460 research outputs found

    Towards a reasoned 1-D river model calibration

    Get PDF
    Le calage de modèle reste une étape critique de la modélisation numérique. Après de nombreuses tentatives d`automatisation de cette tâche dans différentes domaines liés à l`eau, des questions se posent encore sur la nécessité de caler des modèles à base physique. Cet article propose aux utilisateurs de codes de calcul en hydraulique un cadre pour réaliser cette tâche selon un « code de bonnes pratiques ». Ce cadre comporte une formalisation des objets manipulés en hydraulique fluviale 1-D ainsi qu`une description conceptuelle générique du processus de calage. Ces deux éléments ont été implémentés dans un système à base de connaissances, intégrant un code de calcul ainsi que des connaissances d`experts sur le calage de modèle. Un prototype de système d`assistance au calage a ensuite été construit à l`aide d`un code de calcul résolvant les équations de Saint-Venant dans des rivières à lit fixe. Le cadre fourni pour le calage de modèle est composé de trois niveaux indépendants reliés respectivement à la tâche générique, au domaine d`application, et au code de calcul lui-même. Les deux premiers niveaux de connaissances peuvent ainsi aisément être réutilisés pour construire des systèmes d`assistance au calage pour d`autres domaines d`application, comme l`hydraulique 2-D ou encore la modélisation hydrologique à base physique. / Model calibration remains a critical step in numerical modelling. After many attempts to automate this task in water-related domains, questions about the actual need for calibrating physics-based models are still open. This article proposes a framework for good model calibration practice for end-users of 1-D hydraulic simulation codes. This framework includes a formalisation of objects used in 1-D river hydraulics along with a generic conceptual description of the model calibration process. It was implemented within a knowledge-based system integrating a simulation code and expert knowledge about model calibration. A prototype calibration support system was then built up with a specific simulation code solving subcritical unsteady flow equations for fixed-bed rivers. The framework for model calibration is composed of three independent levels related respectively to the generic task, to the application domain, and to the simulation code itself. The first two knowledge levels can thus easily be reused to build calibration support systems for other application domains, like 2-D hydrodynamics or physics-based rainfall-runoff modelling

    River model calibration, from guidelines to operational support tools

    Get PDF
    Numerical modelling is now used routinely to make predictions about the behaviour of environmental systems. Model calibration remains a critical step in the modelling process and different approaches have been taken to develop guidelines to support engineers and scientists in this task. This article reviews currently available guidelines for a river hydraulics modeller by dividing them into three types: on the calibration process, on hydraulic parameters, and on the use of hydraulic simulation codes. The article then presents an integration of selected guidelines within a knowledge-based calibration support system. A prototype called CaRMA-1 (Calibration of River Model Assistant) has been developed for supporting the calibration of models based on a specific 1D code. Two case studies illustrate the ability of the prototype to face operational situations in river hydraulics engineering, for which both data quality and quantity are not sufficient for an optimal calibration. Using CaRMA-1 allows the modeller to achieve the calibration task in accordance with good calibration practice implemented in the knowledge base. Relevant reasoning rules can easily be added to the knowledge base to extend the prototype range of applications. This study thus provides a framework for building operational support tools from various types of existing engineering guidelines

    Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at √s = 8 TeV

    Get PDF
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA measurement is presented of differential cross sections for Higgs boson (H) production in pp collisions at √s = 8TeV. The analysis exploits the H→γγ decay in data corresponding to an integrated luminosity of 19.7fb-1 collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities |η|1/3 and >1/4, the total fiducial cross section is 32±10fbWe acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23- 6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET(European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National PrioritiesResearch Program by QatarNationalResearch Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-184

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore