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Research highlights 24 
 25 

- Use of Direct Injection Soft Chemical Ionisation-Mass Spectrometry for smokeless 26 
powder organic additives analysis  27 

- Study of the underlying water and oxygen chemistry in positive ion mode 28 
- Comparison of fragmentation patterns for H3O+ and O2

+ reagent ions  29 
- Performance evaluation for the method in terms of sensitivity, linear dynamic range  30 

and precision 31 
- Application to commercial pre-blast samples  32 
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Abstract 33 

Analysis of smokeless powders is of interest from forensics and security perspectives. This 34 

article reports the detection of smokeless powder organic additives (in their pre-detonation 35 

condition), namely the stabiliser diphenylamine and its derivatives 2-nitrodiphenylamine and 36 

4-nitrodiphenylamine, and the additives (used both as stabilisers and plasticisers) methyl 37 

centralite and ethyl centralite, by means of swab sampling followed by thermal desorption and 38 

Direct Injection Soft Chemical Ionisation-Mass Spectrometry. Investigations on the product 39 

ions resulting from the reactions of the reagent ions H3O
+ and O2

+ with additives as a function 40 

of reduced electric field are reported. The method was comprehensively evaluated in terms of 41 

linearity, sensitivity and precision. For H3O
+, the limits of detection (LoD) are in the range of 42 

41-88 pg of additive, for which the accuracy varied between 1.5-3.2%, precision varied 43 

between 3.7-7.3% and linearity showed R2 ≥ 0.9991. For O2
+, LoD are in the range of 72 pg to 44 

1.4 ng, with an accuracy of between 2.8-4.9% and a precision between 4.5-8.6% and R2 ≥ 45 

0.9914. The validated methodology was applied to the analysis of commercial pre-blast gun 46 

powders from different manufacturers.  47 
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1. Introduction 48 

Smokeless powders are a large and complex family of products used as propellants in 49 

ammunition cartridges,1 categorized as low explosives (they burn rapidly instead of 50 

detonating).2  They are commonly employed in forensic analyses as their residues can be used 51 

as evidence for firearms discharge.3,4 They are also relevant from a Homeland Security 52 

perspective, as they are readily available and can be employed in the manufacturing of 53 

improvised explosive devices (IEDs).5 They exhibit a complex composition, consisting of an 54 

explosive material (nitrocellulose, nitroglycerin, nitroguanidine or different mixtures of them),1 55 

heavy metals, 1,6 and a large number of different classes of organic compounds.1,7,8 The latter 56 

became of great interest after the introduction of heavy-metal free ammunition in the market.3 57 

Within the organic additives category we can include plasticizers, stabilisers, opacifiers, flash 58 

suppressants, coolants, surface lubricants and dyes. 2, 9-13, The aim of these additives is to 59 

increase the shelf-life and modify the burning characteristics of the powder.5,14 Different 60 

concentrations and/or different additives are characteristic of a given manufacturer, producing 61 

therefore a chemical fingerprint for each powder.15 It is thus also important to determine their 62 

content throughout the manufacturing quality control process. Among all the possible additives 63 

there are a number of key chemicals usually present and regarded as characteristic of smokeless 64 

powders.1,12,16 The most common are the stabiliser diphenylamine (DPA) and its derivatives 2-65 

nitrodiphenylamine (2-NO2-DPA) and 4-nitrodiphenylamine (4-NO2-DPA), and the additives 66 

(used both as stabilisers and plasticisers) methyl centralite (MC) and ethyl centralite (EC), 67 

which are the subject of this current paper - for structural information see table 1. 68 

Several analytical techniques have been used for the qualitative and/or quantitative 69 

detection of smokeless powders, either in their pre and/or post-blast forms,9,10 including High-70 

Performance Liquid Chromatography (HPLC),17-19 Liquid Chromatography-Mass 71 

Spectrometry (LC-MS),8,20-22 Fourier Transform Infrared Spectroscopy,23 Gas 72 

Chromatography (GC),12,14,24 Capillary Electrophoresis (CE),25,26 Ion Mobility Spectrometry 73 

(IMS),27 Solid Phase Microextraction-Ion Mobility Spectrometry (SPME)-IMS,12,28 74 

(Nano)Electrospray Ionization (nESI)-Tandem Mass Spectrometry,29-31 Laser Electrospray-75 

Mass spectrometry (LEMS),15,32 Desorption Electrospray Ionization-Mass spectrometry 76 

(DESI),33,34 Direct Analysis in Real Time- Mass Spectrometry (DART-MS),35 Time-of-Flight 77 

Secondary Ion-Mass Spectrometry (ToF-MS),36 and Raman Spectroscopy.23,37 Most of the 78 

above-mentioned techniques require time-consuming sample preparation step(s) - exception of 79 

DESI and DART; or if not, they require complicated set-ups, such the use of lasers as the means 80 

for sample vaporization (LEMS) or heated purified gases (DART). Here is where Direct 81 
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Injection (DI) Soft Chemical Ionisation-Mass Spectrometry (SCIMS) can compete (and/or be 82 

complementary) with these techniques for rapid, selective and sensitive detection of chemical 83 

compounds in complex environments. DI-SCIMS is an analytical technique for mass 84 

spectrometric gas analysis based on the ionization of neutrals by ion/molecule reactions with a 85 

reagent ion (such as H3O
+, O2

+ or NO+). This occurs within the controlled environment of a 86 

drift tube (DT) under the effect of an electric field E. The resulting ionised analyte molecules 87 

are then mass analysed by mass spectrometer. It is a direct injection technique as samples are 88 

injected directly into the drift tube of the instrument.  89 

There are several analytical techniques that belong to the DI-SCIMS category,38,39 with 90 

Proton Transfer Reaction-Mass Spectrometry (PTR-MS) arguably the most widespread. PTR-91 

MS was purposely design for the monitoring of volatile organic compounds (VOCs),40 but has 92 

developed further to analyse liquid and solid compounds,38 being successfully applied to the 93 

detection of explosives and explosive-related compounds in positive ion mode.41-50  94 

Technically speaking, PTR-MS only refers to the use of hydronium as the reagent ion. Given 95 

that in this study we investigated reactions involving O2
+ and H3O

+ the term SCIMS is a more 96 

accurate description of the instrument for this work.  97 

In this paper we report the first DI-SCIMS studies of the additives to smokeless 98 

powders; namely DPA, 2-NO2-DPA, 4-NO2-DPA, MC and EC, using H3O
+ and O2

+ as the 99 

reagent ions. We can expect efficient reactions with H3O
+ because the proton affinities for 100 

amine and amide-based compounds are higher than that of water. Certainly studies involving 101 

ESI-MS,31 and IMS,51 show that these neutrals can be detected with a high sensitivity. Based 102 

on the identified ions, analytical figures of merit (limits of detection, linear dynamic range, 103 

repeatability and reproducibility) are established. This information should help in the 104 

development of a highly selective analytical technique for smokeless powders organic additives 105 

detection using DI-SCIMS. 106 

 107 

2. Experimental Details 108 

2.1. Proton Transfer Reaction Mass Spectrometry (PTR-MS) 109 

A Kore Technology Ltd. Series I PTR-ToF-MS instrument was used. Details of using PTR-110 

MS is given in detail elsewhere,38,47 and therefore only pertinent issues will be briefly 111 

mentioned here. Recently this instrument was equipped with a radio frequency ion funnel drift 112 

tube and fast reaction region reduced electric field, E/N, switching capabilities.50 However, for 113 

these studies the RF operation was not used.  114 

2.1.1 Fast reduced electric field switching  115 
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Details of the fast switching have been given elsewhere.50 In brief, this new hardware 116 

development feature allows the rapid switching of the reduced electric field with transition 117 

times less than 140 ms (0.1-5 Hz) within the reaction region. This alters the reagent ion 118 

composition and ion-molecule collisional energies, leading to differences in product ions 119 

between the two operational E/N values. This new hardware development allows for the 120 

manipulation of the ion-chemistry, modifying the product ion distribution to provide more 121 

information to aid in assignment of the neutral responsible for the observed product ion(s). 122 

 123 

2.1.2 H3O+ production 124 

Water vapour is introduced into a hollow cathode glow discharge where, after ionisation via 125 

electron impact and subsequent ion-molecule processes, the terminal reagent ion is H3O
+. 126 

These ions are transferred from the ion source into the drift tube by an applied voltage gradient 127 

where they react with the analyte M by donating their protons at the collisional rate, providing 128 

