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ABSTRACT
We present a detailed survey of the dynamical structure of the phase space around the new
moons of the Pluto–Charon system. The spatial elliptic restricted three-body problem was
used as model and stability maps were created by chaos indicators. The orbital elements of
the moons are in the stable domain both on the semimajor axis -eccentricity and - inclination
spaces. The structures related to the 4:1 and 6:1 mean motionresonances are clearly visible
on the maps. They do not contain the positions of the moons, confirming previous studies. We
showed the possibility that Nix might be in the 4:1 resonanceif its argument of pericenter or
longitude of node falls in a certain range. The results strongly suggest that Hydra is not in the
6:1 resonance for arbitrary values of the argument of pericenter or longitude of node.

Key words: celestial mechanics – planets and satellites: general – methods: numerical

1 INTRODUCTION

In 1930 C. Tombaugh discovered Pluto, the ninth planet of theSolar
system. From its discovery until 2006, Pluto was consideredthe
Solar System’s outmost planet. In the last two decades, however,
many objects similar to Pluto were discovered in the outer solar
system, notably the scattered disc object Eris, which is 27%more
massive than Pluto (Brown & Schaller 2007). On August 24, 2006
the IAU defined the term ”planet” for the first time. This definition
excluded Pluto, which the IAU reclassified as a member of the new
category of dwarf planets along with Eris and Ceres.

Pluto’s first moon, Charon was found by Christy & Harrington
(1978), which greatly facilitated the study of Pluto, sincethat dis-
covery made possible a more accurate determination of Pluto’s
mass. In Table 1 a chronology of mass ratiosµ̂ = mC/mP and
mass parametersµ = mC/(mP + mC) is shown, wheremP

andmC are the masses of Pluto and Charon, respectively. Sev-
eral authors have struggled to obtain this quantity from measure-
ments of the barycentric wobble (Null et al. 1993; Young & Binzel
1994; Null & Owen 1996; Tholen & Buie 1997; Foust et al. 1997;
Olkin et al. 2003). In addition the Pluto–Charon system is remark-
able, since in the Solar system Charon is the largest moon relative
to its primary, with the highest mass ratio of 0.1166 (Tholenet al.
2008) (hereafter referenced to as T08). A visual representation of
the mass ratios and the corresponding mass parameters is displayed
in Figure 1. Horizontal solid lines give the error bars of themass
ratios with a vertical tick in the center denoting the best-fit value de-
termined by the authors. Below each solid line the corresponding
mass parameter is plotted as dashed lines, where the vertical tick
denotes the mass parameter computed from the best-fit value of the
mass ratio. We note that this is not at the center, as it is evident
from the third column of Table 1. The largest error bar is given for
Tholen & Buie (1997) since their observations were not optimized
for the determination of the Charon/Pluto mass ratio. The mean of

Table 1. Values for the Charon/Pluto mass ratios and mass parameters. In
the first six rows values derived form the barycentric wobbleare listed,
while in the last two rows those calculated from orbital fits using the dis-
covery of the small moons.

Reference µ̂ = MC

MP
× 10 µ = µ̂

1+µ̂
× 10

Null et al. (1993) 0.837± 1.47e− 2 0.7723+1.235e−2
−1.269e−2

Young & Binzel (1994) 1.566± 3.50e− 3 1.3540+2.608e−3
−2.624e−3

Null & Owen (1996) 1.240± 8.00e− 3 1.1032+6.287e−3
−6.378e−3

Tholen & Buie (1997) 1.100± 6.00e− 2 0.9910+4.620e−2
−5.148e−2

Foust et al. (1997) 1.170± 6.00e− 3 1.0474+4.783e−3
−4.835e−3

Olkin et al. (2003) 1.220± 8.00e− 3 1.0873+6.310e−3
−6.400e−3

Buie et al. (2006) 1.165± 5.50e− 3 1.0434+4.390e−3
−4.434e−3

Tholen et al. (2008) 1.166± 6.90e− 3 1.0442+5.500e−3
−5.569e−3

Mean 1.1183 1.05537

the mass ratios and mass parameters are given in the last row of
Table 1. In the works of Buie et al. (2006) (hereafter referenced to
as B06) and T08 the masses were derived from two-body and four-
body fits, respectively. From Table 1 one can see that the massratio
has considerably evolved and reached by now a well established
value. In the present work the dependence of the phase space on
the mass parameter is studied.

