43 research outputs found

    Detailed survey of the phase space around Nix and Hydra

    Get PDF
    We present a detailed survey of the dynamical structure of the phase space around the new moons of the Pluto - Charon system. The spatial elliptic restricted three-body problem was used as model and stability maps were created by chaos indicators. The orbital elements of the moons are in the stable domain both on the semimajor axis - eccentricity and - inclination spaces. The structures related to the 4:1 and 6:1 mean motion resonances are clearly visible on the maps. They do not contain the positions of the moons, confirming previous studies. We showed the possibility that Nix might be in the 4:1 resonance if its argument of pericenter or longitude of node falls in a certain range. The results strongly suggest that Hydra is not in the 6:1 resonance for arbitrary values of the argument of pericenter or longitude of node.Comment: Published in MNRAS. 10 pages, 7 figures, 4 table

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for lepton flavour violating decays of the Higgs boson to eτand eμin proton–proton collisions at √s=8TeV

    Get PDF
    A direct search for lepton flavour violating decays of the Higgs boson (H) in the H →eτand H →eμchannels is described. The data sample used in the search was collected in proton–proton collisions at √s=8TeVwith the CMS detector at the LHC and corresponds to an integrated luminosity of 19.7fb−1. No evidence is found for lepton flavour violating decays in either final state. Upper limits on the branching fractions, B(H →eτ) <0.69%and B(H →eμ) <0.035%, are set at the 95% confidence level. The constraint set on B(H →eτ)is an order of magnitude more stringent than the existing indirect limits. The limits are used to constrain the corresponding flavour violating Yukawa couplings, absent in the standard model

    Measurement of the WZ production cross section in pp collisions at root s=13 Tev

    Get PDF
    Peer reviewe

    Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 TeV cross sections

    Get PDF
    Peer reviewe

    Relative Modification of Prompt psi(2S) and J/psi Yields from pp to PbPb Collisions at root(S)(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Measurements of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections in pp collisions at root s=7 TeV

    Get PDF
    Peer reviewe

    Search for anomalous single top quark production in association with a photon in pp collisions at √s=8 TeV

    Get PDF

    Evidence for collectivity in pp collisions at the LHC

    Get PDF
    Measurements of two- and multi-particle angular correlations in pp collisions at s=5,7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0pb−1 (5 TeV), 6.2pb−1 (7 TeV), and 0.7pb−1 (13 TeV), were collected using the CMS detector at the LHC. The second-order (v2) and third-order (v3) azimuthal anisotropy harmonics of unidentified charged particles, as well as v2 of KS0 and Λ/Λ‾ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v2 values of charged hadrons (mostly pions), KS0, and Λ/Λ‾, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pT≈2GeV/c. For 13 TeV data, the v2 signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIEN-CIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Fin-land, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA)
    corecore