28 research outputs found

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Gas-phase spectroscopy of photostable PAH ions from the mid- to far-infrared

    Get PDF
    International audienceWe present gas-phase InfraRed Multiple Photon Dissociation (IRMPD) spectroscopy of cationic phenanthrene, pyrene, and perylene over the 100-1700 cm-1 (6-95 μm) spectral range. This range covers both local vibrational modes involving C-C and C-H bonds in the mid-IR, and large-amplitude skeletal modes in the far-IR. The experiments were done using the 7T Fourier-Transform Ion Cyclotron Resonance (FTICR) mass spectrometer integrated in the Free-Electron Laser for Intra-Cavity Experiments (FELICE), and findings were complemented with Density Functional Theory (DFT) calculated harmonic and anharmonic spectra, matching the experimental spectra well. The experimental configuration that enables this sensitive spectroscopy of the strongly bound, photoresistant Polycyclic Aromatic Hydrocarbons (PAHs) over a wide range can provide such high photon densities that even combination modes with calculated intensities as low as 0.01 km mol-1 near 400 cm-1 (25 μm) can be detected. Experimental frequencies from this work and all currently available IRMPD spectra for PAH cations were compared to theoretical frequencies from the NASA Ames PAH IR Spectroscopic Database to verify predicted trends for far-IR vibrational modes depending on PAH shape and size, and only a relatively small redshift (6-11 cm-1) was found between experiment and theory. The absence of spectral congestion and the drastic reduction in bandwidth with respect to the mid-IR make the far-IR fingerprints viable candidates for theoretical benchmarking, which can aid in the search for individual large PAHs in the interstellar medium

    Photolysis-induced scrambling of PAHs as a mechanism for deuterium storage

    Get PDF
    Aims. We investigate the possible role of polycyclic aromatic hydrocarbons (PAHs) as a sink for deuterium in the interstellar medium (ISM) and study UV photolysis as a potential underlying chemical process in the variations of the deuterium fractionation in the ISM. Methods. The UV photo-induced fragmentation of various isotopologs of deuterium-enriched, protonated anthracene and phenanthrene ions (both C14H10 isomers) was recorded in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Infrared multiple photon dissociation spectroscopy using the Free-Electron Laser for Infrared eXperiments was applied to provide IR spectra. Infrared spectra calculated using density functional theory were compared to the experimental data to identify the isomers present in the experiment. Transition-state energies and reaction rates were also calculated and related to the experimentally observed fragmentation product abundances. Results. The photofragmentation mass spectra for both UV and IRMPD photolysis only show the loss of atomic hydrogen from [D − C14H10]+, whereas [H − C14D10]+ shows a strong preference for the elimination of deuterium. Transition state calculations reveal facile 1,2-H and -D shift reactions, with associated energy barriers lower than the energy supplied by the photo-excitation process. Together with confirmation of the ground-state structures via the IR spectra, we determined that the photolytic processes of the two different PAHs are largely governed by scrambling where the H and the D atoms relocate between different peripheral C atoms. The ∼0.1 eV difference in zero-point energy between C–H and C–D bonds ultimately leads to faster H scrambling than D scrambling, and increased H atom loss compared to D atom loss. Conclusions. We conclude that scrambling is common in PAH cations under UV radiation. Upon photoexcitation of deuterium-enriched PAHs, the scrambling results in a higher probability for the aliphatic D atom to migrate to a strongly bound aromatic site, protecting it from elimination. We speculate that this could lead to increased deuteration as a PAH moves towards more exposed interstellar environments. Also, large, compact PAHs with an aliphatic C–HD group on solo sites might be responsible for the majority of aliphatic C–D stretching bands seen in astronomical spectra. An accurate photochemical model of PAHs that considers deuterium scrambling is needed to study this further

    Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010:a systematic analysis for the Global Burden of Disease Study 2010

    No full text
    BACKGROUND: Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs).METHODS: Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis.FINDINGS: Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350,000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient -0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa.INTERPRETATION: Rates of YLDs per 100,000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world.FUNDING: Bill &amp; Melinda Gates Foundation.</p

    Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder

    Get PDF
    Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk

    A polygenic resilience score moderates the genetic risk for schizophrenia.

    Get PDF
    Based on the discovery by the Resilience Project (Chen R. et al. Nat Biotechnol 34:531-538, 2016) of rare variants that confer resistance to Mendelian disease, and protective alleles for some complex diseases, we posited the existence of genetic variants that promote resilience to highly heritable polygenic disorders1,0 such as schizophrenia. Resilience has been traditionally viewed as a psychological construct, although our use of the term resilience refers to a different construct that directly relates to the Resilience Project, namely: heritable variation that promotes resistance to disease by reducing the penetrance of risk loci, wherein resilience and risk loci operate orthogonal to one another. In this study, we established a procedure to identify unaffected individuals with relatively high polygenic risk for schizophrenia, and contrasted them with risk-matched schizophrenia cases to generate the first known "polygenic resilience score" that represents the additive contributions to SZ resistance by variants that are distinct from risk loci. The resilience score was derived from data compiled by the Psychiatric Genomics Consortium, and replicated in three independent samples. This work establishes a generalizable framework for finding resilience variants for any complex, heritable disorder
    corecore