649 research outputs found

    Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut

    Get PDF
    Approximation algorithms for constraint satisfaction problems (CSPs) are a central direction of study in theoretical computer science. In this work, we study classical product state approximation algorithms for a physically motivated quantum generalization of Max-Cut, known as the quantum Heisenberg model. This model is notoriously difficult to solve exactly, even on bipartite graphs, in stark contrast to the classical setting of Max-Cut. Here we show, for any interaction graph, how to classically and efficiently obtain approximation ratios 0.649 (anti-feromagnetic XY model) and 0.498 (anti-ferromagnetic Heisenberg XYZ model). These are almost optimal; we show that the best possible ratios achievable by a product state for these models is 2/3 and 1/2, respectively

    Approximation, Proof Systems, and Correlations in a Quantum World

    Get PDF
    This thesis studies three topics in quantum computation and information: The approximability of quantum problems, quantum proof systems, and non-classical correlations in quantum systems. In the first area, we demonstrate a polynomial-time (classical) approximation algorithm for dense instances of the canonical QMA-complete quantum constraint satisfaction problem, the local Hamiltonian problem. In the opposite direction, we next introduce a quantum generalization of the polynomial-time hierarchy, and define problems which we prove are not only complete for the second level of this hierarchy, but are in fact hard to approximate. In the second area, we study variants of the interesting and stubbornly open question of whether a quantum proof system with multiple unentangled quantum provers is equal in expressive power to a proof system with a single quantum prover. Our results concern classes such as BellQMA(poly), and include a novel proof of perfect parallel repetition for SepQMA(m) based on cone programming duality. In the third area, we study non-classical quantum correlations beyond entanglement, often dubbed "non-classicality". Among our results are two novel schemes for quantifying non-classicality: The first proposes the new paradigm of exploiting local unitary operations to study non-classical correlations, and the second introduces a protocol through which non-classical correlations in a starting system can be "activated" into distillable entanglement with an ancilla system. An introduction to all required linear algebra and quantum mechanics is included.Comment: PhD Thesis, 240 page

    Oracle Complexity Classes and Local Measurements on Physical Hamiltonians

    Get PDF
    The canonical problem for the class Quantum Merlin-Arthur (QMA) is that of estimating ground state energies of local Hamiltonians. Perhaps surprisingly, [Ambainis, CCC 2014] showed that the related, but arguably more natural, problem of simulating local measurements on ground states of local Hamiltonians (APX-SIM) is likely harder than QMA. Indeed, [Ambainis, CCC 2014] showed that APX-SIM is P^QMA[log]-complete, for P^QMA[log] the class of languages decidable by a P machine making a logarithmic number of adaptive queries to a QMA oracle. In this work, we show that APX-SIM is P^QMA[log]-complete even when restricted to more physical Hamiltonians, obtaining as intermediate steps a variety of related complexity-theoretic results. We first give a sequence of results which together yield P^QMA[log]-hardness for APX-SIM on well-motivated Hamiltonians: (1) We show that for NP, StoqMA, and QMA oracles, a logarithmic number of adaptive queries is equivalent to polynomially many parallel queries. These equalities simplify the proofs of our subsequent results. (2) Next, we show that the hardness of APX-SIM is preserved under Hamiltonian simulations (a la [Cubitt, Montanaro, Piddock, 2017]). As a byproduct, we obtain a full complexity classification of APX-SIM, showing it is complete for P, P^||NP, P^||StoqMA, or P^||QMA depending on the Hamiltonians employed. (3) Leveraging the above, we show that APX-SIM is P^QMA[log]-complete for any family of Hamiltonians which can efficiently simulate spatially sparse Hamiltonians, including physically motivated models such as the 2D Heisenberg model. Our second focus considers 1D systems: We show that APX-SIM remains P^QMA[log]-complete even for local Hamiltonians on a 1D line of 8-dimensional qudits. This uses a number of ideas from above, along with replacing the "query Hamiltonian" of [Ambainis, CCC 2014] with a new "sifter" construction.Comment: 38 pages, 3 figure

