152 research outputs found
Integrating evidence into policy and sustainable disability services delivery in western New South Wales, Australia: the 'wobbly hub and double spokes' project
<p>Abstract</p> <p>Background</p> <p>Policy that supports rural allied health service delivery is important given the shortage of services outside of Australian metropolitan centres. The shortage of allied health professionals means that rural clinicians work long hours and have little peer or service support. Service delivery to rural and remote communities is further complicated because relatively small numbers of clients are dispersed over large geographic areas. The aim of this five-year multi-stage project is to generate evidence to confirm and develop evidence-based policies and to evaluate their implementation in procedures that allow a regional allied health workforce to more expeditiously respond to disability service need in regional New South Wales, Australia.</p> <p>Methods/Design</p> <p>The project consists of four inter-related stages that together constitute a full policy cycle. It uses mixed quantitative and qualitative methods, guided by key policy concerns such as: access, complexity, cost, distribution of benefits, timeliness, effectiveness, equity, policy consistency, and community and political acceptability.</p> <p>Stage 1 adopts a policy analysis approach in which existing relevant policies and related documentation will be collected and reviewed. Policy-makers and senior managers within the region and in central offices will be interviewed about issues that influence policy development and implementation.</p> <p>Stage 2 uses a mixed methods approach to collecting information from allied health professionals, clients, and carers. Focus groups and interviews will explore issues related to providing and receiving allied health services. Discrete Choice Experiments will elicit staff and client/carer preferences.</p> <p>Stage 3 synthesises Stage 1 and 2 findings with reference to the key policy issues to develop and implement policies and procedures to establish several innovative regional workforce and service provision projects.</p> <p>Stage 4 uses mixed methods to monitor and evaluate the implementation and impact of new or adapted policies that arise from the preceding stages.</p> <p>Discussion</p> <p>The project will provide policy makers with research evidence to support consideration of the complex balance between: (i) the equitable allocation of scarce resources; (ii) the intent of current eligibility and prioritisation policies; (iii) workforce constraints (and strengths); and (iv) the most effective, evidence-based clinical practice.</p
Study protocol: developing a decision system for inclusive housing: applying a systematic, mixed-method quasi-experimental design
Background Identifying the housing preferences of people with complex disabilities is a much needed, but under-developed area of practice and scholarship. Despite the recognition that housing is a social determinant of health and quality of life, there is an absence of empirical methodologies that can practically and systematically involve consumers in this complex service delivery and housing design market. A rigorous process for making effective and consistent development decisions is needed to ensure resources are used effectively and the needs of consumers with complex disability are properly met. Methods/Design This 3-year project aims to identify how the public and private housing market in Australia can better respond to the needs of people with complex disabilities whilst simultaneously achieving key corporate objectives. First, using the Customer Relationship Management framework, qualitative (Nominal Group Technique) and quantitative (Discrete Choice Experiment) methods will be used to quantify the housing preferences of consumers and their carers. A systematic mixed-method, quasi-experimental design will then be used to quantify the development priorities of other key stakeholders (e.g., architects, developers, Government housing services etc.) in relation to inclusive housing for people with complex disabilities. Stakeholders randomly assigned to Group 1 (experimental group) will participate in a series of focus groups employing Analytical Hierarchical Process (AHP) methodology. Stakeholders randomly assigned to Group 2 (control group) will participate in focus groups employing existing decision making processes to inclusive housing development (e.g., Risk, Opportunity, Cost, Benefit considerations). Using comparative stakeholder analysis, this research design will enable the AHP methodology (a proposed tool to guide inclusive housing development decisions) to be tested. Discussion It is anticipated that the findings of this study will enable stakeholders to incorporate consumer housing preferences into commercial decisions. Housing designers and developers will benefit from the creation of a parsimonious set of consumer-led housing preferences by which to make informed investments in future housing and contribute to future housing policy. The research design has not been applied in the Australian research context or elsewhere, and will provide a much needed blueprint for market investment to develop viable, consumer directed inclusive housing options for people with complex disability
Recruiting and retaining GPs and patients in intervention studies: the DEPS-GP project as a case study