Subsequent searches for other moons around Pluto had been
unsuccessful until mid May 2005, when two new moons were dis-
covered (Weaver et al. 2005, 2006). The discovery of Pluto’snew
moons, Nix (provisionally designated by S/2005 P2) and Hydra
(provisionally designated by S/2005 P1) rendered the system even
more interesting. They orbit the center of mass of the system, which
is very close to the Pluto–Charon barycenter. The preliminary or-

c© 2009 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333614056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0910.1271v1


2 Á. S̈uli, Zs. Zsigmond

Figure 1. Best-fit mass ratiôµ values for the Charon–Pluto system along
with the corresponding mass parametersµ. The horizontal bars span plus
and minus one standard deviation from the best-fit values.

bits computed by Weaver et al. (2005) (hereafter referencedto as
W05) were based on just two observations separated by only three
days, considerably less than a full orbit of either moon. Because
of these constraints unique orbits could not be calculated from the
available data, but the measured positions were consistentwith
nearly circular orbits in the orbital plane of Charon. On this as-
sumption, preliminary orbital solutions yielda = 64700± 850 km
andP = 38.2±0.8 days for Hydra, anda = 49400±600 km and
P = 25.5 ± 0.5 days for Nix. Two-body orbit solutions for Nix
and Hydra were computed by B06 using images taken of the Pluto
system during 2002-2003 with the Hubble Space Telescope. Their
use of data derived from prediscovery observations that span sev-
eral orbits of all the moons made possible to compute unrestricted
fits to the orbits of Nix and Hydra. According to the results, the
orbital periods of Nix and Hydra are close to the ratio of 4:1 and
6:1 with that of Charon, respectively, indicating mean-motion reso-
nance. In this paper two bodies are in mean-motion resonancewhen
n/n′ = p/(p+ q), wheren andn′ are their mean motions,p andq
are small integers, whereq is the order of the resonance. The mean
motions are measured in the sidereal system.

Some of the major conclusions of B06 are as follows: (i) Nix
and Hydra are in nearly circular orbits, with eccentricities of 0.0023
and 0.0052, respectively. (ii ) The orbits of the small moons are al-
most coplanar with Charon’s orbit. (iii ) The orbital periods of Nix
and Hydra are nearly commensurate with the period of Charon,but
differ significantly from the exact ratios of 4:1 and 6:1, respectively.
They argue that perhaps there are no resonances acting between the
bodies. We note that in B06 the eccentricity of Charon was assumed
to be zero; they argue that the eccentricity of the orbit of Hydra is
significantly nonzero, unlike the orbits of Charon and Nix, which
are consistent with zero eccentricity. As we will demonstrate the
eccentricity of Charon substantially influences the phase space of
the Pluto–Charon system.

Although the two-body orbit solutions are good enough to pro-
vide satisfactory agreement with the 2002-2003 data, T08 studied
whether the direct perturbations might be too strong to permit a suf-
ficiently accurate extrapolation forward to the 2015 New Horizons
spacecraft encounter with Pluto. Also, with adequate data,a formal
four-body orbit solution should yield the mass for each member of
the system.

Their results of a four-body orbit solution for the Pluto system
based on published observations have established 1σ upper limits
on the masses of Nix and Hydra. The masses and some other phys-
ical properties of the moons are shown in Table 2. These limits
place lower bounds on their geometric albedos and upper oneson

Table 2. Physical values of the moons, wherem is the mass,ρ is the den-
sity, D is the diameter andα is the visual geometric albedo (T08). Square
brackets indicate assumed quantities.

Name m [kg] ρ D [km] α (V)

Pluto 1.304×1022 2.06 [2294] 0.61
Charon 1.520×1021 1.63 1212 0.34

Nix 5.8×1017 [1.63] 88 0.08
Hydra 3.2×1017 [1.63] 72 0.18

their densities. The Charon/Pluto mass ratio was determined from
the four-body orbit solution. The best-fit value of 0.1166 isalmost
identical to that of B06, since both team have used the same data.

The work of T08 led to the conclusion that the orbits of
Charon, Nix, and Hydra are not quite coplanar, and the latter
moons’ orbit planes precess around the system’s invariableplane
with periods of 5 and 15 years. The orbital eccentricities are
nonzero but small for all three moons when measured in a barycen-
tric reference frame. The results of T08 did not provide evidence on
any mean motion resonances between the three moons confirming
the study of B06.

The eccentricity for Charon disagrees with the zero eccentric-
ity published in B06. The erroneous value was the result of onthe
one hand using a software which was developed to fit highly ec-
centric orbit and on the other hand the use of the orbit published
in Tholen & Buie (1997). It should be noted that the magnitudeof
Charon’s eccentricity is very similar to the values determined from
Pluto surface models of Tholen & Buie (1997) (see Table III on
page 251). In the case of the albedo model where only Pluto was
considered, the computed eccentricity was0.003 ± 0.0005 which
agrees very well with the value of 0.0035 calculated in T08.

To perform the four-body orbit solution all 22 parameters (18
orbital elements and 4 masses) were fitted simultaneously inthe
work by T08. During the computations, the solution settled into
many different local minima, therefore without computing every
possible orbit, it can not be guaranteed to find the absolute min-
imum. The currently available data are insufficient to produce a
unique minimum. The possibility of stellar occultation opportuni-
ties and new Hubble Space Telescope observations will likely im-
prove and refine the orbital elements of these new moons. Much
more precise determination of the orbits and masses of Nix and
Hydra will be possible as the New Horizons spacecraft approaches
the Pluto system in 2015.

