31 research outputs found

    Reading decoding and comprehension in children with autism spectrum disorders: Evidence from a language with regular orthography

    Get PDF
    Decoding and comprehension skills in children with autism spectrum disorders (ASD) were analysed in children native speakers of a language (Italian) with a highly regular orthography. Children with ASD were compared to children with matched intellectual functioning: a subgroup of children with ASD and borderline intellectual functioning (BIF) was compared to a subgroup of children with BIF but no signs of ASD; a subgroup of children with ASD and cognitive functioning within normal limits was compared to a group of typically developing children. Children with ASD (whether with or without BIF) showed essentially spared decoding skills in text as well as word and pseudo-word reading; this was at variance with children with BIF who, as a group, showed overall deficient decoding skills, despite considerable individual differences. By contrast, children with ASD (once again, irrespective of the presence of BIF) showed a selective impairment in reading comprehension, just like children with BIF but unlike the typically developing ones. Therefore, results are generally consistent with a profile of hyperlexia for children with ASD learning a regular orthography, as previously reported for other languages. Notably, this pattern was present irrespective of the degree of cognitive impairment, and clearly distinguished these children from those with borderline intellectual functioning but not signs of autism

    Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    Get PDF
    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy Îł-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.Published111-1142V. Struttura e sistema di alimentazione dei vulcaniJCR Journa

    A new technique for probing the internal structure of volcanoes using cosmic-ray muons

    Get PDF
    Among the considerable number of studies that can be carried out using muons, we pay specific attention to the radiography of volcanoes based on the same principle of the X-ray radiography of human body. Thanks to their high penetration capability, cosmic-ray muons can be used to reconstruct the density distribution of the interior of huge structures by measuring the attenuation induced by the material on the muon flux. In particular, the quantitative understanding of the inner structure of volcanoes is a key-point to forecast the dangerous stages of activity and mitigate volcanic hazards. The instrumental approach is currently based on the detection of muons crossing hodoscopes made up of scintillator planes. Unfortunately, these detectors are affected by a strong background comprised by accidental coincidence of vertical shower particles, horizontal high-energy electrons and upward going particles. We propose an alternative technique based on the detection of the Cherenkov light produced by muons. This can be achieved with an imaging atmospheric Cherenkov telescope composed of a high reflectivity optical system that focus the Cherenkov light onto a multi-pixel focal camera with fast read-out electronics. The Cherenkov light emitted by a muon is imaged on the camera as an annular pattern which contains information to reconstruct the direction of the incident muon. We have estimated that using the Cherenkov imaging technique for muon radiography of volcanoes gives the advantage of a negligible background and improved spatial resolution, compared to the majority of the particle detectors. We present results of simulations based on a telescope with a positioning resolution of 13.5 m which corresponds to an acceptance of 9 cm2 sr. The telescope is located 1500 m far from a toy-model volcano, namely, a cone with a base diameter of 500 m and a height of 240 m. We test the feasibility of the proposed method by estimating the minimum number of observation nights needed to resolve inner empty conduits of different diameter.Published122–1252V. Struttura e sistema di alimentazione dei vulcaniN/A or not JC

    Stable incidence but declining case-fatality rates of subarachnoid hemorrhage in a population

