115 research outputs found

    Reporting of covariate selection and balance assessment in propensity score analysis is suboptimal: a systematic review

    Get PDF
    Abstract Objectives: To assess the current practice of propensity score (PS) analysis in the medical literature, particularly the assessment and reporting of balance on confounders. Study Design and Setting: A PubMed search identified studies using PS methods from December 2011 through May 2012. For each article included in the review, information was extracted on important aspects of the PS such as the type of PS method used, variable selection for PS model, and assessment of balance. Results: Among 296 articles that were included in the review, variable selection for PS model was explicitly reported in 102 studies (34.4%). Covariate balance was checked and reported in 177 studies (59.8%). P-values were the most commonly used statistical tools to report balance (125 of 177, 70.6%). The standardized difference and graphical displays were reported in 45 (25.4%) and 11 (6.2%) articles, respectively. Matching on the PS was the most commonly used approach to control for confounding (68.9%), followed by PS adjustment (20.9%), PS stratification (13.9%), and inverse probability of treatment weighting (IPTW, 7.1%). Balance was more often checked in articles using PS matching and IPTW, 70.6% and 71.4%, respectively. Conclusion: The execution and reporting of covariate selection and assessment of balance is far from optimal. Recommendations on reporting of PS analysis are provided to allow better appraisal of the validity of PS-based studies.

    Superconductivity in Ce- and U-based "122" heavy-fermion compounds

    Full text link
    This review discusses the heavy-fermion superconductivity in Ce- and U-based compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure. Special attention will be paid to the theoretical background of these systems which are located close to a magnetic instability.Comment: 12 pages, 9 figures. Invited topical review (special issue on "Recent Developments in Superconductivity") Metadata and references update

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10210^{-2}\,M_\odotc2^2 at 150\sim 150\,Hz with 60\sim 60\,ms duration, and high-energy neutrino emission of 105110^{51}\,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×1021.6 \times 10^{-2}\,Mpc3^{-3}yr1^{-1}. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era

    Non-Fermi Liquid Regimes and Superconductivity in the Low Temperature Phase Diagrams of Strongly Correlated d- and f-Electron Materials

    Full text link
    corecore