Nagy, Süli &Érdi (2006) studied the phase space of the Pluto–
Charon system in the framework of the spatial circular restricted
problem. The moons were treated as test particles and their semi-
major axes, eccentricities and inclinations were varied. The com-
putations were repeated for different initial mean anomalies. Their
results showed that the region inside≈ 42000 km is unstable, thus
no moon could exist there. According to their results both moons
reside in the stable region of the phase space of the Pluto–Charon
system and the upper limit for the eccentricities of Hydra is0.17,
while it is 0.31 for Nix. In the semimajor axis - inclination plane the
4:1 and 6:1 resonances are clearly visible above≈ 20◦ and≈ 35◦,
respectively. Unfortunately, these values could not serveto place a
more stringent upper limit on these orbital elements.

The main goal of this paper is to extend the previous inves-
tigations of Nagy et al. (2006) using the spatial elliptic restricted
problem. In their work the eccentricity of Charon was zero and the
mass parameter of the system was 0.130137. Since then both of

c© 2009 RAS, MNRAS398, 1–10



Detailed survey of the phase space around Nix and Hydra3

Table 3. Orbital parameters derived by W05, Keplerian fits by B06 and those from four-body orbits solution by T08 typesetted in bold. The
values are valid at epoch JD 2452600.5, mean equator and equinox of J2000. The parameters for the orbit of Charon are relative to Pluto while
the orbits of Nix and Hydra are relative to the center of mass of the Pluto–Charon system. The values in parentheses in the semimajor axis
column are given in units of the semimajor axis of Charon (A=1). Square brackets indicate assumed quantities.

Body a [km] [A] e i [deg] ω [deg] Ω [deg] L [deg] M [deg] T [day]

Charon (B06) 19571.4 (1) 0.0 96.145 – 223.046 257.946 257.946 6.3872304
Charon (T08) 19570.3 (1) 0.0035 96.168 157.9 223.054 257.960 237.006 6.38720

Nix (W05) 49400 (2.524) [0.0] [96.145] – – ? – 25.5
Nix (B06) 48675 (2.487) 0.0023 96.18 352.86 223.14 123.14 267.14 24.8562
Nix (T08) 49240 (2.516) 0.0119 96.190 244.3 223.202 122.7 15.198 25.49

Hydra (W05) 64770 (3.309) [0.0] [96.145] – – ? – 38.2
Hydra (B06) 64780 (3.310) 0.0052 96.36 336.927 223.173 322.71 122.61 38.2065
Hydra (T08) 65210 (3.332) 0.0078 96.362 45.4 223.077 322.4 53.923 38.85

these values have been updated and also the orbital elementsof
Nix and Hydra have been refined as it can be seen from Table 3.
The relevant changes are the following: (i) the semimajor axes of
both moons have been changed, (ii ) Nix’s eccentricity is signifi-
cantly different from zero, and Hydra’s eccentricity has increased
by a factor of 150% (iii ) the argument of periapses have completely
different values. The most important change is the transition from
the circular to the elliptic case. In the circular restricted problem
there exists a first integral of motion, i.e. the Jacobi-integral, which
does not exist when introducing the eccentricity. Due to thedisap-
pearance of the Jacobi integral the phase space structure changes
qualitatively.

With that said, the orbital elements tabulated in Table 3 are
subject to change as new observations become available. Using sta-
bility maps computed in advance for a large set of orbital param-
eters has the advantage that the stability properties of themoons
can be easily established when the orbital parameters are modified.
Moreover the error bars can be readily combined with the stability
maps giving extra information about the motion.

In Section 2 we describe the investigated model and give the
initial conditions used in the integrations. The applied numerical
methods are briefly explained in Section 3. The results are pre-
sented in Section 4. Section 5 is devoted to the conclusions.

2 MODEL AND INITIAL CONDITIONS

Since the orbital radii of the moons are much smaller than theHill
radius (≈ 8.0 × 106 km) of the Pluto–Charon system, the moons
are deep in Pluto’s gravitational well, the perturbations by the Sun
can be ignored, as did Lee & Peale (2006) and T08.

To study the structure of the phase space of the Pluto–Charon
system we applied the model of the spatial elliptic restricted three-
body problem. We integrated the dimensionless equations ofmo-
tion. An obvious advantage of using such equations is that the re-
sults are independent of the exact value of the semimajor axis of
Charon. The unit of length was chosen such that the separation of
Pluto and Charon (the primaries) is unity, i.e. the semimajor axis of
Charona1 = 1 A in all computations. Let the unit of mass be the
sum of the primaries, i.e.mP + mC = 1, wheremP andmC are
the masses of Pluto and Charon, respectively. Let the unit oftime
be chosen such thatk2(mP+mC) = 1, wherek is the gravitational
constant. The orbital plane of the primaries was used as reference
plane, in which the line connecting the primaries att = 0 defines
a referencex-axis. The longitude of the ascending nodeΩ is the

angle between the line of nodes and thex axis. The argument of
pericenterω is measured between the line of nodes and the radius
vector of the pericenter. The values ofΩ = 0, ω = 0 and the mean
anomalyM = 0 places the test particle on thex axis at a distance
of a(1− e) from the barycenter, wherea is the semimajor axis and
e is the eccentricity of the test particle.

