2,086 research outputs found

    Design method for stabilization of earth slopes with micropiles

    Get PDF
    AbstractAs one of the measures for slope fast reinforcement, micropiles are always designed as a group. In this paper, an analytic model for the ultimate resistance of micropile is proposed, based on a beam–column equation and an existing p–y curve method. As such, an iterative process to find the bending moment and shear capacity of the micropile section has been developed. The formulation for calculating the inner force and deflection of the micropile using the finite difference method is derived. Special attention is given to determine the spacing of micropiles with the aim of achieving the ultimate shear capacity of the micropile group. Thus, a new design method for micropiles for earth slope stabilization is proposed that includes details about choosing a location for the micropiles within the existing slope, selecting micropile cross section, estimating the length of the micropile, evaluating the shear capacity of the micropiles group, calculating the spacing required to provide force to stabilize the slope and the design of the concrete cap beam. The application of the method to an embankment landslide in Qinghai province, China, is described, and monitoring data indicated that slope movement had effectively ceased as a result of the slope stabilization measure, which verified the effectiveness of the design method

    Is Z^+(4430) a loosely bound molecular state?

    Full text link
    Since Z+(4430)Z^+(4430) lies very close to the threshold of DDˉ1D^\ast{\bar D}_1, we investigate whether Z+(4430)Z^+(4430) could be a loosely bound S-wave state of DDˉ1D^\ast{\bar D}_1 or DDˉ1D^\ast{\bar D}^\prime_1 with JP=0,1,2J^P=0^-, 1^-, 2^-, i.e., a molecular state arising from the one-pion-exchange potential. The potential from the crossed diagram is much larger than that from the diagonal scattering diagram. With various trial wave functions, we notice that the attraction from the one pion exchange potential alone is not strong enough to form a bound state with realistic pionic coupling constants deduced from the decay widths of D1D_1 and D1D^\prime_1.Comment: 8 pages, 4 figures, 4 tables. Typos corrected, more discussions adde

    Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles

    Get PDF
    Self-assembly of fluorescent functional materials has attracted increasing interest in the fabrication of optoelectronic and biological nanodevices. Tetraphenylethene (TPE) is a typical dye molecule with aggregation-induced-emission (AIE) characteristics. Melding TPE carrying triple-bond functionality with diazide-containing biphenyl through ''click'' chemistry generates AIE-active luminogens [1,1'-biphenyl]-4,4'-diyl bis(6-(4-(4-(1,2,2-triphenylvinyl)phenyl)-1H-1,2,3-triazol-1-yl) hexanoate) [1(5)] and[1,1'-biphenyl]-4,4'-diyl bis(11-(4-(4-(1,2,2-triphenylvinyl)phenyl)-1H-1,2,3-triazol-1-yl) undecanoate)[1(10)] with solid state efficiencies up to unity. Slow addition of dilute THF solutions of 1(m) (m ¼ 5, 10) into nonsolvents such as n-hexane and water yields self-assembled white wooly solids. TEM and SEM observations reveal the (helical) nanofibrous structure of the aggregates. Upon cooling from their concentrated hot solutions, 1(m) readily precipitate. Meanwhile, they can also form gels at high concentrations. Both precipitates and gels of 1(m) exhibit structures similar to those of the aggregates formed in nonsolvents. These results indicate that 1(m) can facilely self-assemble into high emission efficiency (helical) nanofibers, thus paving the way for their optoelectronic and biological applications

    Physics perspectives of heavy-ion collisions at very high energy

    Full text link
    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.Comment: 35 pages in Latex, 29 figure

    Characterizing Acupuncture Stimuli Using Brain Imaging with fMRI - A Systematic Review and Meta-Analysis of the Literature

    Get PDF
    Background The mechanisms of action underlying acupuncture, including acupuncture point specificity, are not well understood. In the previous decade, an increasing number of studies have applied fMRI to investigate brain response to acupuncture stimulation. Our aim was to provide a systematic overview of acupuncture fMRI research considering the following aspects: 1) differences between verum and sham acupuncture, 2) differences due to various methods of acupuncture manipulation, 3) differences between patients and healthy volunteers, 4) differences between different acupuncture points. Methodology/Principal Findings We systematically searched English, Chinese, Korean and Japanese databases for literature published from the earliest available up until September 2009, without any language restrictions. We included all studies using fMRI to investigate the effect of acupuncture on the human brain (at least one group that received needle-based acupuncture). 779 papers were identified, 149 met the inclusion criteria for the descriptive analysis, and 34 were eligible for the meta-analyses. From a descriptive perspective, multiple studies reported that acupuncture modulates activity within specific brain areas, including somatosensory cortices, limbic system, basal ganglia, brain stem, and cerebellum. Meta-analyses for verum acupuncture stimuli confirmed brain activity within many of the regions mentioned above. Differences between verum and sham acupuncture were noted in brain response in middle cingulate, while some heterogeneity was noted for other regions depending on how such meta-analyses were performed, such as sensorimotor cortices, limbic regions, and cerebellum. Conclusions Brain response to acupuncture stimuli encompasses a broad network of regions consistent with not just somatosensory, but also affective and cognitive processing. While the results were heterogeneous, from a descriptive perspective most studies suggest that acupuncture can modulate the activity within specific brain areas, and the evidence based on meta-analyses confirmed some of these results. More high quality studies with more transparent methodology are needed to improve the consistency amongst different studies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore