26 research outputs found

    Plant biosystems design research roadmap 1.0

    Get PDF
    Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance

    Decoding Plant–Environment Interactions That Influence Crop Agronomic Traits

    Get PDF
    To ensure food security in the face of increasing global demand due to population growth and progressive urbanization, it will be crucial to integrate emerging technologies in multiple disciplines to accelerate overall throughput of gene discovery and crop breeding. Plant agronomic traits often appear during the plants’ later growth stages due to the cumulative effects of their lifetime interactions with the environment. Therefore, decoding plant–environment interactions by elucidating plants’ temporal physiological responses to environmental changes throughout their lifespans will facilitate the identification of genetic and environmental factors, timing and pathways that influence complex end-point agronomic traits, such as yield. Here, we discuss the expected role of the life-course approach to monitoring plant and crop health status in improving crop productivity by enhancing the understanding of plant–environment interactions. We review recent advances in analytical technologies for monitoring health status in plants based on multi-omics analyses and strategies for integrating heterogeneous datasets from multiple omics areas to identify informative factors associated with traits of interest. In addition, we showcase emerging phenomics techniques that enable the noninvasive and continuous monitoring of plant growth by various means, including three-dimensional phenotyping, plant root phenotyping, implantable/injectable sensors and affordable phenotyping devices. Finally, we present an integrated review of analytical technologies and applications for monitoring plant growth, developed across disciplines, such as plant science, data science and sensors and Internet-of-things technologies, to improve plant productivity

    Régulation de la formation du bois chez l'eucalyptus lors du développement et en réponse à des contraintes environnementales