The initial orbital elements of Charon are given in Table 3,
where those of T08 were used. Hereafter the orbital elementsof
Charon will be denoted by subscript 1, i.e.e1 is the notation for
Charon’s eccentricity.

Though Nix and Hydra are almost coplanar with Charon, still
we study the problem more generally by considering the effect of
non-zero inclinations on the orbital stability. The mass parameter
µ = 0.104424 was chosen according to the value of 0.1166 pub-
lished in T08 (see Table 1).

To examine the phase space in the vicinity of Nix and Hydra
separately we varied the initial orbital elements of the test particles.
Stability maps were created for the(a− e) and(a− i) orbital ele-
ment space for both moons for different eccentricitye, inclination
i, argument of pericenterω and longitude of nodeΩ. The values
of the mean anomaliesM were kept constant in all the simulations
and are given in Table 3. To compute the(a− e) and(a− i) stabil-
ity maps the semimajor axis was varied with a stepsize of10−3 in
the intervals which are given in Table 4. For each computed(a− i)
map the inclination was changed from 0 to 45◦ with ∆i = 1◦ and
for each(a − e) map the eccentricity varied from 0 to 0.4 with
∆e = 10−3.

The (a − e) stability maps were computed for different pa-
rameters of the moons. For each([i]k, [ω]l) and([i]k, [Ω]l) pair an
(a− e) stability map was computed, where

[i]k = k∆i′, k = 0, . . . , 4,

[ω]
l

= 22.◦9 + l∆ω′, [Ω]l = l∆Ω′, l = 0, . . . , 7,

where∆i′ = 10◦ , ∆ω′ = ∆Ω′ = 45◦. Here we used the [] notion
to distinct the variables from those of Charon. Computationof each
combination of the(k, l) integer pair results in2×40 stability maps
per moons.

Similarly the(a − i) stability maps were computed for each
([e]k, [ω]l) and([e]k, [Ω]l) pair, where

[e]
k
= k∆e′, k = 0, . . . , 4. (1)

where∆e′ = 0.1. The details are summarized in Table 4.
In total more than 14 million orbits were calculated, which re-

sulted in2 × 80 = 160 stability maps for each moon. Due to the

c© 2009 RAS, MNRAS398, 1–10
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Table 4. The initial orbital elements for the test particles. In the upper part
the intervals of the semimajor axes along with the stepsizes∆ are listed for
the stability maps(a − e) and(a − i). The lower part shows the intervals
(I) for the orbital elements[e]k , [ω]l and[Ω]l and the respective stepsizes
(∆′).

Map a [A] e i [deg]

Nix [2.40,2.64] [0,0.4] [0,45]
Hydra [3.22,3.38] [0,0.4] [0,45]
∆ 10−3 10−3 1

[e]k [i]k [deg] [ω]l [deg] [Ω]l [deg]

I [0,0.4] [0,40] [22.9;337.9] [0;315]
∆′ 0.1 10 45 45

very small stepsize ina ande, each(a − e) stability map corre-
sponds to more than6 × 104 initial conditions, thus providing a
very fine resolution.

The above orbital elements refer to a barycentric reference
frame, where the mass of the barycenter ismP+mC. By the usual
procedure we calculated the barycentric coordinates and velocities
of the test particle and then transformed them to a referenceframe
with Pluto in the origin. In the numerical integrations we used the
latter coordinates and velocities.

For the integration of the system we applied an efficient
variable-timestep algorithm, known as Bulirsch–Stoer integration
method. The most important feature of this algorithm for simula-
tions is that it is capable of keeping an upper bound on the local
errors introduced due to taking finite timesteps by adaptively reduc-
ing the step size when interactions between the particles increase in
strength. The parameterǫ which controls the accuracy of the inte-
gration was set toǫ = 10−10. The orbits were integrated for104

Charon’s period (hereafterTC).

3 METHODS

To compute the stability maps, the method of the maximum eccen-
tricity (ME), the Lyapunov characteristic indicator (LCI)and the
relative Lyapunov indicator (RLI) were used as tools for stability
investigations of the massless bodies representing the small moons.

The ME method uses as an indication of stability a straight-
forward check based on the eccentricity. This action-like variable
shows the probability of orbital crossing and close encounter of
two bodies and therefore its value provides information on the sta-
bility of orbits. This simple check was already used in several sta-
bility investigations, and was found to be a powerful indicator of
the stability character of orbits (Dvorak et al. 2003; Süliet al. 2005;
Nagy et al. 2006). In this work we define ME as follows

ME = max
t∈[0,104]TC

(e).

