44 research outputs found

    COVID-19 Personal Reflection_Corona Chronicles

    Get PDF
    COVID-19 experiences of members of an Orono Public Library writing circle compiled by Barbara Wicks as the Corona Chronicles , starting in March 2020. Subsequent issues are included as supplemental content

    MicroRNA-138 and microRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype

    Get PDF
    Rationale: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. Objectives: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH’s cancer-like phenotype. Methods: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. Measurements and Main Results: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH’s pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU’s transcriptional regulator cAMP response element–binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. Conclusions: These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted

    Towards an understanding of the information and support needs of surgical adolescent idiopathic scoliosis patients: a qualitative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Informed decision making for adolescents and families considering surgery for scoliosis requires essential information, including expected outcomes with or without treatment and the associated risks and benefits of treatment. Ideally families should also receive support in response to their individual concerns. The aim of this study was to identify health-specific needs for online information and support for patients with adolescent idiopathic scoliosis who have had or anticipate having spinal surgery.</p> <p>Methods</p> <p>Focus group methodology was chosen as the primary method of data collection to encourage shared understandings, as well as permit expression of specific, individual views. Participants were considered eligible to participate if they had either experienced or were anticipating surgery for adolescent idiopathic scoliosis within 12 months, were between the ages of 10 and 18 years of age, and were English-speaking.</p> <p>Results</p> <p>Two focus groups consisting of 8 adolescents (1 male, 7 female) and subsequent individual interviews with 3 adolescents (1 male, 2 female) yielded a range of participant concerns, in order of prominence: (1) recovery at home; (2) recovery in hospital; (3) post-surgical appearance; (4) emotional impact of surgery and coping; (5) intrusion of surgery and recovery of daily activities; (6) impact of surgery on school, peer relationships and other social interactions; (7) decision-making about surgery; (8) being in the operating room and; (9) future worries.</p> <p>Conclusion</p> <p>In conclusion, adolescents welcomed the possibility of an accessible, youth-focused website with comprehensive and accurate information that would include the opportunity for health professional-moderated, online peer support.</p

    Stress ocupacional e alteração do Estatuto da Carreira Docente português

    Get PDF
    Este estudo foi realizado com 1162 professores, tendo como objetivo analisar a experiência de stress e a síndrome de “burnout”, antes a após a alteração do Estatuto da Carreira Docente em Portugal. Assim, foram efetuadas duas avaliações em momentos temporais distintos, assumindo-se um plano transversal de recolha de dados (2004/2005, n=689 e 2008/2009, n=473). O protocolo de avaliação incluiu medidas de fontes de stress (Questionário de Stress nos Professores, Gomes, Silva, Mourisco, Mota, & Montenegro, 2006) e de “burnout” (Inventário de “Burnout” de Maslach – Versão para Professores, Maslach, Jackson, & Leiter, 1996; Maslach, Jackson, & Schwab, 1996, Adaptação de Gomes et al., 2006). Os resultados indicaram que a experiência de stress e de “burnout” aumentou entre as duas avaliações, verificando-se em 2008/2009 aumentos em áreas relacionadas com as pressões de tempo/excesso de trabalho e com o trabalho burocrático/administrativo e, inversamente, diminuições em áreas relacionadas com as diferentes capacidades e motivações dos alunos. Quanto à predição da síndrome de “burnout”, não se verificaram alterações substanciais nas variáveis preditoras nos dois momentos. Em síntese, os resultados indicaram aumentos nas exigências profissionais dos professores, mas não se pode afirmar que tal se deva às alterações do Estatuto da Carreira Docente uma vez que não observámos alterações no stress associado à carreira docente.(undefined

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    The 21st Annual Meeting of the Rocky Mountain Virology Association

    No full text
    Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University’s Mountain Campus for this year’s 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks. Other invited speakers discussed advances in SARS-CoV-2 surveillance, molecular interactions involved in flavivirus genome assembly, evaluation of ethnomedicines for their efficacy against infectious diseases, multi-omic analyses to define risk factors associated with long COVID, the role that interferon lambda plays in control of viral pathogenesis, cell-fusion-dependent pathogenesis of varicella zoster virus, and advances in the development of a vaccine platform against prion diseases. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations

    Mass cytometry analysis of blood from peanut-sensitized tolerant and clinically allergic infants

    No full text
    Measurement(s) expression profiling Technology Type(s) cytometry time of flight assay Sample Characteristic - Organism Homo sapiens Sample Characteristic - Location Australi

    Network expansion of genetic associations defines a pleiotropy map of human cell biology

    No full text
    Proteins that interact within molecular networks tend to have similar functions and when perturbed influence the same organismal traits. Interaction networks can be used to expand the list of likely trait associated genes from genome-wide association studies (GWAS). Here, we used improvements in SNP-to-gene mapping to perform network based expansion of trait associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share a common genetic basis as well as the biological processes underlying this. We identified 73 pleiotropic gene modules linked to multiple traits that are enriched in genes involved in processes such as protein ubiquitination and RNA processing. We show examples of modules linked to human diseases enriched in genes with pathogenic variants found in patients or relevant mouse knock-out phenotypes and can be used to map targets of approved drugs for repurposing opportunities. Finally, we illustrate the use of the network expansion scores to study genes at inflammatory bowel disease (IBD) GWAS loci, and implicate IBD-relevant genes with strong functional and genetic support
    corecore