
Volume 11 (2&3) 1998, pp. 273 { 297

A Language for Modular Information-passing Agents

Rogier M. van Eijk, Frank S. de Boer, Wiebe van der Hoek, John-Jules Ch. Meyer

Universiteit Utrecht, Department of Computer Science

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

e-mail: frogier, frankb, wiebe, jjg@cs.uu.nl

For multi-agent systems, as for any complex system, a thorough theoretical

foundation is indispensable. Hence, agent-oriented languages used for descrip-

tions and implementations of multi-agent systems should be logically grounded

and accompanied with a clear semantics. As a hopefully fruitful starting point

towards such semantically well-founded languages, we propose a language of

Modular Information-passing Agents. This language is designed for systems of

agents inhabiting an environment on which they have a limited view or expertise,

and hence in order to increase their knowledge, communicate on each other's

expertises. We consider the syntax of the language and subsequently develop a

structural operational semantics via a transition system.

1. Introduction

In this paper we attempt to bridge the gap between the extensive research

on concurrent programming paradigms and the research on multi-agent sys-

tems. In our development of a system of Modular Information-passing Agents,

being a stripped version of a multi-agent system, we try to incorporate as

many useful concepts from existing concurrent programming languages like

Concurrent Constraint Programming (CCP) [18], Communicating Sequential

Processes (CSP) [11] and Algebra of Communicating Processes (ACP) [1] as

possible. Whenever necessary we adapt them according to our purposes. We

emphasize that our method contrasts with most of the current approaches, as

we aim to develop a theoretically well-founded algebraic description of multi-

agent systems. One of the advantages of such an approach is that it allows

agent-oriented programs having a clear syntactical structure. Moreover, the

meaning of a complex program can be understood by combining the meanings

of its constituents. In this way a methodology for the top-down design of agent-

oriented programs is obtained together with a mechanism for the speci�cation

and veri�cation of these programs.

273

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301662669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multi-agent systems.

We view multi-agent systems [21] as systems composed of several interacting

agents inhabiting an external environment. These agents are autonomous enti-

ties that are able to observe the world they inhabit and are capable of estab-

lishing changes in it. An additional interaction mechanism is provided by their

ability to communicate with each other. The agents may be assigned mentalis-

tic notions, such as knowledge, belief, desire and intention, which together with

their reasoning processes direct their initiative-taking behaviour. In this paper

however, we restrict ourselves to the mental attitude knowledge on the external

environment , leaving the explication of other attitudes for future re�nements

of the framework.

Concurrent programming languages.

Many concurrent programming languages agree upon the incorporation of the

general programming constructions of sequential composition, parallel compo-

sition, non-deterministic choice and recursion. Most of them also allow the

introduction of local variables and mechanisms to rename variables.

We next discuss the distinguishing features of some concurrent program-

ming languages we will base our framework on. First, CCP is regarded as a

generalization of most of the concurrent logical languages. In this paradigm,

several concurrently operating processes interact with each other via a shared

store. This store is seen as a constraint on the range of values that variables can

take, rather than as an explicit assignment of values to them. The processes

build the store by supplying it with new constraints. These constraints may

subsequently be inspected by the other processes, yielding a synchronization

mechanism; the execution of a process checking for a constraint in the store is

blocked until the constraint is eventually implied by the store. The paradigm

assumes an underlying constraint system covering an entailment relation on

constraints, an operation ^ to combine constraints and an operator 9 to hide

variables in constraints.

In contrast, CSP does not cover shared variables. Processes in this frame-

work interact and synchronize by means of the transport of values along inter-

connecting channels. In (the synchronous version of) CSP, a sending process

trying to emit a value, which is implied by its local state, and a receiving

process trying to assign this value to one of its variables, have to agree upon

the moment of communication. Until this moment their execution is blocked.

The paradigm can be extended with a functionality from ACP allowing the

introduction of encapsulated channels; channels that are local and can only

be accessed by some processes. In this paper, we will attempt to integrate the

concepts described above in a system of Modular Information-passing Agents.

Modular Information-passing Agents.

The framework of MI-Agents assumes a constraint system consisting of an

entailment relation and a constraint language to express facts about the ex-

274

ternal world. These facts are gathered in a global store of constraints, called

the workspace. We stress that this store is the representation of the external

world; it is used for observations in the world as well as for establishments

of new facts in it. In this paper we restrict ourselves to a workspace show-

ing monotonic-increasing behaviour, thereby avoiding the problems of belief

revision [7]. An extension of the framework in which the workspace no longer

evolves in a monotonic-increasing fashion and where the agents in the system

use belief revision techniques, is studied in [5].

The framework incorporates agent systems that maintain the workspace.