    Get PDF
    Due to its outstanding growth combined to superior wood properties, Eucalyptus genus has become the most planted hardwood on earth and emerged as the most appealing sources of renewable biomass feedstock for paper and second-generation biofuels. Wood is composed of lignified secondary cell walls (SCWs) and its formation is tightly regulated by a complex, partially unknown, transcription factors (TFs) network. SCWs are composed by 80% of polysaccharides targeted for most of value-added bioproducts, whereas lignin (20%) is responsible for biomass recalcitrance to enzymatic degradation but increase wood energetic potential for combustion. Despite its remarkable adaptability to various soils and climate environment Eucalyptus growth varies strongly according to these factors. Eucalyptus is extensively grown in highly weathered soils in tropical and subtropical regions where plantations are facing more frequent drought episodes in combination to nutrient starvation, requiring high amounts of expensive fertilizers. In temperate regions such as North of Europe, the main limitation for the expansion of this non-dormant tree is cold exposure, which reduces dramatically its growth. The effects of these stresses are emphasized in the actual context of climate change which induces sharp contrasting periods, and their impacts on wood formation and quality remain unknown. Scarce data from literature suggest that these stresses affect secondary cell wall (SCW) deposition as well as xylem cell patterning. However these results are highly heterogeneous among different species and mainly focused on non-woody tissues. The selection of adapted clones and the development of more sustainable cultural practices are crucial to improve wood productivity and quality, which require a better understanding of tree response to cold and water stress in interaction with nutrition. In order to unravel the regulation of xylem differentiation by low temperature, we performed a targeted approach on cold-acclimated Eucalyptus trees. By biochemical, histochemical and transcriptomic analyses, we revealed that low temperature trigger a precocious SCW deposition in developing xylem cells, characterized by a strong lignin deposition. In parallel, we aimed to characterize the effect of water stress combined to different mineral nutrition regimes, on wood formation and quality. To this end, we took advantage of an experimental design set up on field with a highly productive Eucalyptus commercial clone submitted to both rainfall exclusion combined to potassium fertilization. We combined large scale analyses of transcriptome and metabolome, with wood structural and biochemical properties analyses. The integrative approach with these datasets revealed that potassium fertilization induces a repression of SCW biosynthesis, together with regulation of cambial activity and modifications in wood properties, with a strong interaction with water exclusion. Both approaches allowed to point out several uncharacterized yet TFs which are highly promising candidates in the control of cambial activity and SCW deposition in a woody perennial. Characterization of their function in poplar and Eucalyptus revealed a new key regulator of SCW biosynthesis in wood, and several MYB TFs potentially involved in the trade-off between SCW biosynthesis and growth.Du fait de sa croissance exceptionnelle combinĂ©e aux propriĂ©tĂ©s supĂ©rieures de son bois, l'Eucalyptus est devenu le feuillu le plus plantĂ© au monde et s'est imposĂ© comme source de biomasse pour la production de papier et de biocarburants de seconde gĂ©nĂ©ration. Le bois est composĂ© de parois secondaires lignifiĂ©es et sa formation est finement rĂ©gulĂ©e par un rĂ©seau complexe, et globalement mal connu, de facteurs de transcription (FT). Les parois secondaires sont composĂ©es de 80% de polysaccharides, ciblĂ©s pour la plupart des bioproduits Ă  haute valeur ajoutĂ©e, tandis que la lignine (20%) est responsable de la rĂ©calcitrance de la biomasse Ă  la dĂ©gradation enzymatique mais augmente le potentiel Ă©nergĂ©tique du bois par combustion. MalgrĂ© son adaptabilitĂ© remarquable Ă  diffĂ©rents sols et climats, la croissance de l'Eucalyptus varie fortement suivant ces facteurs. L'Eucalyptus est largement plantĂ© sur des sols lessivĂ©s dans les rĂ©gions tropicales et subtropicales oĂč les plantations industrielles font face Ă  des Ă©pisodes de sĂ©cheresse de plus en plus frĂ©quents, en combinaison avec des forts manques de nutriments, nĂ©cessitant de gros apports en fertilisants. Dans les rĂ©gion tempĂ©rĂ©es telles que l'Europe du Nord, la principale limitation Ă  l'implantation de cet arbre dĂ©pourvu d'endodormance, est l'exposition au froid. Ces contraintes abiotiques sont aggravĂ©es par le changement climatique et leur impact sur la formation du bois et sa qualitĂ© restent peu documentĂ©s. Quelques donnĂ©es suggĂšrent que ces stress affectent le dĂ©pĂŽt de la paroi secondaire ainsi que la structure du xylĂšme. Cependant, ces rĂ©sultats sont trĂšs hĂ©tĂ©rogĂšnes entre diffĂ©rentes espĂšces et principalement focalisĂ©s sur des tissus diffĂ©rents du bois. La sĂ©lection de clones adaptĂ©s et le dĂ©veloppement de pratiques culturales plus viables, sont essentiels pour amĂ©liorer la productivitĂ© et la qualitĂ© du bois, ce qui requiert une meilleure comprĂ©hension de la rĂ©ponse des arbres au froid et au manque d'eau en interaction avec la nutrition. Dans le but de dĂ©crypter les rĂ©gulations induites par le froid dans la diffĂ©renciation du xylĂšme, nous avons effectuĂ© une approche ciblĂ©e sur des Eucalyptus acclimatĂ©s au froid. Des analyses de biochimie, d'histochimie et de transcriptomique, ont rĂ©vĂ©lĂ© que le froid dĂ©clenche un dĂ©pĂŽt de paroi secondaire prĂ©coce dans les cellules du xylĂšme en dĂ©veloppement, caractĂ©risĂ© par un fort dĂ©pĂŽt de lignine. En parallĂšle, pour caractĂ©riser l'effet du manque d'eau combinĂ© Ă  diffĂ©rents rĂ©gimes nutritifs, sur la formation et la qualitĂ© du bois, nous avons tirĂ© profit d'un dispositif expĂ©rimental mis en place au champ avec un clone commercial d'Eucalyptus, soumis Ă  une exclusion de pluie combinĂ©e Ă  une fertilisation au potassium. Nous avons combinĂ© des analyses globales du transcriptome et du mĂ©tabolome, avec l'analyse des propriĂ©tĂ©s structurales et biochimiques du bois. L'approche intĂ©grative de ces jeux de donnĂ©es a rĂ©vĂ©lĂ© que la fertilisation au potassium induit une rĂ©pression de la biosynthĂšse de la paroi secondaire ainsi qu'une rĂ©gulation de l'activitĂ© cambiale et la modification dans les propriĂ©tĂ©s du bois, avec une forte interaction avec l'exclusion d'eau. Ces deux approches ont permis l'identification de diffĂ©rents FT non caractĂ©risĂ©s qui constituent des candidats prometteurs dans le contrĂŽle de l'activitĂ© cambiale et du dĂ©pĂŽt de paroi secondaire chez un ligneux. Leur caractĂ©risation fonctionnelle chez le peuplier et l'Eucalyptus a rĂ©vĂ©lĂ© un nouveau rĂ©gulateur clĂ© de la biosynthĂšse de paroi secondaire, et plusieurs facteurs MYB potentiellement impliquĂ©s dans la balance entre formation de la paroi secondaire et croissance