M has a proton affinity greater than that of water (PA(H2O) = 691 kJ mol−1). This process can 129 

be either non-dissociative (resulting in the protonated molecule MH+) and/or dissociative. 130 

Dissociative proton transfer results in product ions, which depending on their m/z values, may 131 

be useful for the identification of a compound. Fragmentation may be spontaneous upon proton 132 

transfer or may require additional energy which is supplied through collisions with the buffer 133 

gas resulting during the migration of ions under the influence of the electric field, E. Ions are 134 

separated using a time of flight mass analyser and detected by means of a multichannel plate. 135 

O2
+ is also formed as an impurity due to air back flow from the reactor into the ion source 136 

region,43 however the instrument was operated in a manner that this was below 2% of the H3O
+ 137 

signal intensity.  138 

 139 

2.1.3 O2
+ production 140 

For the production of O2
+, water vapour in the discharge is replaced by pure oxygen (99.998% 141 

purity, BOC Gases, Manchester, UK). This leads to the formation of mainly O2
+ reagent ions 142 

(> 95%).53 Once injected into the DT, O2
+ reacts with the analyte M via charge transfer, 143 

provided that the ionisation potential of M is less than that of O2.
54 Similarly to 2.1.2, this 144 

reaction may be non-dissociative and/or dissociative, and fragmentation may be spontaneous 145 

upon charge transfer or require additional energy. H3O
+ is also observed due to residual water 146 

vapour in the system, with signal intensity below around 2.5% of the O2
+ signal for the 147 

experimental conditions used throughout. 148 
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It is worth to highlight that when using O2
+ as the reagent ion, it is possible to start 149 

measurements at lower E/N values than when using H3O
+. This is a consequence of the lack of 150 

water clustering for O2
+. This reagent ion signal had to be inferred from its corresponding 151 

isotopologue 16O18O at m/z 33.99, owing to detection saturation at m/z 31.99. 152 

 153 

2.2. Operational parameters 154 

A thermal desorption unit (TDU) connected to the inlet of the drift tube through passivated 155 

(Silconert®) stainless steel (10 cm length), was used to introduce the samples. Details of the 156 

TDU have been given elsewhere.41 The TDU, connecting lines and drift tube were operated at 157 

a temperature of 150oC (maximum possible temperature). PTFE swabs (ThermoFisher 158 

Scientific, Cheshire, UK) onto which known quantities of additives were deposited were placed 159 

into the TDU. For this study laboratory air was used as the carrier gas. Prior to making contact 160 

with the swab, the carrier gas was passed through an oxygen/moisture trap (Agilent OT3-4) -161 

not used for O2
+ mode- and hydrocarbon trap (Agilent HT200-4). Upon closure of the TDU a 162 

seal is created, and the carrier gas is heated to the temperature of the TDU before it flows 163 

through a series of apertures in the heated metal plate. This heated air then passes through the 164 

swab and into the inlet system driving any desorbed material through to the drift tube creating 165 

a temporal concentration “pulse” of typically between 10-20 seconds of an analyte in the drift 166 

tube.41 For the product ion distribution and branching ratio studies each swab provided one 167 

measurement, which was replicated three times and then the results were averaged and any 168 

background signals were subtracted.  169 

The drift tube was maintained at a pressure of 1.1 mbar and the glow discharge (for 170 

both water vapour and oxygen) was set at 1.3 mbar (which is a combination of the reagent 171 

neutral pressure and air back flowing from the drift tube). 172 

For the fast switching experiments, the acquisition time per point was set to 40 ms and 173 

ion signals were averaged for each individual cycle.  174 

 In the following only product ions with a product ion distributions (PID) greater than 175 

1% are reported and the m/z of the lightest isotopologue will be given. However, when 176 

calculating the product ion distributions all of the isotopologues are taken into account. 177 

 178 

2.3. Chemical standards and smokeless powder samples 179 

Table 1 gives details of the molar mass and structure of the five compounds investigated in this 180 

study.  181 

 182 
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Table 1. Molecular weight, linear formula and chemical structure for the components 183 

investigated  184 

Additive 
Molar weight,  

g mol-1 
Linear formula 

Chemical  

structure 

Diphenylamine (DPA) 169.22 (C6H5)2NH 

 

2-nitrodiphenylamine  

(2-NO2-DPA) 
214.22 C6H5NHC6H4NO2 

 

4-nitrodiphenylamine  

(4-NO2-DPA) 
214.22 C6H5NHC6H4NO2 

 

