42 research outputs found

    Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71

    Get PDF
    To better understand the LBV phenomenon, we analyze multi-epoch and multi-wavelength spectra and photometry of R71. Pre-outburst spectra are analyzed with the radiative transfer code CMFGEN to determine the star's fundamental stellar parameters. During quiescence, R71 has an effective temperature of Teff=15500 KT_\mathrm{{eff}} = 15\,500~K and a luminosity of log(L/L)(L_*/L_{\odot}) = 5.78 and is thus a classical LBV, but at the lower luminosity end of this group. We determine its mass-loss rate to 4.0×106 M 4.0 \times 10^{-6}~M_{\odot}~yr1^{-1}. We present R71's spectral energy distribution from the near-ultraviolet to the mid-infrared during its present outburst. Mid-infrared observations suggest that we are witnessing dust formation and grain evolution. Semi-regular oscillatory variability in the star's light curve is observed during the current outburst. Absorption lines develop a second blue component on a timescale twice that length. The variability may consist of one (quasi-)periodic component with P ~ 425/850 d with additional variations superimposed. During its current S Doradus outburst, R71 occupies a region in the HR diagram at the high-luminosity extension of the Cepheid instability strip and exhibits similar irregular variations as RV Tau variables. LBVs do not pass the Cepheid instability strip because of core evolution, but they develop comparable cool, low-mass, extended atmospheres in which convective instabilities may occur. As in the case of RV Tau variables, the occurrence of double absorption lines with an apparent regular cycle may be due to shocks within the atmosphere and period doubling may explain the factor of two in the lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&

    The Luminous Blue Variable RMC127 as seen with ALMA and ATCA

    Get PDF
    We present ALMA and ATCA observations of the luminous blue variable \rmc. The radio maps show for the first time the core of the nebula and evidence that the nebula is strongly asymmetric with a Z-pattern shape. Hints of this morphology are also visible in the archival \emph{HST} Hα\rm H\alpha image, which overall resembles the radio emission. The emission mechanism in the outer nebula is optically thin free-free in the radio. At high frequencies, a component of point-source emission appears at the position of the star, up to the ALMA frequencies. The rising flux density distribution (Sνν0.78±0.05S_{\nu}\sim \nu^{0.78\pm0.05}) of this object suggests thermal emission from the ionized stellar wind and indicates a departure from spherical symmetry with ne(r)r2n_{e}(r)\propto r^{-2}. We examine different scenarios to explain this excess of thermal emission from the wind and show that this can arise from a bipolar outflow, supporting the suggestion by other authors that the stellar wind of \rmc is aspherical. We fit the data with two collimated ionized wind models and we find that the mass-loss rate can be a factor of two or more smaller than in the spherical case. We also fit the photometry obtained by IR space telescopes and deduce that the mid- to far-IR emission must arise from extended, cool (80K\sim80\,\rm K) dust within the outer ionized nebula. Finally we discuss two possible scenarios for the nebular morphology: the canonical single star expanding shell geometry, and a precessing jet model assuming presence of a companion star.Comment: Accepted for publication in ApJ (minor revision included

    Signatures of an eruptive phase before the explosion of the peculiar core-collapse SN 2013gc

    Get PDF
    We present photometric and spectroscopic analysis of the peculiar core-collapse SN 2013gc, spanning seven years of observations. The light curve shows an early maximum followed by a fast decline and a phase of almost constant luminosity. At +200 days from maximum, a brightening of 1 mag is observed in all bands, followed by a steep linear luminosity decline after +300 d. In archival images taken between 1.5 and 2.5 years before the explosion, a weak source is visible at the supernova location, with mag\approx20. The early supernova spectra show Balmer lines, with a narrow (\sim560 km s1^{-1}) P-Cygni absorption superimposed on a broad (\sim3400 km s1^{-1}) component, typical of type IIn events. Through a comparison of colour curves, absolute light curves and spectra of SN 2013gc with a sample of supernovae IIn, we conclude that SN 2013gc is a member of the so-called type IId subgroup. The complex profile of the Hα\alpha line suggests a composite circumstellar medium geometry, with a combination of lower velocity, spherically symmetric gas and a more rapidly expanding bilobed feature. This circumstellar medium distribution has been likely formed through major mass-loss events, that we directly observed from 3 years before the explosion. The modest luminosity (MI16.5M_I\sim-16.5 near maximum) of SN 2013gc at all phases, the very small amount of ejected 56^{56}Ni (of the order of 10310^{-3} M_\odot), the major pre-supernova stellar activity and the lack of prominent [O I] lines in late-time spectra support a fall-back core-collapse scenario for the massive progenitor of SN~2013gc.Comment: 20 pages, 11 figures, 8 tables, accepted by MNRA

    Genetic mutation screening in an Italian cohort of nonsyndromic pheochromocytoma/paraganglioma patients

    Get PDF
    To assess the prevalence of genetic mutations in nonsyndromic pheochromocytoma/paraganglioma (PHEO/PGL) patients we have performed a systematic search for mutations in the succinate dehydrogenase (SDH) B, C, and D subunits, von Hippel-Lindau (VHL), and RET genes by direct bidirectional sequencing. Patients were selected from the medical records of hypertension centers. After exclusion of syndromic patients, 45 patients with familial (F+, n=3) and sporadic (F-, n=42) cases of isolated PHEO/PGL were considered. They included 35 patients with PHEO, 7 with PGL, and 3 with head/neck PGL (hnPGL). Three patients with PHEO (2F-, 1F+) presented VHL mutations (P86A, G93C, and R167W), six with PGL (4F-, 2F+) were positive for SDH or VHL mutations (SDHB R230G in two patients, SDHB S8F, R46Q, R90Q, and VHL P81L in one subject each), and one with hnPGL carried the SDHD 348-351delGACT mutation. We have also detected missense (SDHB S163P, SDHD H50R and G12S), synonymous (SDHB A6A, SDHD S68S), and intronic mutations that have been considered nonpathological polymorphic variants. No mutation was found in SDHC or RET genes. Our data indicate that germline mutations of VHL and SDH subunits are not infrequent in familial as well as in sporadic cases of nonsyndromic PHEO/PGL (overall, 12 of 45 probands, 22%). Accordingly, screening for such mutations seems to be justified. However, a more precise characterization of the functional relevance of any observed sequence variant and of other genetic and environmental determinants of neoplastic transformation is essential in order to plan appropriate protocols for family screening and follow-up

    The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor

    Get PDF
    Red supergiants have been confirmed as the progenitor stars of the majority of hydrogen-rich type II supernovae(1). However, while such stars are observed with masses > 25 M-circle dot (ref. (2)), detections of > 18 M-circle dot progenitors remain elusive(1). Red supergiants are also expected to form at all metallicities, but discoveries of explosions from low-metallicity progenitors are scarce. Here, we report observations of the type II supernova, SN 2015bs, for which we infer a progenitor metallicity of <= 0.1 Z(circle dot) from comparison to photospheric-phase spectral models(3), and a zero-age main-sequence mass of 17-25 M-circle dot through comparison to nebular-phase spectral models(4,5). SN 2015bs displays a normal 'plateau' light-curve morphology, and typical spectral properties, implying a red supergiant progenitor. This is the first example of such a high-mass progenitor for a 'normal' type II supernova, suggesting a link between high-mass red supergiant explosions and low-metallicity progenitors

    A kilonova as the electromagnetic counterpart to a gravitational-wave source

    Get PDF
    Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2,3,4,5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of −1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90–140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process element

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A kilonova as the electromagnetic counterpart to a gravitational-wave source

    Get PDF
    Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p
    corecore