289 research outputs found

    Continuing Use of SNS Games for the Growth of Social Network Services

    Get PDF
    By using Social Network Services (SNSs) as platforms, game developers have gathered a huge user base, and the entertainment these games provide has further enlarged the SNS user base. However, there are signs that this symbiotic growth is slowing down. We developed a model and tested 14 hypotheses. Our main findings are: Although SNSs are “social,” “social norms” do not have much impact on the intention to use the games continually. Although users generally are not addicted to SNS games, the creation of addiction is an effective way to achieve continuance

    Genetic Mapping of Multiple Metabolic Traits Identifies Novel Genes for Adiposity, Lipids and Insulin Secretory Capacity in Outbred Rats

    Get PDF
    Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1519 male HS rats, with liver and adipose transcriptomes measured in over 410 rats. Genotypes were imputed from low coverage whole genome sequence. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), employing both SNP- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for a fat pad weight pQTL on Chr1, Krtcap3 for fat pad weight and serum lipids pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20 and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knock-down/out models, thereby shedding light on novel regulators of obesity

    Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny

    Full text link
    [EN] Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species. Significance Statement Pollination is a key development process in the life cycle of flowering plants. Genetic and molecular characterization of a tomato mutant have led to the identification of POD1 gene encoding the Mediator complex subunit MED18 whose function is required for tapetum tissue degeneration, a crucial step for pollen development. Furthermore, we show that MED18 fulfils an essential role in tomato, ensuring proper gene regulation during pollen ontogeny.This research was supported by the Spanish Ministry of Economy and Competitiveness (grants AGL2015-64991-C3-1-R, AGL2015-64991-C3-2-R, AGL2015-64991-C3-3-R, BIO2013-43098-R, BFU2016-77243-P and BIO2016-77559-R) and Junta de Andalucia (grant P12-AGR-1482).Pérez Martín, F.; Juan Yuste-Lisbona, F.; Pineda, B.; García Sogo, B.; Del Olmo, I.; Alché, JDD.; Egea, I.... (2018). Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. The Plant Journal. 96(2):300-315. https://doi.org/10.1111/tpj.14031S300315962Allen, B. L., & Taatjes, D. J. (2015). The Mediator complex: a central integrator of transcription. Nature Reviews Molecular Cell Biology, 16(3), 155-166. doi:10.1038/nrm3951Atarés, A., Moyano, E., Morales, B., Schleicher, P., García-Abellán, J. O., Antón, T., … Pineda, B. (2011). An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Reports, 30(10), 1865-1879. doi:10.1007/s00299-011-1094-yBaulcombe, D. C. (1996). Mechanisms of Pathogen-Derived Resistance to Viruses in Transgenic Plants. The Plant Cell, 1833-1844. doi:10.1105/tpc.8.10.1833Bourbon, H.-M. (2008). Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Research, 36(12), 3993-4008. doi:10.1093/nar/gkn349Buendía-Monreal, M., & Gillmor, C. S. (2016). Mediator: A key regulator of plant development. Developmental Biology, 419(1), 7-18. doi:10.1016/j.ydbio.2016.06.009Canales, C., Bhatt, A. M., Scott, R., & Dickinson, H. (2002). EXS, a Putative LRR Receptor Kinase, Regulates Male Germline Cell Number and Tapetal Identity and Promotes Seed Development in Arabidopsis. Current Biology, 12(20), 1718-1727. doi:10.1016/s0960-9822(02)01151-xCarbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A., & Perez-Amador, M. A. (2010). A Fertilization-Independent Developmental Program Triggers Partial Fruit Development and Senescence Processes in Pistils of Arabidopsis. Plant Physiology, 154(1), 163-172. doi:10.1104/pp.110.160044Chadick, J. Z., & Asturias, F. J. (2005). Structure of eukaryotic Mediator complexes. Trends in Biochemical Sciences, 30(5), 264-271. doi:10.1016/j.tibs.2005.03.001Chuang, C.-F., & Meyerowitz, E. M. (2000). Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 97(9), 4985-4990. doi:10.1073/pnas.060034297Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xColeman, A. W., & Goff, L. J. (1985). Applications of Fluorochromes to Pollen Biology. I. Mithramycin and 4′,6-Diamidino-2-Phenylindole (Dapi) as Vital Stains and for Quantitation of Nuclear Dna. Stain Technology, 60(3), 145-154. doi:10.3109/10520298509113905Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T., & Conaway, J. W. (2005). The mammalian Mediator complex and its role in transcriptional regulation. Trends in Biochemical Sciences, 30(5), 250-255. doi:10.1016/j.tibs.2005.03.002Cottrell, H. J. (1948). Tetrazolium Salt as a Seed Germination Indicator. Annals of Applied Biology, 35(1), 123-131. doi:10.1111/j.1744-7348.1948.tb07355.xCrane, M. B. (1915). Heredity of types of inflorescence and fruits in tomato. Journal of Genetics, 5(1), 1-11. doi:10.1007/bf02982149Davoine, C., Abreu, I. N., Khajeh, K., Blomberg, J., Kidd, B. N., Kazan, K., … Björklund, S. (2017). Functional metabolomics as a tool to analyze Mediator function and structure in plants. PLOS ONE, 12(6), e0179640. doi:10.1371/journal.pone.0179640Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-yFallath, T., Kidd, B. N., Stiller, J., Davoine, C., Björklund, S., Manners, J. M., … Schenk, P. M. (2017). MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLOS ONE, 12(4), e0176022. doi:10.1371/journal.pone.0176022Feng, B., Lu, D., Ma, X., Peng, Y., Sun, Y., Ning, G., & Ma, H. (2012). Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. The Plant Journal, 72(4), 612-624. doi:10.1111/j.1365-313x.2012.05104.xGillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910Gómez, J. F., Talle, B., & Wilson, Z. A. (2015). Anther and pollen development: A conserved developmental pathway. Journal of Integrative Plant Biology, 57(11), 876-891. doi:10.1111/jipb.12425Gorman, S. W., McCormick, S., & Rick, C. (1997). Male Sterility in Tomato. Critical Reviews in Plant Sciences, 16(1), 31-53. doi:10.1080/07352689709701945Helliwell, C. (2003). Constructs and methods for high-throughput gene silencing in plants. Methods, 30(4), 289-295. doi:10.1016/s1046-2023(03)00036-7Honys, D., & Twell, D. (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology, 5(11). doi:10.1186/gb-2004-5-11-r85Jeong, H.-J., Kang, J.-H., Zhao, M., Kwon, J.-K., Choi, H.-S., Bae, J. H., … Kang, B.-C. (2014). Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. Journal of Experimental Botany, 65(22), 6693-6709. doi:10.1093/jxb/eru389Jimenez-Lopez, J. C., Zienkiewicz, A., Zienkiewicz, K., Alché, J. D., & Rodríguez-García, M. I. (2015). Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed. Protoplasma, 253(2), 517-530. doi:10.1007/s00709-015-0830-5Kornberg, R. D. (2005). Mediator and the mechanism of transcriptional activation. Trends in Biochemical Sciences, 30(5), 235-239. doi:10.1016/j.tibs.2005.03.011Lai, Z., Schluttenhofer, C. M., Bhide, K., Shreve, J., Thimmapuram, J., Lee, S. Y., … Mengiste, T. (2014). MED18 interaction with distinct transcription factors regulates multiple plant functions. Nature Communications, 5(1). doi:10.1038/ncomms4064Larivière, L., Geiger, S., Hoeppner, S., Röther, S., Sträßer, K., & Cramer, P. (2006). Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20. Nature Structural & Molecular Biology, 13(10), 895-901. doi:10.1038/nsmb1143Lee, S. K., Chen, X., Huang, L., & Stargell, L. A. (2013). The head module of Mediator directs activation of preloaded RNAPII in vivo. Nucleic Acids Research, 41(22), 10124-10134. doi:10.1093/nar/gkt796Li, D.-D., Xue, J.-S., Zhu, J., & Yang, Z.-N. (2017). Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01559Liu, X., Huang, J., Parameswaran, S., Ito, T., Seubert, B., Auer, M., … Zhao, D. (2009). The SPOROCYTELESS/NOZZLE Gene Is Involved in Controlling Stamen Identity in Arabidopsis. Plant Physiology, 151(3), 1401-1411. doi:10.1104/pp.109.145896Lora, J., Hormaza, J. I., Herrero, M., & Gasser, C. S. (2011). Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proceedings of the National Academy of Sciences, 108(13), 5461-5465. doi:10.1073/pnas.1014514108Lozano, R., Angosto, T., Gómez, P., Payán, C., Capel, J., Huijser, P., … Martı́nez-Zapater, J. M. (1998). Tomato Flower Abnormalities Induced by Low Temperatures Are Associated with Changes of Expression of MADS-Box Genes. Plant Physiology, 117(1), 91-100. doi:10.1104/pp.117.1.91Ma, H. (2005). MOLECULAR GENETIC ANALYSES OF MICROSPOROGENESIS AND MICROGAMETOGENESIS IN FLOWERING PLANTS. Annual Review of Plant Biology, 56(1), 393-434. doi:10.1146/annurev.arplant.55.031903.141717McNeil, K. J., & Smith, A. G. (2009). A glycine-rich protein that facilitates exine formation during tomato pollen development. Planta, 231(4), 793-808. doi:10.1007/s00425-009-1089-xMercier, R. (2003). The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development, 130(>14), 3309-3318. doi:10.1242/dev.00550Mukundan, B., & Ansari, A. (2011). Novel Role for Mediator Complex Subunit Srb5/Med18 in Termination of Transcription. Journal of Biological Chemistry, 286(43), 37053-37057. doi:10.1074/jbc.c111.295915Muschietti, J., Dircks, L., Vancanneyt, G., & McCormick, S. (1994). LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. The