As a complementary tool, we computed also the LCI, a well-
known chaos indicator. The LCI is the finite time approximation of
the largest Lyapunov exponent, which is described in detailin e.g.
Froeschlé (1984). The definition of the LCI is given by

LCI(t, x0, ξ0) =
1

t
log ‖ξ(t)‖,

wherex0 is the initial condition of the orbit andξ(t) is the solution
of the first order variational equations. The functionLCI(t, x0, ξ0)
measures the mean rate of divergence of the orbits.

In Sándor et al. (2000, 2004) the difference between the LCIs
of two neighbouring orbits was introduced:

∆L(x0, ξ0,∆) = |LCI(x0, ξ0, t)− LCI(x0 +∆, ξ0, t)|,

where∆ is the distance between two close orbits. This quantity
measures the fluctuations of the curve of the LCI. To smooth the
time evolution of∆L its time average is computed, which is the
definition of the RLI:

RLI(x0, ξ0,∆) =
1

t

X

|∆L(x0, ξ0,∆)|,

The definition contains∆ as free parameter, which must be chosen
small enough to reflect the local properties of the flow in the phase
space. It was shown, (Sándor et al. (2000, 2004)) that the choice of
this parameter in a quite large interval (∆ ∈ [10−14 , 10−7]) does
not modify essentially the behaviour of the RLI. This methodis ex-
tremely fast to determine the ordered or chaotic nature of orbits and
the method is sensitive for showing the resonant structure on sta-
bility maps (Sándor et al. 2006). In our computations∆ = 10−10

was used.
The three methods are not equivalent, however they complete

each other. For example, the ME of the Earth is small, indicat-
ing stability, although we know from numerical experimentsthat
in fact the Earth is moving on a chaotic trajectory with a small
but nonzero Lyapunov exponent. Therefore the ME detects macro-
scopic instability (which may even result in an escape from the
system), whereas the RLI and the LCI are capable to indicate mi-
croscopic instability.

According to notation. (??) the stability map is prepared in
such a way, that for each set of the described initial conditions the
LCI, RLI and ME value of the corresponding orbit of the test par-
ticle is computed and plotted in the(a − e) or (a − i) parameter
plane.

4 RESULTS

In this Section theME− stability maps are presented (Figs 2–7),
whereME− is defined as follows:

ME− =



1 if ME = 1
ME− e0 otherwise

,

wheree0 is the initial eccentricity of the test particle. We used the
above definition in order to display the maximum change ine in
the course of the integration and to be able to compare orbitswith
differente0. For each(a, e) or (a, i) point theME− is computed
and depending on its value a greyscale dot is plotted. Darkershades
correspond to very low values of theME− and regular behaviour
of the test particle, while lighter shades indicate largerME−. In
order to better visualize the structures in the stability maps the scale
for the (a − e) figures extends from zero to 0.2 for Nix and 0.1
for Hydra, for the(a − i) maps to 0.2 and 0.05, respectively. In
the (a − e) maps the thick black solid curve in the white upper
region is a contour line where ME is approximately equals to 0.9
and marks the upper boundary of stable region. Above the curve
ME is practically 1.0 while below it ME rapidly decreases. The
thin dashed contour line right below the thick one corresponds to
ME=0.4 and in all regions below this curve theME− is less than
0.2 and 0.1 for Nix and Hydra, respectively. In the(a − i) maps
ME is less than 0.4 in all cases.

On the figures white solid curves are contour lines: along these
curves theME− has a constant value. These values were chosen
in such a way that the curves draw the approximate boundary of

c© 2009 RAS, MNRAS398, 1–10



Detailed survey of the phase space around Nix and Hydra5

the most prominent structure and to make comparison possible.
The white numbers at the upper end of these curves are the cor-
respondingω or Ω values. Murray & Dermott (1999) derived the
maximum libration zone of resonances as a function of the semi-
major axis and eccentricity using an analytical model basedon the
circular restricted three-body problem. These zones forq > 2 reso-
nances have a V-shape on the(a− e) plane. The V-shapes are well
represented by the white contour curves. Using a different,but rea-
sonableME− value would provide a similar V-shape. The chosen
values to plot the contour curves are based on several tests.

The stability maps based on the LCI and RLI values are essen-
tially the same as those based onME−, therefore these maps are
not presented.

