64 research outputs found

    NFAT promotes carcinoma invasive migration through glypican-6

    Get PDF
    Invasive migration of carcinoma cells is a prerequisite for the metastatic dissemination of solid tumours. Numerous mechanisms control the ability of cancer cells to acquire a motile and invasive phenotype, and subsequently degrade and invade the basement membrane. Several genes that are up-regulated in breast carcinoma are responsible for mediating the metastatic cascade. Recent studies have revealed that the NFAT (nuclear factor of activated T-cells) is a transcription factor that is highly expressed in aggressive breast cancer cells and tissues, and mediates invasion through transcriptional induction of pro-invasion and migration genes. In the present paper we demonstrate that NFAT promotes breast carcinoma invasion through induction of GPC (glypican) 6, a cell-surface glycoprotein. NFAT transcriptionally regulates GPC6 induction in breast cancer cells and binds to three regulatory elements in the GPC6 proximal promoter. Expression of GPC6 in response to NFAT signalling promotes invasive migration, whereas GPC6 silencing with shRNA (small-hairpin RNA) potently blocks this phenotype. The mechanism by which GPC6 promotes invasive migration involves inhibition of canonical β-catenin and Wnt signalling, and up-regulation of non-canonical Wnt5A signalling leading to the activation of JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Thus GPC6 is a novel NFAT target gene in breast cancer cells that promotes invasive migration through Wnt5A signalling

    Expression of gonadotropin receptor and growth responses to key reproductive hormones in normal and malignant human ovarian surface epithelial cells

    Get PDF
    Epidemiological data have implicated reproductive hormones as probable risk factors for ovarian cancer (OCa) development. Although pituitary and sex hormones have been reported to regulate OCa cell growth, no information is available regarding whether and how they influence normal ovarian surface epithelial (OSE) cell proliferation. To fill this data gap, this study has compared cell growth responses to gonadotropins and sex steroids in primary cultures of human OSE (HOSE) cells with those observed in immortalized, nontumorigenic HOSE cells and in OCa cell lines. Both malignant and normal cell lines/cultures responded equally well to the stimulatory actions of luteinizing hormone and follicle-stimulating hormone and to 17beta-estradiol and estrone, although the latter estrogen has a much lower affinity for estrogen receptor than does the former estrogen. In normal HOSE cell cultures/lines, 5alpha-dihydrotestosterone was found to be more effective than testosterone in stimulating cell growth, but in OCa cell lines, 5alpha-dihydrotestosterone and testosterone are equally potent. One OCa cell line, OVCA 433, was found to be nonresponsive to androgen stimulation. In general, primary cultures of normal HOSE cells exhibited the greatest hormone-stimulated growth responses (\u3e10-fold enhancement), followed by immortalized HOSE cell lines (4-5-fold enhancement) and by OCa cell lines (2-4-fold enhancement). Interestingly, progesterone (P4), at low concentrations (10(-11) to 10(-10) M), was stimulatory to HOSE and OCa cell growth, but at high doses (10(-8) to 10(-6) M), P4 exerted marked inhibitory effects. In all cases, cotreatment of a cell culture/line with a hormone and its specific antagonist blocked the effect of the hormone, confirming specificity of the hormonal action. Taken together, these data support the hypothesis that reproductive states associated with rising levels of gonadotropins, estrogen, and/or androgen promote cell proliferation in the normal OSE, which favors neoplastic transformation. Conversely, those states attended by high levels of circulating P4, such as that seen during pregnancy, induce OSE cell loss and offer protection against ovarian carcinogenesis

    Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.

    Get PDF
    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV

    Studies of jet quenching using isolated-photon + jet correlations in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    Results from the first study of isolated-photon + jet correlations in relativistic heavy ion collisions are reported. The analysis uses data from PbPb collisions at a centre-of-mass energy of 2.76 TeV per nucleon pair corresponding to an integrated luminosity of 150 inverse microbarns recorded by the CMS experiment at the LHC. For events containing an isolated photon with transverse momentum pt(gamma) > 60 GeV and an associated jet with pt(Jet) > 30 GeV, the photon + jet pt imbalance is studied as a function of collision centrality and compared to pp data and PYTHIA calculations at the same collision energy. Using the pt(gamma) of the isolated photon as an estimate of the momentum of the associated parton at production, this measurement allows an unbiased characterisation of the in-medium parton energy loss. For more central PbPb collisions, a significant decrease in the ratio pt(Jet)/pt(gamma) relative to that in the PYTHIA reference is observed. Furthermore, significantly more pt(gamma) > 60 GeV photons in PbPb are observed not to have an associated pt(Jet) > 30 GeV jet, compared to the reference. However, no significant broadening of the photon + jet azimuthal correlation is observed.Comment: Submitted to Physics Letters

    Measurement of the inclusive jet cross section in pp collisions at √s = 7TeV

    Get PDF
    This is the pre-print version of the Published Article which can be accessed from the link below.The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34  pb-1. The measurement is made for jet transverse momenta in the range 18–1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions

    Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis.

    Get PDF
    Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis

    Measurement of the inclusive jet cross section in pp collisions at √s=7TeV

    Get PDF
    Abstract The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb(-1). The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet p(T) ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p &lt; 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p &gt; 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification
    corecore