Methyl centralite (MC) 240.30 [C6H5N(CH3)]2CO 
 

Ethylcentralite (EC) 268.35 [C6H5N(C2H5)]2CO 

 

 185 

These chemicals were individually purchased from AccuStandard Inc., (New Haven, CT, US) 186 

and used without additional treatment. DPA came dissolved in MeOH, MC and EC came 187 

prepared in a mixture of MeOH:AcN 1:1 (V/V), 2- and 4-NO2-DPA in AcN. Concentrations 188 

in all cases were 100 μg∙mL-1. Further dilutions of this mother solutions in the appropriate 189 

solvent(s) (HPLC grade) were prepared when needed. Typically, 1 μL of a solution of the 190 

required concentration was spotted onto the swab and left to evaporate the solvents for 1 min 191 

prior to insertion into the TDU. 192 

Smokeless powders (either used for guns or rifles) were acquired in a local ammunition 193 

wholesaler. Rifle powders are typically single based (the only energetic material is 194 

nitrocellulose) and gun powders are double based (nitrocellulose together with nitroglycerine). 195 

When needed, 1 g of powder was dissolved in 10 mL of dichloromethane (HPLC grade) for 10 196 

minutes at room temperature with the help of an ultrasonic bath. Once the solvent evaporated 197 

at room temperature, the residue was dissolved in 100 mL of a mixture of MeOH:Acetonitrile 198 

1:1 (V/V). Again, 1μL was spotted onto the swab and left solvents to evaporate for 1 minute 199 

prior to insertion into the TDU. 200 

 201 

3. Results and Discussion 202 
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3.1. Analysis of standard additives. Fragmentation patterns and branching ratios studies 203 

in H3O+ and O2
+ modes. 204 

3.1.1- Diphenylamine (DPA) 205 

In H3O
+ mode (data not shown), the protonated parent [DPA.H]+ at a m/z of 170.10 dominates 206 

across the E/N range studied (80-200 Td). One other product ion is observed at high E/N values 207 

(180 Td and above) at m/z 92.05. This is assigned to [C6H5NH]+, resulting from the loss of 208 

benzene from the protonated parent, increasing its intensity from negligible at low E/N to a 209 

maximum of 5% at 200 Td.  210 

In O2
+ mode (data not shown), only DPA+ at m/z 169.09, resulting from non-dissociative 211 

charge transfer, is observed for all the E/N values (60-200 Td).  212 

 213 

3.1.3- 2-nitrodiphenylamine (2-NO2-DPA) and 4-nitrodiphenylamine (4-NO2-DPA)  214 

Figure 1 shows the PID plots for (a) 2-NO2-DPA and (b) 4-NO2-DPA for their reaction with 215 

H3O
+ as a function of E/N (for the range from 80 to 200 Td). For both chemicals, the 216 

fragmentation pattern is very similar, and only differences ascribe to the ortho effect (amine 217 

and nitro groups in adjacent positions for 2-NO2-DPA) are observed. For both isomers the 218 

protonated parent, m/z 215.08, is the dominant ion, with the exception of the 2-isomer at E/N 219 

values above 190 Td, where a product ion at m/z 197.07  (loss of H2O) takes over. For the 4-220 

isomer a loss of a hydroxyl group, giving a product ion at m/z 198.08, is also observed. This is 221 

consistent with the ortho observed behaviour, where [M-OH2]H
+ replaces the [M-OH]H+ 222 

fragment ion.47,55 For the 2-isomer, a subsequent loss of an hydroxyl group (only observed at 223 

E/N > 160 Td) leads to the product ion at m/z 180.06, the intensity of which increases as the 224 

E/N increases. Finally, another product ion at m/z 169.07 corresponding to the nitro group loss 225 

from the protonated parent, is observed in both isomers with different intensities (maximum 226 

values of ca. 8.5% for 2-isomer and ca. 14% for the 4-isomer, at 200Td), and becoming relevant 227 

only above 150 Td in both cases. 228 

 229 

 230 
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a b 

Figure 1. PID plots resulting from the reaction of H3O
+ with (a) 2-NO2-DPA and (b) 4-NO2-

DPA as a function of reduced electric field (80 to 200 Td). 