These agent systems are compound; they are composed of smaller agent sys-

tems. The smallest systems are constituted by the basic agents, which are

assigned a programming statement expressing their behaviour. Such a system

may be viewed of as consisting of a team of experts that share a common view,

or expertise. This view constitutes the interaction mechanism among the team

members, as the members may inspect and extend it. In this paper, for the sake

of clarity, we model views as windows of constraints on a collection of accessible

variables. Thereby we abstract from more elaborate formalizations of views like

signatures (languages). The interaction mechanism between teams is provided

by the transport of information on expertises along interconnecting channels.

The basic agents are assigned a communication base to store such information,

which together with their own expertises constitute their knowledge bases.

The proposed framework incorporates many design features relating to the

object-oriented paradigm. The agent systems are hierarchical as they are speci-

�ed in terms of their components. The language allows the encapsulation of in-

terconnecting channels as well as the encapsulation of data (local variables and

expertises). Additionally, programming statements and communication stores

assigned to agents are private to them. Finally, agents are designed in a modu-

lar fashion; a renaming paradigm can be used to de�ne the interface with the

workspace and the other agents.

The framework in perspective.
Before we examine the framework of MI-Agents in greater detail, we will try to

situate its position. We imagine a wide spectrum of agent-oriented languages;

at one end of the spectrum languages like AGENT-0 [19] reside, which are im-

plemented programming languages that however su�er from the lack of both a

�rm logical foundation and a clear semantics. At the other end, speci�cation

languages for instance based on modal logics [14] or on the situation calculus

[13] are located, which however cannot straightforwardly be implemented. As

the development of agent-oriented languages that bridge the gap between these

two extremes constitutes one of the current challenges, several alternative lan-

guages have been proposed. The development of the language CONGOLOG

[13], which objective is the design of an executable version of an agent-oriented

speci�cation language, represents one way of decreasing the discrepancy. Al-

ternative approaches to bridge the gap are those that start with a general,

275

well-understood and implemented programming language and aim to accom-

modate it to suit descriptions of multi-agent systems. The language Concurrent

MetateM [20], the language described in [2], as well as our language of Modu-

lar Information-passing Agents serve as examples of the latter. The former two

of these treatments are based on executable temporal logic and higher order

logic, respectively, whereas our framework is underpinned by existing, well-

understood concurrent programming languages. We thereby shift the stress on

aspects of agent-oriented languages like concurrency, communication, synchro-

nization and modularity. Moreover, in contrast to current more or less ad hoc

approaches, we deal with these aspects in a theoretically well-founded algebraic

manner.

The rest of the paper is organized as follows. In section 2 we embark on

a description of the syntax of the language. The dynamics of the system is

developed in section 3 which deals with transitions and semantics. We sub-

sequently elaborate an example in section 4. In section 5 we identify several

topics that need a closer examination and �nish the treatment by discussing

related research in section 6.

2. Syntax
In our framework, as in CCP, information systems are given by systems of

constraints.

Definition 1. (The constraint system)

We assume a collection of constraints, which are represented in a �rst-order

language L covering constructs built from variables typically denoted as x; y; z,

functions typically written as f; g and predicates typically denoted as p. The

constraint system comprises an information ordering `, which is decided by a

constraint solver. Additionally, to describe the semantics of the programming

language, the system explicates an operation 9x to hide information and an

operation ^ describing the accumulation of information (which mathematically

corresponds to the least upper bound with respect to `).

For instance, the �rst-order atoms true, x = 7 and y = x, the composition

x = 7 ^ y = x as well as 9x(x = 7 ^ y = x) are constraints. The latter can

be considered equivalent to the constraint y = 7; that is, 9x(x = 7 ^ y = x) `

y = 7 and y = 7 ` 9x(x = 7 ^ y = x). We assume the familiar notions of

free and bound occurrences of variables in constraints. Vectors of variables are

sequences typically given by x or when consisting of a single variable simply

by x. If x denotes the vector x1; : : : ; xn and y denotes y1; : : : ; yn then the

operation 9x abbreviates 9x1 � � � 9xn and additionally, x = y is a shorthand

for x1 = y1 ^ � � � ^ xn = yn. Finally, the set Chan is a set of channel names

typically represented as c.

The formulation of the syntax of agent systems in our framework will be

preceded by several additional de�nitions.

276

Definition 2. (Workspaces, communication bases and windows)

A workspace � and a communication base B are simply constraints in L. Let

Var(�) be the vector of all variables occurring in �. A window on a workspace

� with respect to the variables x, is de�ned as

window (�;x) =def 9y� where y equals Var(�) n x:

That is, a window on the workspace consists of the constraints on the variables

x ; the constraints on all other variables are hidden.