    Regulation of wood formation in eucalyptus during develpment and in response to environmental constraints

    No full text
    Du fait de sa croissance exceptionnelle combinĂ©e aux propriĂ©tĂ©s supĂ©rieures de son bois, l'Eucalyptus est devenu le feuillu le plus plantĂ© au monde et s'est imposĂ© comme source de biomasse pour la production de papier et de biocarburants de seconde gĂ©nĂ©ration. Le bois est composĂ© de parois secondaires lignifiĂ©es et sa formation est finement rĂ©gulĂ©e par un rĂ©seau complexe, et globalement mal connu, de facteurs de transcription (FT). Les parois secondaires sont composĂ©es de 80% de polysaccharides, ciblĂ©s pour la plupart des bioproduits Ă  haute valeur ajoutĂ©e, tandis que la lignine (20%) est responsable de la rĂ©calcitrance de la biomasse Ă  la dĂ©gradation enzymatique mais augmente le potentiel Ă©nergĂ©tique du bois par combustion. MalgrĂ© son adaptabilitĂ© remarquable Ă  diffĂ©rents sols et climats, la croissance de l'Eucalyptus varie fortement suivant ces facteurs. L'Eucalyptus est largement plantĂ© sur des sols lessivĂ©s dans les rĂ©gions tropicales et subtropicales oĂč les plantations industrielles font face Ă  des Ă©pisodes de sĂ©cheresse de plus en plus frĂ©quents, en combinaison avec des forts manques de nutriments, nĂ©cessitant de gros apports en fertilisants. Dans les rĂ©gion tempĂ©rĂ©es telles que l'Europe du Nord, la principale limitation Ă  l'implantation de cet arbre dĂ©pourvu d'endodormance, est l'exposition au froid. Ces contraintes abiotiques sont aggravĂ©es par le changement climatique et leur impact sur la formation du bois et sa qualitĂ© restent peu documentĂ©s. Quelques donnĂ©es suggĂšrent que ces stress affectent le dĂ©pĂŽt de la paroi secondaire ainsi que la structure du xylĂšme. Cependant, ces rĂ©sultats sont trĂšs hĂ©tĂ©rogĂšnes entre diffĂ©rentes espĂšces et principalement focalisĂ©s sur des tissus diffĂ©rents du bois. La sĂ©lection de clones adaptĂ©s et le dĂ©veloppement de pratiques culturales plus viables, sont essentiels pour amĂ©liorer la productivitĂ© et la qualitĂ© du bois, ce qui requiert une meilleure comprĂ©hension de la rĂ©ponse des arbres au froid et au manque d'eau en interaction avec la nutrition. Dans le but de dĂ©crypter les rĂ©gulations induites par le froid dans la diffĂ©renciation du xylĂšme, nous avons effectuĂ© une approche ciblĂ©e sur des Eucalyptus acclimatĂ©s au froid. Des analyses de biochimie, d'histochimie et de transcriptomique, ont rĂ©vĂ©lĂ© que le froid dĂ©clenche un dĂ©pĂŽt de paroi secondaire prĂ©coce dans les cellules du xylĂšme en dĂ©veloppement, caractĂ©risĂ© par un fort dĂ©pĂŽt de lignine. En parallĂšle, pour caractĂ©riser l'effet du manque d'eau combinĂ© Ă  diffĂ©rents rĂ©gimes nutritifs, sur la formation et la qualitĂ© du bois, nous avons tirĂ© profit d'un dispositif expĂ©rimental mis en place au champ avec un clone commercial d'Eucalyptus, soumis Ă  une exclusion de pluie combinĂ©e Ă  une fertilisation au potassium. Nous avons combinĂ© des analyses globales du transcriptome et du mĂ©tabolome, avec l'analyse des propriĂ©tĂ©s structurales et biochimiques du bois. L'approche intĂ©grative de ces jeux de donnĂ©es a rĂ©vĂ©lĂ© que la fertilisation au potassium induit une rĂ©pression de la biosynthĂšse de la paroi secondaire ainsi qu'une rĂ©gulation de l'activitĂ© cambiale et la modification dans les propriĂ©tĂ©s du bois, avec une forte interaction avec l'exclusion d'eau. Ces deux approches ont permis l'identification de diffĂ©rents FT non caractĂ©risĂ©s qui constituent des candidats prometteurs dans le contrĂŽle de l'activitĂ© cambiale et du dĂ©pĂŽt de paroi secondaire chez un ligneux. Leur caractĂ©risation fonctionnelle chez le peuplier et l'Eucalyptus a rĂ©vĂ©lĂ© un nouveau rĂ©gulateur clĂ© de la biosynthĂšse de paroi secondaire, et plusieurs facteurs MYB potentiellement impliquĂ©s dans la balance entre formation de la paroi secondaire et croissance.Due to its outstanding growth combined to superior wood properties, Eucalyptus genus has become the most planted hardwood on earth and emerged as the most appealing sources of renewable biomass feedstock for paper and