 231 

In O2
+ mode (PID plot not shown) and for both 2- and 4-NO2-DPA, the parent ion at m/z 214.07, 232 

the result of non-dissociative reaction channel, dominates. Its intensity decreases as the reduced 233 

electric field increases, dropping down to 25% at 180 Td of the initial intensity at 80 Td. Other 234 

fragment ion, at m/z 163.22 (unassigned in this paper), is observed in both cases, the intensity 235 

of which slightly decreases as the reduced electric field increases (from ~2% at 60 Td to 3.5% 236 

at 200 Td for 2-NO2-DPA, and from ~3.5% to 7% for 4-NO2-DPA). This unidentified ion is 237 

consistent with the observations reported by Perez et al.32 238 

 239 

3.1.4- Methyl centralite (MC) 240 

In H3O
+ mode the protonated parent at m/z 241.13, [MC.H]+, is observed as the dominant ion 241 

up to around 190 Td (figure 2(a)). Other observed product ions are m/z 134.06, assigned to 242 

[PhNCH3CO]+ (resulting from the loss of N-methylaniline from the protonated parent), and m/z 243 

106.07 (a subsequent loss of a CO molecule leaving a [PhNCH3]
+ ion), which only yields a 244 

significant intensity above 140 Td and becomes dominant above 190 Td. 245 
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a b 

Figure 2. PID plots resulting from the reaction of MC with (a) H3O
+ reagent ion (80 to 200 Td) 

and (b) O2
+ reagent ion (60 to 220 Td) as a function of reduced electric field. 

 246 

In O2
+ mode (PID shown in figure 2(b)), non-dissociative charge transfer results in an ion at 247 

m/z 240.12, [MC]+, that dominates. Only at very high E/N values, > ca. 200 Td, the ion at m/z 248 

106.10 becomes dominant. Additional observed product ions are m/z 225.10 (loss of a CH3 249 

group) and m/z 183.01 (not assigned in this paper and being relevant only after 170 Td).  250 

 251 

3.1.5- Ethyl centralite (EC) 252 

EC has a very similar structure to that of MC, so a similar fragmentation pattern is to be 253 

expected. For water chemistry the protonated parent, [EC.H]+, at m/z 269.17, is dominant 254 

across all the E/N range (figure 3(a)). Observed fragment product ions are m/z 148.08 (via loss 255 

of N-ethylaniline from the protonated parent), and at m/z 120.08 (loss of CO), which only 256 

becomes relevant above120 Td. Two more product ions are observed at m/z 93.06, assigned to 257 

be charged aniline [PhNH2]
+, after the additional loss of a CH2CH molecule, and m/z 92.05, 258 

[PhNH]+, only becoming relevant at E/N > 140 Td. That these two ions are only and 259 

simultaneously observed for EC is consistent with results shown by Gilbert-López et al. in a 260 

LC/ESI-ToF-MS.56  261 
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a b 

Figure 3. PID plots resulting from the reaction of EC with (a) H3O
+ reagent ion (80 to 200 Td) 

and (b) O2
+ reagent ion (60 to 220 Td) as a function of reduced electric field. 

 262 

For oxygen chemistry, PID shown in figure 3(b), the ion resulting from charge transfer at m/z 263 

268.16, dominates, and only at reduced electric field values above 200 Td loses its dominance. 264 

Identified product ions are to the same as those for water chemistry, namely m/z 148.08, 120.08, 265 

93.06 and 92.05, but in addition another product ion at m/z 164.00 is also observed, the intensity 266 

of which remains almost constant for the range 60 to 140 Td, after which its intensity decreases 267 

to ca. 5% at 220 Td. 268 

 269 

3.2. Method validation. Analytical figures of merit 270 

Following the establishment of the product ions, the performance of the method was evaluated 271 

in terms of limits of detection (LoD), linear dynamic range and precision for both H3O
+ and 272 

O2
+ reagent ions (see table 2). Serial calibration solutions of different concentrations for each 273 

standard additive were prepared. Calibration curves, using peak areas normalised to 106 reagent 274 

ions, as function of concentration using least-square linear regression analysis were plotted. 275 

Instrumental LoDs were evaluated based on the minimum analyte concentration yielding to a 276 

signal to noise ratio equal to three. Noise was defined as the average of 10 blank samples for a 277 

given mass. Although the conjunction of protonated parent and fragment ions is useful for 278 

selectivity purposes, to determine the sensitivity of the method only the dominant ion resulting 279 

in the best LoD was used, i.e. the most intense ion signal (in terms of ncps) at a given E/N value 280 

was used to determine the LoD. Precision of the method was determined in terms of 281 

repeatability (measurements of 5 replicates within short intervals of time (typically 1-5 min) 282 
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by the same operator under the same experimental conditions) and reproducibility (five 283 

replicates over five different days by the same operator under the same experimental 284 

conditions), with each replicate being the mean of three measurements. Linearity was studied 285 

covering a concentration range from 0.1 to 1500 ng of each compound at ten concentration 286 

values with three replicates at each concentration. No carryover effects were observed and 287 

under the experimental conditions after ca. 10 seconds the base line was recovered for all the 288 

compounds of interest. 30 s integration time was used throughout in order to record a stable 289 

background prior and after a desorption event.  290 

In H3O
+ mode, the coefficient of determination R2 was higher than 0.9991 for all 291 

compounds. Instrumental limits of detection varied from 41 to 88 pg. Precision, expressed in 292 

terms of relative standard deviation (RSD), was found in all cases to be below around 3% for 293 

intra-day (repeatability) and below 7% for inter-day (reproducibility) studies. 294 

In O2
+ mode, the coefficient of determination R2 was higher than 0.9914 for all 295 

compounds. Instrumental limits of detection varied from 72 pg to 1.4 ng. Special mention 296 

should be noted to the cases of DPA, where the existence of an endogenous high background 297 

signal at the m/z of interest led to a LoD much higher than that of the rest of compounds, but 298 

still in the low ng region. Precision was found in all cases to be below around 5% for intra-day 299 

(repeatability) and below 8.6% for inter-day (reproducibility) studies. 300 

 301 
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Table 2. Figures of merit for the compounds investigated in this study using H3O
+ and O2

+ chemistry. Normalised counts per second for one 302 

million reagent ions have been used throughout. Only the dominant ion was used and LoDs were calculated at the E/N value that gave us the best 303 

sensitivity. The linear dynamic range in nanograms (ng) is given for each explosive and the corresponding R2 provided. The precision of the 304 

method was evaluated by the determination of the repeatability and reproducibility in terms of percentage of relative standard deviation (% RSD) 305 

of peak areas. 306 

COMPOUND 
Reagent 

ion 
Monitored ion, m/z 

E/N 

(Td) 

Linear 

dynamic 

range (ng) 

R2 LoD (pg) 

Precision (RSD, %) 

Repeatability 

(n=5) 

Reproducibility 

(n=5) 

300 pg 300pg 

DPA H3O
+ [DPA.H]+, 170.10 140 0.15-1500 0.9991 72±6  2.9 5.1 

 O2
+ [DPA]+, 169.09 110  0.9914 1.4±0.1* 4.9 8.6 

2-NO2-DPA H3O
+ [2-NO2-DPA H]+, 215.08 140 0.1-1500 0.9998 41± 2 2.4 5.2 

 O2
+ [2-NO2-DPA]+, 214.07 80  0.9954 72±5 3.1 6.1 

4-NO2-DPA H3O
+ [4-NO2-DPA H]+, 215.08 140 0.1-1500 0.9996 51±5  1.5 4.0 

 O2
+ [2-NO2-DPA]+, 214.07 80  0.9941 83±2 2.8 4.5 

MC H3O
+ [MC.H]+, 241.13 130 0.2-1500 0.9997 88± 4 2.1 3.7 

 O2
+ MC+, 240.12 60  0.9965 310±9 3.2 5.1 

EC H3O+ [EC.H]+, 269.17 140 0.15-1500 0.9995 60± 7 2.2 4.1 

 O2
+ EC+, 268.16 80  0.9955 287±6 3.8 6.3 

 307 
*expressed in ng. As a result of an endogenous background signal at the mass of interest sensitivity was compromised.  308 
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3.3. Application to commercial samples 309 

Six commercial smokeless powders samples from three different manufacturers were analysed. 310 

The concentration of additives was calculated using the standard calibration curves obtained 311 

for section 3.2. Results, see table 3, show the identified additives and its content in the 312 

smokeless gun powder (expressed as percentage) for the different samples for H3O
+ and O2

+ 313 

reagent ions at 140 Td (a compromise E/N value between high signal intensity and low 314 

fragmentation). These results are in good agreement with those found in the smokeless powders 315 

database.57 Figure 4 shows two mass spectra exemplifying two of the samples for water 316 

chemistry - similar plots (not shown) were found for the rest of the samples and for oxygen 317 

chemistry. 318 
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Figure 4. Mass spectra using water chemistry and reduced electric field of 140 Td for (a) 

IMR4198 and (b) Hodgdon BL-C(2) showing regions around m/z 170 and 215 and the 

different composition for both powders. (The insertion represents an expansion of the mass 

range around m/z 215 (x 20).) 