4.1 The mass parameter

The mass parameter used by Nagy et al. (2006) differs by 25%
from the present best-fit value therefore we studied the system with
differentµ values. For the sake of comparison four runs were per-
formed, one forµ = 0.130137 and one forµ = 0.104424 in the
(a − e) phase space in the vicinity of both Hydra and Nix. The
stability map in the vicinity of Nix forµ = 0.104424 ande1 = 0
is shown in the upper panel of Figure 2. The phase space struc-
tures for the twoµ parameters (the one forµ = 0.130137 is not
shown) are almost identical, they are only shifted along thehori-
zontal axis: structures for the lower mass parameter are closer to
Pluto. This is a consequence of the changes in the coordinates of
the barycenter. This shift amounts approximately to 0.005 A. The
ME=0.9 contour line is almost the same although in the boundary
zone between the unstable and stable region the maximum differ-
ence inME− computed using the two mass parameters can reach
values as high as≈ 1. This large difference is a natural conse-
quence of the chaotic nature of orbits emanating from this region.
Using longer integration time would cease these large differences.
The conclusion is that in this mass parameter region of≈ 0.1, 25%
change inµ shifts the phase space structures along the horizontal
axis. This shift could be important in the close vicinity of mean
motion resonances, like in the case of Hydra where the lower end
of the 6:1 resonance forµ = 0.130137 is very close to T08 but it
shifts away forµ = 0.104424 (see Fig. 3).

4.2 Charon’s eccentricity

Since the Jacobi-integral does not exist in the elliptic problem
therefore the phase space structure is qualitatively distinct in the
two models. In order to visualize the effect of the disappearance of
the Jacobi-integral, the circular and the elliptic cases for Nix are
plotted in Fig. 2 and for Hydra in Fig. 3 where the circular case is
shown in the upper the elliptic case in the lower panel. For Nix two
major differences comparing with the circular case are the follow-
ing: (i) the unstable zone is much larger in the elliptic case begin-
ning frome ≈ 0.17 onward and (ii ) the center of the 4:1 resonance
is shifted froma ≈ 2.544 A to a ≈ 2.564 A. The shape of the
resonance did not change significantly but the fine inner texture is
distinct. For Hydra the upper unstable zone extends too, thecen-
ter of the resonance moves closer to Pluto and its shape changes
completely. In both cases the resonance becomes stronger for low
eccentricities in the elliptic case.

Figure 2. The (a − e) stability map for Nix withµ = 0.104424. In the
upper panel the circular (e1 = 0), in the lower panel the elliptic case
(e1 = 0.0035) is displayed. Orbits emanating above the upper solid thick
black curve are unstable orbits with ME> 0.9. The plus signs correspond
to the orbital elements published by B06 and T08. Along the contour curves
ME− = 0.04.

4.3 The (a− e) stability maps

The(a− e) stability maps are shown in the lower panels of Fig. 2
for Nix and in Fig. 3 for Hydra. The orbital elements of the moons
were taken from Table 3 row T08. Each of the two figures is dom-
inated by a V-shaped gray structure, corresponding to the 4:1 and
6:1 mean motion resonances between Charon and Nix and Hydra,
respectively. These resonances can represent either ordered (stable
for infinite time), or weakly chaotic (which may become unstable
after very long time) behaviour. The location of the plus signs cor-
responds to the orbital elements published by B06 and T08. The
size of the plus sign is not proportional to the error bars of the a
ande values. The white curve is a contour line corresponding to
ME− value of 0.04 for Nix and 0.025 for Hydra.

From Fig. 2 it is clearly visible that the present position ofNix
is not in the 4:1 mean motion resonance, although it is closerthan
the position of B06. Our results are in agreement with B06 andT08
since none of these works have identified any resonant arguments
between Nix and Charon. We note that there is a sharp jump in
theME− values along the left separatrix while theME− decreases
smoothly as a function ofa as the right separatrix is approached.

Fig. 3 shows the stability map for Hydra. The V-shape 6:1
resonance is clearly visible and its lower peak is very closeto
the present position of Hydra. However, theME− values are very
small, the white contour curve indicates the region whereME− is
above 0.025. TheME− in the close vicinity of Hydra is less than
0.02 indicating that this high order resonance is very weak in the
close proximity of Hydra. Again this result confirms those ofB06
and T08.

In the next step we investigated the orbits systematically by
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Figure 3. The(a− e) stability map for Hydra withµ = 0.104424. The V-
shape structure corresponds to the 6:1 resonance. Along thecontour curves
ME− = 0.025. See explanation of Fig. 2.

changing the initial orbital elements of the test particle as described
in Section 3 (see also Table 4). In Fig. 4 the results are summarized
for the 8 values ofω. These ”maximum” stability maps were ob-
tained as follows: for each(a, e) point we plotted the maximum
selected from theME− values computed for the 8 differentω. The
white curves on the figures approximately denote the location of
the resonances as they appear on individual stability maps,like in
Figs 2 and 3.

In Fig. 4 the upper panel shows the parameter space around
Nix where the contour lines belong toME− = 0.04. In the case
of ω = 157.◦9 Nix is inside the 4:1 resonance, and between the
curves theME− values are significantly higher than for the other
values ofω. In this case the pericentrum of Nix is the same as that of
Charon. The detailed study of this configuration will be carried out
in a later work. The former B06 position is obviously outsideof the
resonance confirming the findings of B06. The location, size and
shape of the resonance strongly depends on theω of Nix. From Fig.
4 it is evident that the effect of the 4:1 resonance is not negligible
for even very small eccentricities.

