167 research outputs found

    Selectivity of DNA polymerases toward α and β nucleotide substrates of d and l series

    Get PDF
    AbstractThe substrate properties of four carbocyclic d and l nucleoside 5′-triphosphate analogs toward HIV and AMV reverse transcriptases and terminal deoxynucleotidyl transferase were evaluated. The compounds of the d-β and l-β series were found to be terminating substrates for these enzymes, while the derivatives of the d-α and l-α series were recognized only by terminal deoxynucleotidyl transferase, suggesting that for the template-independent enzyme the mutual orientation of the two fragments is of no significance. A hypothesis for binding of nucleotides to the DNA polymerase active center was proposed

    Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide γ-phosphate derivative

    Get PDF
    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (−1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure

    A rapid and sensitive assay for quantification of siRNA efficiency and specificity

    Get PDF
    RNA Interference has rapidly emerged as an efficient procedure for knocking down gene expression in model systems. However, cross-reactivity, whereby multiple genes may be simultaneously targeted by a single short interfering RNA (siRNA), can potentially jeopardize correct interpretation of gene function. As such, it is essential to test the specificity of a siRNA prior to a full phenotypic analysis. To this end, we have adapted a reporter-based assay harnessing the sensitivity of luciferase activity to provide a quantitative readout of relative RNAi efficacy and specificity. We have tested different siRNAs directed against Thymosin β4 (Tβ4); determined their effectiveness at silencing Tβ4 and have both excluded off-target silencing of the Tβ4 homologue Thymosin β10 (Tβ10) and demonstrated partial knockdown of Tβ10 despite significant (12/23; 52%) sequence mismatch. This assay system is applicable to any RNAi study where there is a risk of targeting homologous genes and to the monitoring of off-target effects at the genome level following microarray expression profiling

    Approximate Bayesian feature selection on a large meta-dataset offers novel insights on factors that effect siRNA potency

    Get PDF
    Motivation: Short interfering RNA (siRNA)-induced RNA interference is an endogenous pathway in sequence-specific gene silencing. The potency of different siRNAs to inhibit a common target varies greatly and features affecting inhibition are of high current interest. The limited success in predicting siRNA potency being reported so far could originate in the small number and the heterogeneity of available datasets in addition to the knowledge-driven, empirical basis on which features thought to be affecting siRNA potency are often chosen. We attempt to overcome these problems by first constructing a meta-dataset of 6483 publicly available siRNAs (targeting mammalian mRNA), the largest to date, and then applying a Bayesian analysis which accommodates feature set uncertainty. A stochastic logistic regression-based algorithm is designed to explore a vast model space of 497 compositional, structural and thermodynamic features, identifying associations with siRNA potency

    Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs

    Get PDF
    siRNAs confer sequence specific and robust silencing of mRNA. By virtue of these properties, siRNAs have become therapeutic candidates for disease intervention. However, their use as therapeutic agents can be hampered by unintended off-target effects by either or both strands of the siRNA duplex. We report here that unlocked nucleobase analogs (UNAs) confer desirable properties to siRNAs. Addition of a single UNA at the 5′-terminus of the passenger strand blocks participation of the passenger strand in RISC-mediated target down-regulation with a concomitant increase in guide strand activity. Placement of a UNA in the seed region of the guide strand prevents miRNA-like off-target silencing without compromising siRNA activity. Most significantly, combined substitution of UNA at the 3′-termini of both strands, the addition of a UNA at the 5′-terminus of the passenger strand, and a single UNA in the seed region of the guide strand, reduced the global off-target events by more than 10-fold compared to unmodified siRNA. The reduction in off-target events was specific to UNA placement in the siRNA, with no apparent new off-target events. Taken together, these results indicate that when strategically placed, UNA substitutions have important implications for the design of safe and effective siRNA-based therapeutics

    Post-transcriptional Gene Silencing Induced by Short Interfering RNAs in Cultured Transgenic Plant Cells

    Get PDF
    Short interfering RNA (siRNA) is widely used for studying post-transcriptional gene silencing and holds great promise as a tool for both identifying function of novel genes and validating drug targets. Two siRNA fragments (siRNA-a and -b), which were designed against different specific areas of coding region of the same target green fluorescent protein (GFP) gene, were used to silence GFP expression in cultured gfp transgenic cells of rice (Oryza sativa L.; OS), cotton (Gossypium hirsutum L.; GH), Fraser fir [Abies fraseri (Pursh) Poir; AF], and Virginia pine (Pinus virginiana Mill.; PV). Differential gene silencing was observed in the bombarded transgenic cells between two siRNAs, and these results were consistent with the inactivation of GFP confirmed by laser scanning microscopy, Northern blot, and siRNA analysis in tested transgenic cell cultures. These data suggest that siRNA-mediated gene inactivation can be the siRNA specific in different plant species. These results indicate that siRNA is a highly specific tool for targeted gene knockdown and for establishing siRNA-mediated gene silencing, which could be a reliable approach for large-scale screening of gene function and drug target validation

    MysiRNA-designer: a workflow for efficient siRNA design

    Get PDF
    The design of small interfering RNA (siRNA) is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based) desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area
    corecore