Background: Recruiting and retaining GPs for research can prove difficult, and may result in sub-optimal patient participation where GPs are required to recruit patients. Low participation rates may affect the validity of research. This paper describes a multi-faceted approach to maximise participation of GPs and their patients in intervention studies, using an Australian randomised controlled trial of a depression/suicidality management intervention as a case study. The paper aims to outline experiences that may be of interest to others considering engaging GPs and/or their patients in primary care studies. Methods: A case study approach is used to describe strategies for: (a) recruiting GPs; (b) encouraging GPs to recruit patients to complete a postal questionnaire; and (c) encouraging GPs to recruit patients as part of a practice audit. Participant retention strategies are discussed in light of reasons for withdrawal. Results: The strategies described, led to the recruitment of a higher than expected number of GPs (n = 772). Three hundred and eighty three GPs (49.6%) followed through with the intent to participate by sending out a total of 77,820 postal questionnaires, 22,251 (28.6%) of which were returned. Three hundred and three GPs (37.0%) participated in the practice audit, which aimed to recruit 20 patients per participating GP (i.e., a total of 6,060 older adults). In total, 5,143 patients (84.9%) were represented in the audit. Conclusion: Inexpensive methods were chosen to identify and recruit GPs; these relied on an existing database, minor promotion and a letter of invitation. Anecdotally, participating GPs agreed to be involved because they had an interest in the topic, believed the study would not impinge too greatly on their time, and appreciated the professional recognition afforded by the Continuing Professional Development (CPD) points associated with study participation. The study team established a strong rapport with GPs and their reception staff, offered clear instructions, and were as flexible and helpful as possible to retain GP participants. Nonetheless, we experienced attrition due to GPs' competing demands, eligibility, personnel issues and the perceived impact of the study on patients. A summary of effective and ineffective methods for recruitment and retention is provided.Michelle K Williamson, Jane Pirkis, Jon J Pfaff, Orla Tyson, Moira Sim, Ngaire Kerse, Nicola T Lautenschlager, Nigel P Stocks and Osvaldo P Almeid
Indoor environmental quality and occupant satisfaction in green-certified buildings
Green building certification systems aim at improving the design and operation of buildings. However, few detailed studies have investigated whether green rating leads to higher occupant satisfaction with indoor environmental quality (IEQ). This research builds on previous work to address this. Based on the analysis of a subset of the Center for the Built Environment Occupant Indoor Environmental Quality survey database featuring 11,243 responses from 93 LEED-rated office buildings, we explored the relationships between the points earned in the IEQ category and the satisfaction expressed by occupants with the qualities of their indoor environment. We found that the achievement of a specific IEQ credit did not substantively increase satisfaction with the corresponding IEQ factor, while the rating level, and the product and version under which certification had been awarded, did not affect workplace satisfaction. There could be several reasons for this lack of relationships, some of which are outside the control of designers and beyond the scope of rating systems based primarily on design intent. We conclude with a discussion of the challenges and priorities that building professionals, researchers, and green building certification systems need to consider for moving us towards more comfortable, higher performing, and healthier green-rated buildings
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
Constraints on cosmic strings using data from the first Advanced LIGO observing run
Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider
Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run
We employ gravitational-wave radiometry to map the stochastic gravitational wave background
expected from a variety of contributing mechanisms and test the assumption of isotropy using data
from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run.
We also search for persistent gravitational waves from point sources with only minimal assumptions
over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point
sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we
report upper limits on the gravitational wave energy flux per unit frequency in the range Fα;ΘðfÞ <
ð0.1–56Þ × 10−8 erg cm−2 s−1 Hz−1ðf=25 HzÞα−1 depending on the sky location Θ and the spectral
power index α. For extended sources, we report upper limits on the fractional gravitational wave energy
density required to close the Universe of Ωðf; ΘÞ < ð0.39–7.6Þ × 10−8 sr−1ðf=25 HzÞα depending on Θ
and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects
(Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on
strain amplitude of h0 < ð6.7; 5.5; and 7.0Þ × 10−25, respectively, at the most sensitive detector frequencies
between 130–175 Hz. This represents a mean improvement of a factor of 2 across the band compared
to previous searches of this kind for these sky locations, considering the different quantities of strain
constrained in each case
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is for a millisecond magnetar model, and for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.</p
Full band all-sky search for periodic gravitational waves in the O1 LIGO data
We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of ½−1.0; þ0.1 × 10−8 Hz=s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20–475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4 × 10−25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 × 10−24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5 × 10−25
- …