397 research outputs found
Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter
We study the growth of perturbations in an expanding Newtonian universe with
Bose-Einstein condensate dark matter. We first ignore special relativistic
effects and derive a differential equation governing the evolution of the
density contrast in the linear regime taking into account quantum pressure and
self-interaction. This equation can be solved analytically in several cases. We
argue that an attractive self-interaction can enhance the Jeans instability and
fasten the formation of structures. Then, we take into account pressure effects
(coming from special relativity) in the evolution of the cosmic fluid and add
the contribution of radiation, baryons and dark energy (cosmological constant).
For a BEC dark matter with repulsive self-interaction (positive pressure) the
scale factor increases more rapidly than in the standard \Lambda CDM model
where dark matter is pressureless while for a BEC dark matter with attractive
self-interaction (negative pressure) it increases less rapidly. We study the
linear development of the perturbations in these two cases and show that the
perturbations grow faster in a BEC dark matter than in a pressureless dark
matter. This confirms a recent result of Harko (2011). Finally, we consider a
"dark fluid" with a generalized equation of state p=(\alpha \rho + k \rho
^2)c^2 having a component p=k \rho ^2 c^2 similar to a BEC dark matter and a
component p=\alpha \rho c^2 mimicking the effect of the cosmological constant
(dark energy). We find optimal parameters that give a good agreement with the
standard \Lambda CDM model assuming a finite cosmological constant
The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?
For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth
Structural transitions in granular packs: statistical mechanics and statistical geometry investigations
We investigate equal spheres packings generated from several experiments and
from a large number of different numerical simulations. The structural
organization of these disordered packings is studied in terms of the network of
common neighbours. This geometrical analysis reveals sharp changes in the
network's clustering occurring at the packing fractions (fraction of volume
occupied by the spheres respect to the total volume, ) corresponding to
the so called Random Loose Packing limit (RLP, ) and Random
Close Packing limit (RCP, ). At these packing fractions we
also observe abrupt changes in the fluctuations of the portion of free volume
around each sphere. We analyze such fluctuations by means of a statistical
mechanics approach and we show that these anomalies are associated to sharp
variations in a generalized thermodynamical variable which is the analogous for
these a-thermal systems to the specific heat in thermal systems.Comment: 7 pages, 6 figure
Applications of Direct Injection Soft Chemical Ionisation-Mass Spectrometry for the Detection of Pre-blast Smokeless Powder Organic Additives
Analysis of smokeless powders is of interest from forensics and security perspectives. This article reports the detection of smokeless powder organic additives (in their pre-detonation condition), namely the stabiliser diphenylamine and its derivatives 2-nitrodiphenylamine and 4-nitrodiphenylamine, and the additives (used both as stabilisers and plasticisers) methyl centralite and ethyl centralite, by means of swab sampling followed by thermal desorption and direct injection soft chemical ionisation-mass spectrometry. Investigations on the product ions resulting from the reactions of the reagent ions H3O+ and O2+ with additives as a function of reduced electric field are reported. The method was comprehensively evaluated in terms of linearity, sensitivity and precision. For H3O+, the limits of detection (LoD) are in the range of 41-88 pg of additive, for which the accuracy varied between 1.5 and 3.2%, precision varied between 3.7 and 7.3% and linearity showed R20.9991. For O2+, LoD are in the range of 72 to 1.4 ng, with an accuracy of between 2.8 and 4.9% and a precision between 4.5 and 8.6% and R20.9914. The validated methodology was applied to the analysis of commercial pre-blast gun powders from different manufacturers.(VLID)4826148Accepted versio
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
Mass media and the contagion of fear: The case of Ebola in America
Background: In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as digital epidemiology ), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends. Methodology: We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data. Conclusions: We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model. © 2015 Towers et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
