dufresne, P. J., Cotton, S., LalibertĂ©, J.-F., Le Gall, O., & Fortin, M. G. (2005). Plant Virus RNAs. Coordinated Recruitment of Conserved Host Functions by (+) ssRNA Viruses during Early Infection Events: Figure 1. Plant Physiology, 138(4), 1822-1827. doi:10.1104/pp.105.064105Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., NicolaĂŻ, M., 
 Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO reports, 8(9), 864-870. doi:10.1038/sj.embor.7401043Manjunath, S., Williams, A. J., & Bailey-Serres, J. (1999). Oxygen deprivation stimulates Ca2+-mediated phosphorylation of mRNA cap-binding protein eIF4E in maize roots. The Plant Journal, 19(1), 21-30. doi:10.1046/j.1365-313x.1999.00489.xRausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.xSanan-Mishra, N., Pham, X. H., Sopory, S. K., & Tuteja, N. (2005). Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences, 102(2), 509-514. doi:10.1073/pnas.0406485102Kim, T.-H., Kim, B.-H., Yahalom, A., Chamovitz, D. A., & von Arnim, A. G. (2004). Translational Regulation via 5â€Č mRNA Leader Sequences Revealed by Mutational Analysis of the Arabidopsis Translation Initiation Factor Subunit eIF3h. The Plant Cell, 16(12), 3341-3356. doi:10.1105/tpc.104.026880Schepetilnikov, M., Kobayashi, K., Geldreich, A., Caranta, C., Robaglia, C., Keller, M., & Ryabova, L. A. (2011). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. The EMBO Journal, 30(7), 1343-1356. doi:10.1038/emboj.2011.39Mayberry, L. K., Allen, M. L., Nitka, K. R., Campbell, L., Murphy, P. A., & Browning, K. S. (2011). Plant Cap-binding Complexes Eukaryotic Initiation Factors eIF4F and eIFISO4F. Journal of Biological Chemistry, 286(49), 42566-42574. doi:10.1074/jbc.m111.280099Carberry, S. E., Goss, D. J., & Darzynkiewicz, E. (1991). A comparison of the binding of methylated cap analogs to wheat germ protein synthesis initiation factors 4F and (iso) 4F. Biochemistry, 30(6), 1624-1627. doi:10.1021/bi00220a026Lellis, A. D., Allen, M. L., Aertker, A. W., Tran, J. K., Hillis, D. M., Harbin, C. R., 
 Browning, K. S. (2010). Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. Plant Molecular Biology, 74(3), 249-263. doi:10.1007/s11103-010-9670-zDinkova, T. D., Zepeda, H., MartĂ­nez-Salas, E., MartĂ­nez, L. M., Nieto-Sotelo, J., & JimĂ©nez, E. S. (2005). Cap-independent translation of maize Hsp101. The Plant Journal, 41(5), 722-731. doi:10.1111/j.1365-313x.2005.02333.xHutvagner, G. (2002). A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science, 297(5589), 2056-2060. doi:10.1126/science.1073827Voinnet, O. (2009). Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell, 136(4), 669-687. doi:10.1016/j.cell.2009.01.046Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151Sunkar, R., Li, Y.-F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196-203. doi:10.1016/j.tplants.2012.01.010Dong, Z., Shi, L., Wang, Y., Chen, L., Cai, Z., Wang, Y., 
 Li, X. (2013). Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing. International Journal of Molecular Sciences, 14(2), 2717-2738. doi:10.3390/ijms14022717Srivastava, S., Srivastava, A. K., Suprasanna, P., & D’Souza, S. F. (2012). Identification and profiling of arsenic stress-induced microRNAs inBrassica juncea. Journal of Experimental Botany, 64(1), 303-315. doi:10.1093/jxb/ers333Dugas, D. V., & Bartel, B. (2008). Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Molecular Biology, 67(4), 403-417. doi:10.1007/s11103-008-9329-1Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238Chen, X. (2004). A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science, 303(5666), 2022-2025. doi:10.1126/science.1088060Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana. Current Biology, 12(17), 1484-1495. doi:10.1016/s0960-9822(02)01017-5Gu, S., & Kay, M. A. (2010). How do miRNAs mediate translational repression? Silence, 1(1), 11. doi:10.1186/1758-907x-1-11Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., CrĂ©tĂ©, P., 
 Robaglia, C. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. The Plant Cell, 21(6), 1762-1768. doi:10.1105/tpc.108.063412Olsthoorn, R. C. L. (1999). A conformational switch at the 3’ end of a plant virus RNA regulates viral replication. The EMBO Journal, 18(17), 4856-4864. doi:10.1093/emboj/18.17.4856Smirnyagina, E. V., Morozov, S. Y., Rodionova, N. P., Miroshnichenko, N. A., Solovyev, A. G., Fedorkin, O. N., & Atabekov, J. G. (1991). Translational efficiency and competitive ability of mRNAs with 5â€Č-untranslated αÎČ-leader of potato virus X RNA. Biochimie, 73(5), 587-598. doi:10.1016/0300-9084(91)90027-xThanaraj, T. A., & Pandit, M. W. (1990). Translation-Initiation Promoting Site on Transcripts of Highly Expressed Genes FromSaccharomyces cerevisiaeand the Role of Hairpin Stems to Position the Site Near the Initiation Codon. Journal of Biomolecular Structure and Dynamics, 7(6), 1279-1289. doi:10.1080/07391102.1990.10508565Tomashevskaya, O. L., Solovyev, A. G., Karpova, O. V., Fedorkin, O. N., Rodionova, N. P., Morozov, S. Y., & Atabekov, J. G. (1993). Effects of sequence elements in the potato virus X RNA 5’ non-translated  beta-leader on its translation enhancing activity. Journal of General Virology, 74(12), 2717-2724. doi:10.1099/0022-1317-74-12-2717Belkum, A. van, Abrahams, J. P., Pleij, C. W. A., & Bosch, L. (1985). Five pseudoknots are present at the 204 nucleotides long 3’ noncoding region of tobacco mosak virus RNA. Nucleic Acids Research, 13(21), 7673-7686. doi:10.1093/nar/13.21.7673Gallie, D. R. (2002). The 5’-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Research, 30(15), 3401-3411. doi:10.1093/nar/gkf457Wells, D. R., Tanguay, R. L., Le, H., & Gallie, D. R. (1998). HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes & Development, 12(20), 3236-3251. doi:10.1101/gad.12.20.3236Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., & Laliberte, J.-F. (2000). Complex Formation between Potyvirus VPg and Translation Eukaryotic Initiation Factor 4E Correlates with Virus Infectivity. Journal of Virology, 74(17), 7730-7737. doi:10.1128/jvi.74.17.7730-7737.2000Wittmann, S., Chatel, H., Fortin, M. G., & LalibertĂ©, J.-F. (1997). Interaction of the Viral Protein Genome Linked of Turnip Mosaic Potyvirus with the Translational Eukaryotic Initiation Factor (iso) 4E ofArabidopsis thalianaUsing the Yeast Two-Hybrid System. Virology, 234(1), 84-92. doi:10.1006/viro.1997.8634Robaglia, C., & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science, 11(1), 40-45. doi:10.1016/j.tplants.2005.11.004WANG, A., & KRISHNASWAMY, S. (2012). Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology, 13(7), 795-803. doi:10.1111/j.1364-3703.2012.00791.xLellis, A. D., Kasschau, K. D., Whitham, S. A., & Carrington, J. C. (2002). Loss-of-Susceptibility Mutants of Arabidopsis thaliana Reveal an Essential Role for eIF(iso)4E during Potyvirus Infection. Current Biology, 12(12), 1046-1051. doi:10.1016/s0960-9822(02)00898-9Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S., & Robaglia, C. (2002). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. The Plant Journal, 32(6), 927-934. doi:10.1046/j.1365-313x.2002.01481.xSato, M., Nakahara, K., Yoshii, M., Ishikawa, M., & Uyeda, I. (2005). Selective involvement of members of the eukaryotic initiation factor 4E family in the infection ofArabidopsis thalianaby potyviruses. FEBS Letters, 579(5), 1167-1171. doi:10.1016/j.febslet.2004.12.086Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C., & Caranta, C. (2002). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). The Plant Journal, 32(6), 1067-1075. doi:10.1046/j.1365-313x.2002.01499.xNicaise, V., German-Retana, S., SanjuĂĄn, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., 
 LeGall, O. (2003). The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiology, 132(3), 1272-1282. doi:10.1104/pp.102.017855Ruffel, S., Gallois, J. L., Lesage, M. L., & Caranta, C. (2005). The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Molecular Genetics and Genomics, 274(4), 346-353. doi:10.1007/s00438-005-0003-xKhan, M. A., Miyoshi, H., Gallie, D. R., & Goss, D. J. (2007). Potyvirus Genome-linked Protein, VPg, Directly Affects Wheat Germin VitroTranslation. Journal of Biological Chemistry, 283(3), 1340-1349. doi:10.1074/jbc.m703356200Cotton, S., Dufresne, P. J., Thivierge, K., Ide, C., & Fortin, M. G. (2006). The VPgPro protein of Turnip mosaic virus: In vitro inhibition of translation from a ribonuclease activity. Virology, 351(1), 92-100. doi:10.1016/j.virol.2006.03.019Grzela, R., Strokovska, L., Andrieu, J.-P., Dublet, B., Zagorski, W., & Chroboczek, J. (2006). Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie, 88(7), 887-896. doi:10.1016/j.biochi.2006.02.012Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010Zeenko, V., & Gallie, D. R. (2005). Cap-independent Translation of Tobacco Etch Virus Is Conferred by an RNA Pseudoknot in the 5â€Č-Leader. Journal of Biological Chemistry, 280(29), 26813-26824. doi:10.1074/jbc.m503576200Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353Wang, S., Browning, K. S., & Miller, W. A. (1997). A viral sequence in the 3â€Č-untranslated region mimics a 5â€Č cap in facilitating translation of uncapped mRNA. The EMBO Journal, 16(13), 4107-4116. doi:10.1093/emboj/16.13.4107Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3â€Č Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12Wang, Z., Treder, K., & Miller, W. A. (2009). Structure of a Viral Cap-independent Translation Element That Functions via High Affinity Binding to the eIF4E Subunit of eIF4F. Journal of Biological Chemistry, 284(21), 14189-14202. doi:10.1074/jbc.m808841200Gazo, B. M., Murphy, P., Gatchel, J. R., & Browning, K. S. (2004). A Novel Interaction of Cap-binding Protein Complexes Eukaryotic Initiation Factor (eIF) 4F and eIF(iso)4F with a Region in the 3â€Č-Untranslated Region of Satellite Tobacco Necrosis Virus. Journal of Biological Chemistry, 279(14), 13584-13592. doi:10.1074/jbc.m311361200Mardanova, E. S., Zamchuk, L. A., Skulachev, M. V., & Ravin, N. V. (2008). The 5â€Č untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene, 420(1), 11-16. doi:10.1016/j.gene.2008.04.00
    • 

    corecore