 319 

Based on our previous water chemistry work,41,47,50 and besides the detection of the 320 

additives studied for this work, dinitrotoluene was also clearly observed showing two intense 321 

product ions peaks at m/z 183.04 and 201.05, assigned to the protonated parent, DNT.H+, and 322 

its first water cluster, DNTH+.H2O. This was observed for 3 of the samples. It is possible to 323 

assign dinitrotoluene to be the 2,4-isomer. As reported recently by González-Méndez et al.47,50 324 

monitoring product ions at m/z 183.04 and 201.05 allows assignment to 2,4-DNT, but that the 325 

presence of m/z 136.04  (elimination of HONO from the protonated parent) and m/z 91.06  326 

(elimination of two nitro groups) observed at the high E/N setting (200 Td and above) indicates 327 

the presence of 2,6-DNT. These two latter peaks were not observed. No detailed product ion 328 
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distribution studies for DNT and O2
+ exist (to the best of our knowledge), but in O2

+ mode, the 329 

charge transfer reaction channel leading to a peak at m/z 182.03 (assigned to [DNT]+) was 330 

observed.  331 

The other 3 samples showed an intense peak at m/z 228.03. Fast switching experiments 332 

and previous studies dealing with 2,4,6-trinitrotoluene (TNT) and nitroglycerine (NG) 333 

confirmed this to be NG.41,49,50 NG produces a characteristic signal at m/z 46.01  (NO2
+) at high 334 

E/N values, whilst TNT does not, thus a quick change in the E/N from low (80 Td) to high (180 335 

Td) allows to assign this peak to NG. 336 

Both Alliant powders show evidence of 2,4-DNT and also peaks at m/z 170.10, 337 

215.08, and 269.17, assigned to [DPA.H]+, [2-,4-NO2-DPA.H]+ and [EC.H]+, respectively. 338 

Fast E/N switching experiments confirm the identity of these species based on the presence or 339 

absence of fragment ions at different reduced electric fields. Fast switching experiments 340 

based on figures 1(a) and 1(b), for both Alliant Red Dot and Unique powder, as shown in 341 

Figure 5, confirmed the identity of m/z 215.08 to be the 2-nitrodiphenylamine isomer. The 342 

presence or absence of m/z 197.07 and 198.08 would rule out one or another. Also, the 343 

presence of m/z 180.06 would confirm the existence of 2-NO2-DPA.  344 

For the Hodgdon samples only H322 did show evidences of 2,4-DNT, but BL-C(2) 345 

showed a signal at m/z 228.03, assigned again to NG based on fast switching experiments. Both 346 

Hodgdon samples showed clear signals at m/z 170.10 and 215.08. Fast switching experiments 347 

confirmed m/z 215.08 to be 2-nitrodiphenylamine for Hodgdon-BL-C(2). However, in O2
+ 348 

mode no evidence for 2-nitrodiphenylamine was observed. 349 

Both IMR samples showed a clear and intense peak for 2,4-DNT, and peaks at m/z 350 

170.10, 215.08, 241.13 and 269.17 were also observed. Fast switching experiments confirmed 351 

the nitrodiphenylamine to be a mixture of the 2- and 4-isomers.  352 

 353 

 354 
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Figure 5. Changes in the fractional ion intensities averaged over each cycle using fast E/N 356 

switching experiments at 1 Hz between 90 Td and 180 Td for Alliant Red Dot. The product 357 

ions showed are distinctive of 2-NO2-DPA. The dotted line represents the E/N during each 358 

phase.  359 

 360 

As stated in the introduction, owing to the complex composition of smokeless powders 361 

the presence of unidentified peaks was expected, the majority coming from the plasticizers 362 

used in the manufacturing process. This was confirmed by additional unidentified peaks for all 363 

the powders at m/z 149.02 (reported by Scherperel et al. as a dibutyl phthalate fragment),29 364 