DNA Renaturation at the Water-Phenol Interface
We study DNA adsorption and renaturation in a water-phenol two-phase system,
with or without shaking. In very dilute solutions, single-stranded DNA is
adsorbed at the interface in a salt-dependent manner. At high salt
concentrations the adsorption is irreversible. The adsorption of the
single-stranded DNA is specific to phenol and relies on stacking and hydrogen
bonding. We establish the interfacial nature of a DNA renaturation at a high
salt concentration. In the absence of shaking, this reaction involves an
efficient surface diffusion of the single-stranded DNA chains. In the presence
of a vigorous shaking, the bimolecular rate of the reaction exceeds the
Smoluchowski limit for a three-dimensional diffusion-controlled reaction. DNA
renaturation in these conditions is known as the Phenol Emulsion Reassociation
Technique or PERT. Our results establish the interfacial nature of PERT. A
comparison of this interfacial reaction with other approaches shows that PERT
is the most efficient technique and reveals similarities between PERT and the
renaturation performed by single-stranded nucleic acid binding proteins. Our
results lead to a better understanding of the partitioning of nucleic acids in
two-phase systems, and should help design improved extraction procedures for
damaged nucleic acids. We present arguments in favor of a role of phenol and
water-phenol interface in prebiotic chemistry. The most efficient renaturation
reactions (in the presence of condensing agents or with PERT) occur in
heterogeneous systems. This reveals the limitations of homogeneous approaches
to the biochemistry of nucleic acids. We propose a heterogeneous approach to
overcome the limitations of the homogeneous viewpoint
Asymptotically exact stabilisation for constrained discrete Takagi-Sugeno systems via set-invariance
[EN] Given a Takagi-Sugeno (TS) system, this paper proposes a novel methodology to obtain the state feedback controller guaranteeing, asymptotically as a Polya-related complexity parameter grows, the largest (membership-shape independent) possible domain-of-attraction with contraction-rate performance lambda, based on polyhedral lambda-contractive sets from constrained linear systems literature. The resulting controller is valid for any realisation of the memberships, as usual in most TS literature. For a finite complexity parameter, an inner estimate of such largest set is obtained; the frontier of such approximation can be understood as the level set of a polyhedral control-Lyapunov function. Convergence of a proposed iterative algorithm is asymptotically necessary and sufficient for TS system stabilisation: for a high-enough value of the complexity parameter, any conceivable shape-independent Lyapunov controller design procedure will yield a proven domain of attraction smaller or equal to the algorithm's output. (C) 2016 Elsevier B.V. All rights reserved.This work has been supported by grants DPI2015-70433- P and DPI2016-81002-R, from Spanish Government (MINECO) and grant PROMETEOII/2013/004 from Generalitat Valenciana.Ariño-Latorre, CV.; Sala, A.; Pérez Soler, E.; Bedate Boluda, F.; Querol-Ferrer, A. (2017). Asymptotically exact stabilisation for constrained discrete Takagi-Sugeno systems via set-invariance. Fuzzy Sets and Systems. 316:117-138. https://doi.org/10.1016/j.fss.2016.10.004S11713831
Concise review:programming human pluripotent stem cells into blood
Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion‐transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long‐term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future
Survey of Wild Mammal Hosts of Cutaneous Leishmaniasis Parasites in Panama and Costa Rica
The eco-epidemiology of American cutaneous leishmaniasis (ACL) is driven by animal reservoir species that are a source of infection for sand flies that serve as vectors infecting humans with Leishmania spp parasites. The emergence and re-emergence of this disease across Latin America calls for further studies to identify reservoir species associated with enzootic transmission. Here, we present results from a survey of 52 individuals from 13 wild mammal species at endemic sites in Costa Rica and Panama where ACL mammal hosts have not been previously studied. For Leishmania spp. diagnostics we employed a novel PCR technique using blood samples collected on filter paper. We only found Leishmania spp parasites in one host, the two-toed sloth, Choloepus hoffmanni. Our findings add further support to the role of two-toed sloths as an important ACL reservoir in Central America
- …