135 research outputs found

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Measurement of ϒ production in pp collisions at √s = 2.76 TeV

    Get PDF
    The production of ϒ(1S), ϒ(2S) and ϒ(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb−1 collected in proton–proton collisions at a centre-of-mass energy of √s = 2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the ϒ transverse momentum and rapidity, over the ranges pT < 15 GeV/c and 2.0 < y < 4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be σ (pp → ϒ(1S)X) × B ϒ(1S)→μ+μ− = 1.111 ± 0.043 ± 0.044 nb, σ (pp → ϒ(2S)X) × B ϒ(2S)→μ+μ− = 0.264 ± 0.023 ± 0.011 nb, σ (pp → ϒ(3S)X) × B ϒ(3S)→μ+μ− = 0.159 ± 0.020 ± 0.007 nb, where the first uncertainty is statistical and the second systematic

    EuFe2_2As2_2 under high pressure: an antiferromagnetic bulk superconductor

    Get PDF
    We report the ac magnetic susceptibility χac\chi_{ac} and resistivity ρ\rho measurements of EuFe2_2As2_2 under high pressure PP. By observing nearly 100% superconducting shielding and zero resistivity at PP = 28 kbar, we establish that PP-induced superconductivity occurs at TcT_c \sim~30 K in EuFe2_2As2_2. ρ\rho shows an anomalous nearly linear temperature dependence from room temperature down to TcT_c at the same PP. χac\chi_{ac} indicates that an antiferromagnetic order of Eu2+^{2+} moments with TNT_N \sim~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.

    Study of D-(*())(+)(sJ) mesons decaying to D*K-+(S)0 and D*K-0(+) final states

    Get PDF
    A search is performed for DsJ()+D^{(*)+}_{sJ} mesons in the reactions ppD+KS0Xpp \to D^{*+} K^0_{\rm S} X and ppD0K+Xpp \to D^{*0} K^+ X using data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. For the D+KS0D^{*+} K^0_{\rm S} final state, the decays D+D0π+D^{*+} \to D^0 \pi^+ with D0Kπ+D^0 \to K^- \pi^+ and D0Kπ+π+πD^0 \to K^- \pi^+ \pi^+ \pi^- are used. For D0K+D^{*0} K^+, the decay D0D0π0D^{*0} \to D^0 \pi^0 with D0Kπ+D^0 \to K^- \pi^+ is used. A prominent Ds1(2536)+D_{s1}(2536)^+ signal is observed in both D+KS0D^{*+} K^0_{\rm S} and D0K+D^{*0} K^+ final states. The resonances Ds1(2700)+D^*_{s1}(2700)^+ and Ds3(2860)+D^*_{s3}(2860)^+ are also observed, yielding information on their properties, including spin-parity assignments. The decay Ds2(2573)+D+KS0D^*_{s2}(2573)^+ \to D^{*+} K^0_{\rm S} is observed for the first time, at a significance of 6.9 σ\sigma, and its branching fraction relative to the Ds2(2573)+D+KS0D^*_{s2}(2573)^+ \to D^+ K^0_{\rm S} decay mode is measured

    Search for Violations of Lorentz Invariance and CPT Symmetry in B-(s)(0) Mixing

    Get PDF
    Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3  fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14})  GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    Measurement of the CP Asymmetry in Bs0 - B s0 Mixing

    No full text
    The CP asymmetry in the mixing of Bs0 and Bs0 mesons is measured in proton-proton collision data corresponding to an integrated luminosity of 3.0 fb-1, recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV. Semileptonic Bs0 and Bs0 decays are studied in the inclusive mode Ds\u3bc\ub1\u3bd(-)\u3bcX with the Ds mesons reconstructed in the K\u3c0 final state. Correcting the observed charge asymmetry for detection and background effects, the CP asymmetry is found to be asls=(0.39\ub10.26\ub10.20)%, where the first uncertainty is statistical and the second systematic. This is the most precise measurement of asls to date. It is consistent with the prediction from the standard model and will constrain new models of particle physics

    Observation of Lambda(0)(b) -> psi (2S)pK(-) and Lambda(0)(b) -> J/psi pi(+)pi(-)pK(-) decays and a measurement of the A(b)(0) baryon mass

    No full text
    The decays Lambda(0)(b) -> psi(2S)pK(-) and Lambda(0)(b) -> J/psi pi(+)pi(-)pK(-) are observed in a data sample corresponding to an integrated luminosity of 3 fb(-1), collected in proton-proton collisions at 7 and 8 TeV centre-of-mass energies by the LHCb detector. The psi(2S) mesons are reconstructed through the decay modes psi(2S) -> mu(+)mu(-) and psi(2S) -> J/psi pi(+)pi(-) The branching fractions relative to that of Lambda(0)(b) -> J/psi pk(-) are measured to be [GRAPHICS] where the first uncertainties are statistical, the second are systematic and the third is related to the knowledge of J/psi and psi(2S) branching fractions. The mass of the Ai baryon is measured to be M(Lambda(0)(b)) = 5619.65 +/- 0.17 0.17 MeV/c(2), where the uncertainties are statistical and systematic

    Measurement of the B-s(0) -> D-s(()*D-)+(s)(*()-) branching fractions

    Get PDF
    The branching fraction of the decay B-s(0) -> D-s(()*D-)+(s)(*()-) is measured using pp collision data corresponding to an integrated luminosity of 1.0 fb(-1), collected using the LHCb detector at a center-of-mass energy of 7 TeV. It is found to be B(B-s(0) -> D-s(()*D-)(s)(*()-)) = (3.05 +/- 0.10 +/- 0.20 +/- 0.34) where the uncertainties are statistical, systematic, and due to the normalization channel, respectively. The branching fractions of the individual decays corresponding to the presence of one or two D-s(*+/-) are also measured. The individual branching fractions are found to be B(B-s(0) -> D-s*D-+/-(s)-/+) = (1.35 +/- 0.06 +/- 0.09 +/- 0.15) B(B-s(0) -> D-s*D-+(s)*(-)) = (1.27 +/- 0.08 +/- 0.10 +/- 0.14)%. All three results are the most precise determinations to date

    First observation of the rare B+ -> D+K+pi(-) decay

    No full text
    The B+ -> D+K+pi(-) decay is observed in a data sample corresponding to 3.0 fb(-1) of pp collision data recorded by the LHCb experiment during 2011 and 2012. The signal significance is 8 sigma and the branching fraction is measured to be B(B+ -> D+K+pi(-)) = (5.31 +/- 0.90 +/- 0.48 +/- 0.35) x 10(-6), where the uncertainties are statistical, systematic and due to the normalization mode B+ -> D-K+pi(+), respectively. The Dalitz plot appears to be dominated by broad structures. Angular distributions are exploited to search for quasi-two-body contributions from B+ -> D*(2)(2460)K-0(+) and B+ -> (D+K*)(892)(0) decays. No significant signals are observed and upper limits are set on their branching fractions
    corecore