    Get PDF
    Objective: To characterize temporal trends in subarachnoid hemorrhage (SAH) incidence and outcomes over 5 time periods in a large population-based stroke study in the United States. Methods: All SAHs among residents of the Greater Cincinnati/Northern Kentucky region at least 20 years of age were identified and verified via study physician review in 5 distinct year-long study periods between 1988 and 2010. We abstracted demographics, care patterns, and outcomes, and we compared incidence and case-fatality rates across the study periods. Results: The incidence of SAH in the 5 study periods (age-, race-, and sex-adjusted to the 2000 US population) was 8.8 (95% confidence interval 6.8–10.7), 9.2 (7.2–11.2), 10.0 (8.0–12.0), 9.0 (7.1–10.9), and 7.7 (6.0–9.4) per 100,000, respectively; the trend in incidence rates from 1988 to 2010 was not statistically significant (p = 0.22). Advanced neurovascular imaging, endovascular coiling, and neurologic intensive care unit availability increased significantly over time. All-cause 5-day (32%–18%, p = 0.01; for trend), 30-day (46%–25%, p = 0.001), and 90-day (49%–29%, p = 0.001) case-fatality rates declined from 1988 to 2010. When we included only proven or highly likely aneurysmal SAH, the declines in case-fatality were no longer statistically significant. Conclusions: Although the incidence of SAH remained stable in this population-based region, 5-day, 30-day, and 90-day case-fatality rates declined significantly. Advances in surgical and medical management, along with systems-based changes such as the emergence of neurocritical care units, are potential explanations for the reduced case-fatality

    Muon imaging of volcanoes with Cherenkov telescopes

    Get PDF
    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra La Nave (southern flank of Mt. Etna, Italy; 1740m a.s.l.), in the framework of ASTRI, a flagship project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics (INAF). This offers the opportunity to test the use of a Cherenkov telescope for imaging volcanic structures. Starting from this know-how, we plan to develop a new prototype of Cherenkov detector with suitable characteristics for installation in the summit zone of Etna volcano (around 3000m a.s.l.)

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    PROFIL WISATAWAN MUSEUM RADYA PUSTAKA SURAKARTA

    Get PDF
    Anggit Margaret, C9407031 2011. Profil Wisatawan Museum Radya Pustaka Surakarta. Program Studi Diploma III Usaha Perjalanan Wisata Fakultas Sastra Dan Seni Rupa Universitas Sebelas Maret Surakarta. Penelitian tugas akhir ini mengkaji tentang Profil Wisatawan di Museum Radya Pustaka Surakarta. Tujuan dari penelitian ini adalah untuk mengetahui dari daerah mana saja wisatawan yang berkunjung ke Museum Radya Pustaka, bagaimana ciri-ciri wisatawan yang berkunjung ke Museum Radya Pustaka serta harapan-harapan yang diinginkan wisatawan terhadap Museum Radya Pustaka. Penelitian dilakukan dengan metode kualitatif. Pengumpulan data dilakukan melalui wawancara dengan narasumber wisatawan yang berkujung di Museum Radya Pustaka Surakarta tempat penulis melakukan penelitian, serta studi pustaka dan studi dokumen guna menambah sumber data. Hasil penelitian menunjukkan bahwa (1) Sebagian besar wisatawan yang datang berasal dari Semarang sebesar 32%. (2) Mayoritas wisatawan yang berkunjung ke Museum Radya Pustaka berusia antara 17-25 tahun dan kebanyakan dari mereka adalah pelajar atau mahasiswa dengan prosentase 52%. (3) Sebagian besar wisatawan yang datang ke Museum Radya Pustaka adalah bertujuan untuk melakukan penelitian yaitu sebesar 34%. (4) Harapan wisatawan yang berkunjung terhadap kelangsungan Museum Radya Pustaka sebagian besar adalah agar ditingkatkan lagi pengelolaan dan keamanan museum, agar kejadian hilangnya benda-benda koleksi museum tidak terulang lagi dikemudian hari. Kesimpulan dari hasil penelitian ini bahwa wisatawan yang berkujung ke Museum Radya Pustaka Surakarta mayoritas berasal dari Semarang, mayoritas berusia 17-25 tahun dan kebanyakan dari mereka adalah berprofesi sebagai pelajar dan mahasiswa. Kebanyakan wisatawan yang datang bertujuan untuk melakukan penelitian, serta harapan wisatawan terhadap Museum Radya Pustaka adalah supaya lebih ditingkatkan lagi pengelolaan dan keamanan museum

    The European Solar Telescope

    Get PDF
    The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French TĂ©lescope HĂ©liographique pour l’Étude du MagnĂ©tisme et des InstabilitĂ©s Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF
    corecore