205.09 and 279.16 (the latter is assigned to be protonated dibutyl phthalate [DBP.H]+ by Reese 365 

et al.,8 and Perez et al.15). It is evident that a more detailed study dealing with these is needed 366 

if a complete chemical analysis is required.  367 
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Table 3. Smokeless powders analysis in H3O
+ and O2

+ modes at 140 Td, showing the detected (or undetected) additives for six different samples 368 

from three different manufacturers. Numbers indicate the content of additive in the powder (in %, mean of n=5) and its error (expressed as RSD).  369 

     

  Reagent 

ion 
DPA  2-NO2-DPA  4-NO2-DPA  MC  EC 2,4-DNT NG 

S
m

o
k

el
es

s 
p

o
w

d
er

 m
a
n

u
fa

ct
u

re
r 

a
n

d
 m

o
d

el
 

Alliant Unique H3O
+ 2.0 ± 0.25 1.1 ± 0.2 ND ND 1.2 ± 0.1 NDa ✔b 

 O2
+ 1.6 ± 0.4 0.9 ± 0.3 ND ND 1.0 ± 0.3 --c -- 

Alliant Red dot H3O
+ 2.3 ± 0.2 1.4 ± 0.3 ND ND 1.1 ± 0.2 ND ✔ 

 O2
+ 2.1 ± 0.3 1.0 ± 0.2 ND ND 0.9 ± 0.2 -- -- 

Hodgdon BL-C(2) H3O
+ 1.1 ± 0.1 0.6 ± 0.1  ND ND 3.0 ± ND ✔ 

 O2
+ 0.9 ± 0.1 ND ND ND 2.7 ± -- -- 

Hodgdon H322 H3O
+ 1.6 ± 0.6 0.4 ± 0.2 ND 2.0 ± 0.2 ND ✔ ND 

 O2
+ 1.3 ± 0.4 ND ND 1.6 ± 0.3 ND -- -- 

IMR 4350 H3O
+ 4.1 ± 0.3 0.4 ± 0.1 0.6 ± 0.2 2.1 ± 0.3 1.2 ± 0.1 ✔ NDa 

 O2
+ 4.0 ± 0.5 0.4 ± 0.2 0.4 ± 0.1 1.9 ± 0.2 1.0 ± 0.3 -- -- 

IMR 4198 H3O
+ 5.0 ± 0.1 ND ND ND ND ✔ ND 

 O2
+ 4.7 ± 0.3 ND ND ND ND -- -- 

 370 

a N.D. indicates not detected; b✔ indicates observed and identified but not quantified and c-- indicates not experimentally tested for. 371 
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4. Conclusions  372 

We have shown that direct injection soft chemical ionisation-mass spectrometry, using both 373 

water and oxygen reagent gases, can analyse smokeless powder organic additives. This has 374 

been applied to their identification for commercial powders in their pre-detonation condition.  375 

This method makes use of commercially available swabs and thermal desorption, 376 

allowing complete analysis of samples within ~ 10 s. For a series of the most common organic 377 

additives for smokeless powders, fragmentation patterns have been established and analytical 378 

figures of merit have been reported. Achieving the best LoDs for oxygen chemistry requires 379 

using lower reduced electric fields values than those used for water chemistry. Oxygen 380 

chemistry has been tested to be less sensitive than water chemistry for the compounds of 381 

interest. Fragmentation has been shown to be very similar in terms of the observed ions and 382 

their identity for both reagent ions. For H3O
+ and O2

+ the most intense ions are usually coming 383 

from the non-dissociative channels.  384 

Fast switching experiments aided in the identification and distinguish between isomers, 385 

based on the presence or absence of fragment ions at different reduced electric fields. 386 

When applied to commercial samples, results have shown that the content of the organic 387 

additives investigated in this study changed between the samples, helping to differentiate 388 

among samples and manufacturers.  389 

Future work will include extending the number of additives and plasticisers and 390 

commercial samples. Moreover, and also importantly, analysis of post-blast samples to ensure 391 

organic gunshot residues can be detected in a rapid, sensitive and selective way using this DI-392 

SCIMS technology. Similarly to recent studies,47  the potential use of a radio frequency ion-393 

funnel drift tube to check for improvements in both sensitivity and selectivity is worthwhile to 394 

mention.  395 

 396 
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