second-generation biofuels. Wood is composed of lignified secondary cell walls (SCWs) and its formation is tightly regulated by a complex, partially unknown, transcription factors (TFs) network. SCWs are composed by 80% of polysaccharides targeted for most of value-added bioproducts, whereas lignin (20%) is responsible for biomass recalcitrance to enzymatic degradation but increase wood energetic potential for combustion. Despite its remarkable adaptability to various soils and climate environment Eucalyptus growth varies strongly according to these factors. Eucalyptus is extensively grown in highly weathered soils in tropical and subtropical regions where plantations are facing more frequent drought episodes in combination to nutrient starvation, requiring high amounts of expensive fertilizers. In temperate regions such as North of Europe, the main limitation for the expansion of this non-dormant tree is cold exposure, which reduces dramatically its growth. The effects of these stresses are emphasized in the actual context of climate change which induces sharp contrasting periods, and their impacts on wood formation and quality remain unknown. Scarce data from literature suggest that these stresses affect secondary cell wall (SCW) deposition as well as xylem cell patterning. However these results are highly heterogeneous among different species and mainly focused on non-woody tissues. The selection of adapted clones and the development of more sustainable cultural practices are crucial to improve wood productivity and quality, which require a better understanding of tree response to cold and water stress in interaction with nutrition. In order to unravel the regulation of xylem differentiation by low temperature, we performed a targeted approach on cold-acclimated Eucalyptus trees. By biochemical, histochemical and transcriptomic analyses, we revealed that low temperature trigger a precocious SCW deposition in developing xylem cells, characterized by a strong lignin deposition. In parallel, we aimed to characterize the effect of water stress combined to different mineral nutrition regimes, on wood formation and quality. To this end, we took advantage of an experimental design set up on field with a highly productive Eucalyptus commercial clone submitted to both rainfall exclusion combined to potassium fertilization. We combined large scale analyses of transcriptome and metabolome, with wood structural and biochemical properties analyses. The integrative approach with these datasets revealed that potassium fertilization induces a repression of SCW biosynthesis, together with regulation of cambial activity and modifications in wood properties, with a strong interaction with water exclusion. Both approaches allowed to point out several uncharacterized yet TFs which are highly promising candidates in the control of cambial activity and SCW deposition in a woody perennial. Characterization of their function in poplar and Eucalyptus revealed a new key regulator of SCW biosynthesis in wood, and several MYB TFs potentially involved in the trade-off between SCW biosynthesis and growth

    Diagnostic et traitement de la dysoralité chez le nourrisson

    No full text
    TOURS-BU MĂ©decine (372612103) / SudocSudocFranceF

    Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis

    No full text
    DATA AND MATERIALS AVAILABILITY : The data sets supporting the results of this manuscript are available on the National Centre for Biotechnology Information (NCBI) repository with the BioProject accession number of PRJNA896601 (https://www.ncbi.nlm.nih.gov/sra/PRJNA896601).The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants’ resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.The Technology Innovation Agency, Department of Science and Innovation of South Africa through the Forest Bioeconomy Innovation Cluster Program 1, Woldia University through the Woldia-UP PhD Scholarship Program, and the University of Pretoria Doctoral Research Bursary.https://academic.oup.com/treephys2024-02-26hj2024BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologySDG-15:Life on lan
    corecore