In Fig. 4 the lower panel displays the parameter space around
Hydra where the contour lines belong toME− = 0.025. The
ME=0.9 curve depends approximately linearly ona, starting from
e = 0.3 at a = 3.26 A and ending ate = 0.33 at a = 3.38 A.
The 6:1 mean motion resonance is visible for allω, but it can not
be traced down belowe ≈ 0.05 for any value of the pericenter. The
resonance is the strongest forω = 67◦ in the sense that its effect
is visible for the loweste ≈ 0.05. The present position of Hydra
is closest to the resonance whenω = 22◦: if the upper limit of
the scale is reduced to 0.03 than the resonance lowest peak isjust
above the T08 plus sign. As it is obvious from Fig. 4 the 6:1 mean
motion resonance is very weak in the vicinity of the moon, no sign
of it can be observed around T08 or B06.

Theω published in T08 differs by108◦ from that of B06 in

the case of Nix, and by68◦ in the case of Hydra (see Table 3). Since
the eccentricity is small for all three moons the value ofω is hard to
establish accurately. New and more accurate orbital solution based
on data yielded by future observations of the system could result in
suchω that would place Nix in the resonance. In the case of Hydra
this is questionable since the 6:1 resonance is very weak forlow
eccentricities. The same applies to the nodes because the moons
are nearly coplanar, however the value ofΩ changed only a few
arcminutes.

We note that the switch from 2D to 3D in the case of small
inclination (i 6 0.◦1) does practically not induce any observ-
able changes in the(a − e) parameter space. Computations were
performed for zero inclination and the comparison of the stability
maps have revealed only tiny differences.

We briefly give a summary for higher inclination in the follow-
ing. Nix’s maximum stability map fori = 10◦ indicates stronger
effects of the 4:1 resonance and the expansion of the unstable zone
which starts already frome = 0.1. The resonances are wider and
closer to Pluto and to the T08 position, which is now inside more
resonance structures indicating the potential of active resonance.
Increasing thei up to20◦ further shrinks the stable domain which
ends ate ≈ 0.06. The resonance moves even closer to Pluto and
gain in power. The maximum stability maps fori = 30◦ and40◦

show that the lower border of the unstable zone stays around 0.06
and the resonance structures move closer to the barycenter.

Hydra’s maximum stability map fori = 10◦ is similar to Fig.
4: the ME=0.9 contour curve is practically the same as well asthe
resonant structures which have become slightly more prominent.
For i > 20◦ the resonant structures can be followed down to thea-
axis and like in the case of Nix they gain in power and shift closer to
Pluto: in thei = 40◦ case the T08 position is outside the resonance.
The upper limit of the stable zone ise ≈ 0.28 at i = 40◦: large
increase in the inclination did not significantly reduce thesize of
the stable domain around the moon.

For both moons the ”maximum” stability maps for the 8 values
of Ω were obtained on the analogy of Fig. 4. Fori = iN andi =
iH the results agree quite well with the ones obtained byω: each
structure on Fig. 4 has a counterpart withΩN ≈ ωN − 22◦, and
ΩH ≈ ωH − 180◦. The explanation of these simple relationships
is the following: in the limit asi → 0 the orbital plane coincides
with the reference plane and we have̟= ω + Ω, where̟ is the
longitude of the pericenter. In the case of Nix from the equation

̟ω = ̟Ω,

where̟ω = ωi + ΩN and ̟Ω = ωN + Ωi it follows that
Ωi = ωi − 21◦, wherei = 1, . . . , 8. The equation yields for Hydra
Ωi = ωi − 182◦.

As a consequence the stability map belonging toΩ = 135◦

indicates that Nix might be in the 4:1 resonance. In the case of
nearly coplanar orbits even small details are similar on both figures.
The above relationships are also true fori = 10◦ for the dominant
features but the details are already distinct. The results disagree for
higher inclination.

4.4 The (a− i) stability maps

The(a − i) stability maps are shown in Fig. 5 for Nix and in Fig.
6 for Hydra. The orbital elements of the moons were taken from
Table 3 row T08. In the case of Nix the contour line belongs to
ME− = 0.08; we note that this value is the double than those
belonging to the(a−e) maps. In accordance with Fig. 2 the results
displayed in Fig. 5 confirms that the present position of Nix is not
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Figure 4. The (a − e) stability map for 8ω values for Nix (upper) and Hydra (lower). The white curves correspond to contour lines indicating the shape
of the resonances as they would appear on individual maps fortheω displayed at the upper end of the curves. In the upper panel along the contour curves
ME− = 0.04. In the case of Hydra along the contour curvesME− = 0.025.

in the 4:1 mean motion resonance, but in a region whereME−

is very small indicating stable motion. The remarkable feature of
the resonance is a vertical, approximately 0.008 A wide and 10
degree high column ata = 2.564 A. Let us note that the shape of
the resonance is reminiscent of a bee’s abdomen with a sting.As

before there is a sharp jump in theME− values along the left side
andME− decreases smoothly towards the right separatrix.