    Gate-efficient discrete simulations of continuous-time quantum query algorithms

    Full text link
    We show how to efficiently simulate continuous-time quantum query algorithms that run in time T in a manner that preserves the query complexity (within a polylogarithmic factor) while also incurring a small overhead cost in the total number of gates between queries. By small overhead, we mean T within a factor that is polylogarithmic in terms of T and a cost measure that reflects the cost of computing the driving Hamiltonian. This permits any continuous-time quantum algorithm based on an efficiently computable driving Hamiltonian to be converted into a gate-efficient algorithm with similar running time.Comment: 28 pages, 2 figure

    Modeling unobserved heterogeneity in social network data analysis

    Get PDF
    The analysis of network data has become a challenging and growing field in statistics in recent years. In this context, the so-called Exponential Random Graph Model (ERGM) is a promising approach for modeling network data. However, the parameter estimation proves to be demanding, not only because of computational and stability problems, especially in large networks but also because of the unobserved presence of nodal heterogeneity in the network. This thesis begins with a general introduction to graph theory, followed by a detailed discussion of Exponential Random Graph Models and the conventional parameter estimation approaches. In addition, the advantages of this class of models are presented, and the problem of model degeneracy is discussed. The first contribution of the thesis proposes a new iterative estimation approach for Exponential Random Graph Models incorporating node-specific random effects that account for unobserved nodal heterogeneity in unipartite networks and combines both maximum likelihood and pseudolikelihood estimation methods for estimating the structural effects and the nodal random effects, respectively, to ensure stable parameter estimation. Furthermore, a model selection strategy is developed to assess the presence of nodal heterogeneity in the network. In the second contribution, the iterative estimation approach is extended to bipartite networks, explaining the estimation and the evaluation techniques. Furthermore, a thorough investigation and interpretation of nodal random effects in bipartite networks for the proposed model is discussed. Simulation studies and data examples are provided to illustrate both contributions. All developed methods are implemented using the open-source statistical software R

    Strong NP-Hardness of the Quantum Separability Problem

    Full text link
    Given the density matrix rho of a bipartite quantum state, the quantum separability problem asks whether rho is entangled or separable. In 2003, Gurvits showed that this problem is NP-hard if rho is located within an inverse exponential (with respect to dimension) distance from the border of the set of separable quantum states. In this paper, we extend this NP-hardness to an inverse polynomial distance from the separable set. The result follows from a simple combination of works by Gurvits, Ioannou, and Liu. We apply our result to show (1) an immediate lower bound on the maximum distance between a bound entangled state and the separable set (assuming P != NP), and (2) NP-hardness for the problem of determining whether a completely positive trace-preserving linear map is entanglement-breaking.Comment: 18 pages, 1 figure. v5: Updated version to appear in Quantum Information & Computation. Includes additional details in proof of NP-hardness of determining whether a quantum channel is entanglement-breaking, as well as minor updates to improve readability throughout. Thank you to anonymous referees for their comment

    Signatures of non-classicality in mixed-state quantum computation

    Full text link
    We investigate signatures of non-classicality in quantum states, in particular, those involved in the DQC1 model of mixed-state quantum computation [Phys. Rev. Lett. 81, 5672 (1998)]. To do so, we consider two known non-classicality criteria. The first quantifies disturbance of a quantum state under locally noneffective unitary operations (LNU), which are local unitaries acting invariantly on a subsystem. The second quantifies measurement induced disturbance (MID) in the eigenbasis of the reduced density matrices. We study the role of both figures of non-classicality in the exponential speedup of the DQC1 model and compare them vis-a-vis the interpretation provided in terms of quantum discord. In particular, we prove that a non-zero quantum discord implies a non-zero shift under LNUs. We also use the MID measure to study the locking of classical correlations [Phys. Rev. Lett. 92, 067902 (2004)] using two mutually unbiased bases (MUB). We find the MID measure to exactly correspond to the number of locked bits of correlation. For three or more MUBs, it predicts the possibility of superior locking effects.Comment: Published version, containing additional discussion on the role of non-classicality in the locking of classical correlation
    • …
    corecore