988 research outputs found

    Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study

    Get PDF
    Aims Endogenous cardiac progenitor cells, expanded from explants via cardiosphere formation, present a promising cell source to prevent heart failure following myocardial infarction. Here we used cine-magnetic resonance imaging (MRI) to track administered cardiosphere-derived cells (CDCs) and to measure changes in cardiac function over four months in the infarcted rat heart. Methods and Results CDCs, cultured from neonatal rat heart, comprised a heterogeneous population including cells expressing the mesenchymal markers CD90 and CD105, the stem cell marker c-kit and the pluripotency markers Sox2, Oct3/4 and Klf-4. CDCs (2×106) expressing green fluorescent protein (GFP+) were labelled with fluorescent micron-sized particles of iron oxide (MPIO). Labelled cells were administered to the infarcted rat hearts (n = 7) by intramyocardial injection immediately following reperfusion, then by systemic infusion (4×106) 2 days later. A control group (n = 7) was administered cell medium. MR hypointensities caused by the MPIOs were detected at all times and GFP+ cells containing MPIO particles were identified in tissue slices at 16 weeks. At two days after infarction, cardiac function was similar between groups. By 6 weeks, ejection fractions in control hearts had significantly decreased (47±2%), but this was not evident in CDC-treated hearts (56±3%). The significantly higher ejection fractions in the CDC-treated group were maintained for a further 10 weeks. In addition, CDC-treated rat hearts had significantly increased capillary density in the peri-infarct region and lower infarct sizes. MPIO-labelled cells also expressed cardiac troponin I, von Willebrand factor and smooth muscle actin, suggesting their differentiation along the cardiomyocyte lineage and the formation of new blood vessels. Conclusions CDCs were retained in the infarcted rat heart for 16 weeks and improved cardiac function

    Cardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition

    Get PDF
    Progenitor cell therapy is emerging as a novel treatment for heart failure. However the molecular mechanisms regulating the generation of cardiac progenitor cells is not fully understood. We hypothesized that cardiac progenitor cells are generated from cardiac explant via a process similar to epithelial to mesenchymal transition (EMT).Explant-derived cells were generated from partially digested atrial tissue. After 21 days in culture, c-Kit+ cells were isolated from cell outgrowth. The majority of explant-originated c-Kit+ cells expressed the epicardial marker Wt1. Cardiac cell outgrowth exhibits a temporal up-regulation of EMT-markers. Notch stimulation augmented, while Notch inhibition suppressed, mesenchymal transition in both c-Kit+ and c-Kit- cells. In c-Kit+ cells, Notch stimulation reduced, while Notch inhibition up-regulated pluripotency marker expressions such as Nanog and Sox2. Notch induction was associated with degradation of β-catenin in c-Kit- cells. In contrast, Notch inhibition resulted in β-catenin accumulation, acquisition of epitheloid morphology, and up-regulation of Wnt target genes in c-Kit- cells.Our study suggests that Notch-mediated reversible EMT process is a mechanism that regulates explant-derived c-Kit+ and c-Kit- cells

    Validation of the Cardiosphere Method to Culture Cardiac Progenitor Cells from Myocardial Tissue

    Get PDF
    At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs) can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs). Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing) to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential) of CDCs.CPCs were expanded from human endomyocardial biopsies (n = 160), adult bi-transgenic MerCreMer-Z/EG mice (n = 6), adult C57BL/6 mice (n = 18), adult GFP(+) C57BL/6 transgenic mice (n = 3), Yucatan mini pigs (n = 67), adult SCID beige mice (n = 8), and adult Wistar-Kyoto rats (n = 80). Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit(+)), endothelial cells (CD31(+), CD34(+)), and mesenchymal cells (CD90(+)). Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential.This study demonstrates that direct culture and expansion of CPCs from myocardial tissue is simple, straightforward, and reproducible when appropriate techniques are used

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN
    corecore