For Hydra the top of the scale ofME− is 0.05 and the white
contour line belongs toME− = 0.017. The 6:1 mean motion res-
onance structure is observable only fori > 20◦ where the maxi-
mum ofME− is less than 0.05 indicating that the resonance is very
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8 Á. S̈uli, Zs. Zsigmond

Figure 5. The (a − i) stability map for Nix with initial conditions taken
from T08. Along the contour curvesME− = 0.08.

Figure 6. The(a − i) stability map for Hydra with initial conditions taken
from T08. Along the contour curvesME− = 0.017.

weak. In accordance with Fig. 3 Hydra is not in the 6:1 mean mo-
tion resonance. The two regions enclosed by the white curveson
the right and left side of the resonance contain values that are less
than 0.017. It is interesting that two local minima appear ati ≈ 40◦

on both sides of the resonant structure.
In Fig. 7 the maximum stability maps forΩ for both moons

are presented: the upper panel for Nix, the lower one for Hydra.
The Ω = 135◦ map shows that T08 of Nix is in the ”sting” of
the 4:1 resonance while all others are at larger semimajor axes
(Fig. 7 upper panel). In the case of Hydra there is no sign of
any active resonance in the vicinity of T08, all the observable ef-
fects are above 10 degrees. The most prominent features belong to
Ω = 180◦ 225◦ 45◦ and to0◦.

We have performed runs fore = 0 in order to estimate the
effect of the small eccentricities. It turned out that no observable
difference could be seen when comparing it with the eccentric case.

The maximum stability map for Nix with initiale = 0.1 pre-
dicts a very narrow stable zone between 0 andi 6 2◦ at the posi-
tion of T08. According to the upper panel of Fig. 4 the motion with
initial e > 0.15 is completely unstable.

The 6:1 resonance with initiale = 0.1 is stronger and the T08
position of Hydra is very close to it. The investigated domain is sta-
ble up to45◦, theME− values rise above 0.1 beyond40◦ but no
escape occurs. Interestingly the parameter space is more stable for
higher eccentricity (e = 0.2) and unstable motion occurs only for
e > 0.3, although in accordance with the lower panel of Fig. 4 or-
bits witha > 3.28 A are stable if the inclination is small(i 6 10◦).
In the case ofe = 0.4 shear instability characterize the system.

5 CONCLUSIONS

The phase space around the two small moons, Nix and Hydra of
the Pluto–Charon system was studied in detail using the framework
of the elliptic restricted three-body problem. As initial conditions
the orbital elements of T08 were used and were varied to map the
moons’ phase space. We studied the effect of increasing the mass
parameter and found out that 25% change only marginally influ-
ences the results: the most significant effect is a shift of the struc-
tures along the horizontal axis. This might be important in the cases
of resonances.

The former work of Nagy et al. (2006) used the circular prob-
lem, but present observations favor elliptic orbit of Charon (T08).
To compare the elliptic and the circular case computations were
performed in both models. Several important differences were ob-
served: (i) the unstable zone is much larger in the elliptic case, (ii )
the center of the 4:1 resonance is shifted froma ≈ 2.544 A to
a ≈ 2.564 A, although its shape did not change significantly, (iii )
the 6:1 resonance is shifted too and it has a completely different
shape and (iv) the resonances become stronger for low eccentrici-
ties in the elliptic case.

The present positions of the moons (denoted by T08 on the
figures) are in stable regions both on the(a−e) and(a− i) param-
eter spaces. On the stability maps the structures related tothe 4:1
and the 6:1 mean motion resonances are clearly visible but none of
them contains any of the moons. These results are in line withthose
of B06 and T08.

”Maximum” (a − e) stability maps were created for both
moons. The map for Nix shows the possibility of active resonance
in the case ofω = 157.◦9 orΩ = 135◦. For Hydra the ”maximum”
stability map did not show this possibility, since the 6:1 resonance
is very weak in the vicinity of the moon. It was also showd thatthe
planar and spatial cases are almost identical, when the inclinations
are very small, like those of the moons.

Analogous maps were presented for the(a − i) plane which
confirmed our previous findings. Interestingly in the case ofNix the
contour line belongs to 0.08, which is the double of that belonging
to the(a− e) maps.
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Nagy I., SüliÁ., Érdi B., 2006, MNRAS, 370, L19
Null G. W., Owen W. M., Synnott S. P., 1993, Astronomical Jour-
nal, 105, 2319

Null G. W., Owen W. M., Jr., 1996, Astronomical Journal, 111,
1368

Olkin C. B., Wasserman L. H., Franz O. G., 2003, Icarus, 164,
254

Sándor Zs.,́Erdi B., Efthymiopoulos C., 2000, Celest. Mech. &
Dyn. Astron., 78, 113
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