89 research outputs found

    A qualitative meta-synthesis of young peoples' experiences of ‘sexting’

    Get PDF
    Objective: To conduct a meta-synthesis of the qualitative research to explore young people's experiences and use of smart phones to send and receive sexually focused messages and images. Design: A qualitative meta-synthesis was conducted on the retrieved papers following a systematic search of PUBMED, Cumulative Index to Nursing and Allied Health Literature (CINAHL), COCHRANE, Embase, Medline and Psycinfo. The sample included five qualitative studies with a total sample size of 480 participants. Results: The meta-synthesis of the papers resulted in the development of four central themes: gender inequity, popularity with peers, relationship context, and costs and benefits. Conclusions: Drawing the qualitative work together highlights the manner in which ‘sexting’ is more nuanced than traditional ‘cyber-bullying’. The consensual sending of intimate images is a highly gendered activity. The gender issues require work with female students to explore the issue of ‘sexting’ and how it can be harmful. Work with male students around the issues of respect and gender harassment in relation to ‘sexting’ is also required and should contribute to sex and relationships education. The results indicate that school nurses working with young people need to build discussions about the use of technology within relationships into their work with young people

    The epidemiology of travel-related Salmonella Enteritidis in Ontario, Canada, 2010–2011

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increases in the number of salmonellosis cases due to <it>Salmonella</it> Enteritidis (SE) in 2010 and 2011 prompted a public health investigation in Ontario, Canada. In this report, we describe the current epidemiology of travel-related (TR) SE, compare demographics, symptoms and phage types (PTs) of TR and domestically-acquired (DA) cases, and estimate the odds of acquiring SE by region of the world visited.</p> <p>Methods</p> <p>All incident cases of culture confirmed SE in Ontario obtained from isolates and specimens submitted to public health laboratories were included in this study. Demographic and illness characteristics of TR and DA cases were compared. A national travel survey was used to provide estimates for the number of travellers to various destinations to approximate rates of SE in travellers. Multivariate logistic regression was used to estimate the odds of acquiring SE when travelling to various world regions.</p> <p>Results</p> <p>Overall, 51.9% of SE cases were TR during the study period. This ranged from 35.7% TR cases in the summer travel period to 65.1% TR cases in the winter travel period. Compared to DA cases, TR cases were older and were less likely to seek hospital care. For Ontario travellers, the adjusted odds of acquiring SE was the highest for the Caribbean (OR 37.29, 95% CI 17.87-77.82) when compared to Europe. Certain PTs were more commonly associated with travel (e.g., 1, 4, 5b, 7a, Atypical) than with domestic infection. Of the TR cases, 88.9% were associated with travel to the Caribbean and Mexico region, of whom 90.1% reported staying on a resort. Within this region, there were distinct associations between PTs and countries.</p> <p>Conclusions</p> <p>There is a large burden of TR illness from SE in Ontario. Accurate classification of cases by travel history is important to better understand the source of infections. The findings emphasize the need to make travellers, especially to the Caribbean, and health professionals who provide advice to travellers, aware of this risk. The findings may be generalized to other jurisdictions with travel behaviours in their residents similar to Ontario residents.</p

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    A descriptive study of reportable gastrointestinal illnesses in Ontario, Canada, from 2007 to 2009

    No full text
    Abstract Background Gastrointestinal illnesses (GI) continue to pose a substantial burden in terms of morbidity and economic impact in Canada. We describe the epidemiology of reportable GI in Ontario by characterizing the incidence of each reportable GI, as well as associated demographics, clinical outcomes, seasonality, risk settings, and likely sources of infection. Methods Reports on laboratory confirmed cases of amebiasis, botulism, campylobacteriosis, cryptosporidiosis, cyclosporiasis, giardiasis, hepatitis A, listeriosis, paratyphoid fever, salmonellosis, shigellosis, typhoid fever, illness due to verotoxin-producing Escherichia coli (VTEC-illness), and yersiniosis, from January 1, 2007 to December 31, 2009 were obtained from Ontario’s passive reportable disease surveillance system. Cases were classified by history of relevant travel, association with outbreaks, and likely source of infection, obtained through follow-up of reported cases by local health authorities. Results There were 29,897 GI reported by health authorities in Ontario from 2007 to 2009. The most frequently reported diseases were campylobacteriosis (10,916 cases or 36.5% of all GI illnesses) and salmonellosis (7,514 cases, 25.1%). Overall, 26.9% of GI cases reported travel outside of Ontario during the relevant incubation period. Children four years of age and younger had the highest incidence rate for most GI, and significantly more (54.8%, p<0.001) cases occurred among males than females. The most commonly reported sources of infections were food (54.2%), animals (19.8%), and contact with ill persons (16.9%). Private homes (45.5%) and food premises (29.7%) were the most commonly reported exposure settings. Domestic cases of campylobacteriosis, cryptosporidiosis, giardiasis, salmonellosis, and VTEC-illness showed seasonal patterns with incidence peaking in the summer months. Conclusions Reportable GI continues to be a burden in Ontario. Since more than one in four GI cases experienced in Ontario were acquired outside of the province, international travel is an important risk factor for most GI. Because private homes are the most commonly reported risk settings and the main suspect sources of infection are food, animal contact and ill persons, these findings support the continued need for public health food safety programs, public education on safe handling of food and animals, and proper hand hygiene practices
    corecore