Plant Journal, 6(3), 321-338. doi:10.1046/j.1365-313x.1994.06030321.xOzga, J. A., & Reinecke, D. M. (2003). Hormonal Interactions in Fruit Development. Journal of Plant Growth Regulation, 22(1), 73-81. doi:10.1007/s00344-003-0024-9Pacini, E. (2010). Relationships between Tapetum, Loculus, and Pollen during Development. International Journal of Plant Sciences, 171(1), 1-11. doi:10.1086/647923Pérez-Martín, F., Yuste-Lisbona, F. J., Pineda, B., Angarita-Díaz, M. P., García-Sogo, B., Antón, T., … Lozano, R. (2017). A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnology Journal, 15(11), 1439-1452. doi:10.1111/pbi.12728Pina, C., Pinto, F., Feijó, J. A., & Becker, J. D. (2005). Gene Family Analysis of the Arabidopsis Pollen Transcriptome Reveals Biological Implications for Cell Growth, Division Control, and Gene Expression Regulation. Plant Physiology, 138(2), 744-756. doi:10.1104/pp.104.057935Polowick, P. L., & Sawhney, V. K. (1993). An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). I. Tetrad to early binucleate microspore stage. Canadian Journal of Botany, 71(8), 1039-1047. doi:10.1139/b93-120Polowick, P. L., & Sawhney, V. K. (1993). An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). II. Pollen maturation. Canadian Journal of Botany, 71(8), 1048-1055. doi:10.1139/b93-121Rutley, N., & Twell, D. (2015). A decade of pollen transcriptomics. Plant Reproduction, 28(2), 73-89. doi:10.1007/s00497-015-0261-7Samanta, S., & Thakur, J. K. (2015). Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00757Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(20), 11664-11669. doi:10.1073/pnas.96.20.11664Scott, R. J. (2004). Stamen Structure and Function. THE PLANT CELL ONLINE, 16(suppl_1), S46-S60. doi:10.1105/tpc.017012Smirnova, A., Leide, J., & Riederer, M. (2012). Deficiency in a Very-Long-Chain Fatty Acid β-Ketoacyl-Coenzyme A Synthase of Tomato Impairs Microgametogenesis and Causes Floral Organ Fusion. Plant Physiology, 161(1), 196-209. doi:10.1104/pp.112.206656Sorensen, A.-M., Kröber, S., Unte, U. S., Huijser, P., Dekker, K., & Saedler, H. (2003). TheArabidopsis ABORTED MICROSPORES(AMS) gene encodes a MYC class transcription factor. The Plant Journal, 33(2), 413-423. doi:10.1046/j.1365-313x.2003.01644.xWang, Y., Hu, Z., Zhang, J., Yu, X., Guo, J.-E., Liang, H., … Chen, G. (2018). Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Scientific Reports, 8(1). doi:10.1038/s41598-018-21679-1Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xWilson, Z. A., & Zhang, D.-B. (2009). From Arabidopsis to rice: pathways in pollen development. Journal of Experimental Botany, 60(5), 1479-1492. doi:10.1093/jxb/erp095Wilson, Z. A., Morroll, S. M., Dawson, J., Swarup, R., & Tighe, P. J. (2001). The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. The Plant Journal, 28(1), 27-39. doi:10.1046/j.1365-313x.2001.01125.xWiner, J., Jung, C. K. S., Shackel, I., & Williams, P. M. (1999). Development and Validation of Real-Time Quantitative Reverse Transcriptase–Polymerase Chain Reaction for Monitoring Gene Expression in Cardiac Myocytesin Vitro. Analytical Biochemistry, 270(1), 41-49. doi:10.1006/abio.1999.4085Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108Yang, C.-Y., Spielman, M., Coles, J. P., Li, Y., Ghelani, S., Bourdon, V., … Dickinson, H. G. (2003). TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. The Plant Journal, 34(2), 229-240. doi:10.1046/j.1365-313x.2003.01713.xYang, C., Vizcay-Barrena, G., Conner, K., & Wilson, Z. A. (2007). MALE STERILITY1 Is Required for Tapetal Development and Pollen Wall Biosynthesis. The Plant Cell, 19(11), 3530-3548. doi:10.1105/tpc.107.054981Yuan, W., Li, X., Chang, Y., Wen, R., Chen, G., Zhang, Q., & Wu, C. (2009). Mutation of the rice genePAIR3results in lack of bivalent formation in meiosis. The Plant Journal, 59(2), 303-315. doi:10.1111/j.1365-313x.2009.03870.xYuste-Lisbona, F. J., Quinet, M., Fernández-Lozano, A., Pineda, B., Moreno, V., Angosto, T., & Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports, 6(1). doi:10.1038/srep18796Zhao, D.-Z. (2002). The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes & Development, 16(15), 2021-2031. doi:10.1101/gad.997902Zheng, Z., Guan, H., Leal, F., Grey, P. H., & Oppenheimer, D. G. (2013). Mediator Subunit18 Controls Flowering Time and Floral Organ Identity in Arabidopsis. PLoS ONE, 8(1), e53924. doi:10.1371/journal.pone.0053924Zhou, S., Wang, Y., Li, W., Zhao, Z., Ren, Y., Wang, Y., … Wan, J. (2011). Pollen Semi-Sterility1 Encodes a Kinesin-1–Like Protein Important for Male Meiosis, Anther Dehiscence, and Fertility in Rice. The Plant Cell, 23(1), 111-129. doi:10.1105/tpc.109.07369

    Post-transcriptional Gene Silencing Induced by Short Interfering RNAs in Cultured Transgenic Plant Cells

    Get PDF
    Short interfering RNA (siRNA) is widely used for studying post-transcriptional gene silencing and holds great promise as a tool for both identifying function of novel genes and validating drug targets. Two siRNA fragments (siRNA-a and -b), which were designed against different specific areas of coding region of the same target green fluorescent protein (GFP) gene, were used to silence GFP expression in cultured gfp transgenic cells of rice (Oryza sativa L.; OS), cotton (Gossypium hirsutum L.; GH), Fraser fir [Abies fraseri (Pursh) Poir; AF], and Virginia pine (Pinus virginiana Mill.; PV). Differential gene silencing was observed in the bombarded transgenic cells between two siRNAs, and these results were consistent with the inactivation of GFP confirmed by laser scanning microscopy, Northern blot, and siRNA analysis in tested transgenic cell cultures. These data suggest that siRNA-mediated gene inactivation can be the siRNA specific in different plant species. These results indicate that siRNA is a highly specific tool for targeted gene knockdown and for establishing siRNA-mediated gene silencing, which could be a reliable approach for large-scale screening of gene function and drug target validation

    Functional Identification and Characterization of the Brassica Napus Transcription Factor Gene BnAP2, the Ortholog of Arabidopsis Thaliana APETALA2

    Get PDF
    BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia
    corecore