Definition 3. (Syntax of atomic actions a)

Let ' 2 L and c 2 Chan . Atomic actions a are de�ned as

a ::= est(') j verify(') j send(c; ') j receive(c; ')

The language covers four atomic actions. The action est(') establishes the

constraint ' in the workspace. The execution of verify(') succeeds if the con-

straint ' can be veri�ed. Finally, the actions send(c; ') and receive(c; ') denote

the emittance of the constraint ' along the channel c, and the reception of

some constraint along the channel c yielding the constraint ' to be known,

respectively.

Definition 4. (Syntax of programming statements S)

Let x; y 2 Var and let I be a �nite, non-empty set of indices.

S ::= S & S j
P

i2I ai:Si j loc
x
S j renyxS j P (x) j skip

The statement S1 & S2 denotes the parallel composition of the statements

S1 and S2. The statement
P

i2I ai:Si stands for the non-deterministic choice

between the statements Si, which each are pre�xed by an atomic action ai.

A non-deterministic choice with a singleton index set may be denoted by its

single operand. The statement loc
x
S identi�es the variables x to be local in S.

The statement renyxS expresses the variables y to be renamed to x in S. The

statement P (x) denotes a call to the procedure P (y), where the vectors x and y

stand for the actual and the formal parameters of the procedure, respectively

(the framework incorporates a call-by-name parameter-passing mechanism).

We assume a set W of (recursive) procedure declarations of the form P (y) :: S

where S is a statement. Finally, the statement skip always succeeds and has no

e�ects; the construct
P

i2I ai:skip may be abbreviated to
P

i2I ai.

Definition 5. (Syntax of agent systems A) Let B 2 L and c 2 Chan .

A ::= (S;B) j A+A j A ; A j A k A j �c(A)

In our framework, basic agent systems, or teams, are given by their activities S,

together with a collection B representing the information obtained from com-

munication with other teams. We implicitly assume each basic agent is assigned

277

an expertise, which is modeled as a vector of accessible global variables x con-

stituting its window on the workspace. We require that whenever S contains

the action est('), the free variables occurring in ' are either local variables,

or accessible global variables x, or are renamed versions of these local and

global variables. This requirement corresponds to the idea that agents are not

allowed to establish facts about variables other than their local variables and

the global variables from their window. Complex agent systems are built from

simpler ones by means of non-deterministic choice, denoted as +, sequential

composition, represented as ; and parallel composition, which is denoted as k.

The execution of the agent system A1 + A2 consists of the execution of either

A1 or A2. The execution of A1 ; A2 is the execution of A1 followed by that of

A2. The execution of A1 k A2 is modeled as an interleaving of the executions

of A1 and A2. The encapsulation operator �c when applied to the agent system

A, de�nes the channel c to be local in A.

3. Transitions and operational semantics

Computation steps of agent systems are represented by transitions [16], which

take systems from one con�guration to subsequent ones. A con�guration of an

agent system A in a workspace � is denoted as hA; �i. A transition is of the

form

hA; �i
�

�!hA0; �0i:

It indicates that the agent system A in a workspace � performs a computation

step resulting in an agent system A0 (i.e. the part of A still to be executed) in a

workspace �0. The label � in the transition expresses whether the computation

step involves some communication of information among the agents in the

system, and if this is the case, additionally identi�es the type of communication.

Labels that denote such information-passing are of the form c ! ' or c ? ', where

the symbols ! and ? stand for the emittance and the reception of information,

respectively, ' denotes the constraint to be communicated and c is the channel

it is to be transported along. The alternative label occurring in transitions is the

label � from CCS [15] representing internal, non-communicative computation

steps. As agent systems are de�ned inductively, their transitions are de�ned in

terms of the transitions of their components. For example, the transitions of

the agent system A1 ; A2 are de�ned in terms of those of the agent systems

A1 and A2. The agent system performs the computation steps A1 performs,

and upon termination of A1, the steps A2 performs. In general, we describe the

inference of transitions of agent systems by inference rules, which are of the

form

hA1; �i
�1
�!hA01; �

0i : : : hAn; �i
�n
�!hA0n; �

0i

hA; �i
�

�!hA0; �0i

.

This rule states that the transition below the line can be concluded from

the transitions above it. Rules with no premises are called axioms, written

278

as hA; �i
�

�!hA0; �0i. A collection of transition rules and axioms constitutes a

transition system, which is a formal system for deriving transitions.

Definition 6. (Transitions for atomic actions)

As mentioned before, we assume each basic agent is assigned a vector x of

accessible global variables. Let K(�;x; B) be the knowledge base de�ned by

window (�;x)^B and let E be the standard symbol denoting successful termi-

nation. The transition system contains the following transitions concerning the

atomic actions.

{ The establishment of a constraint is de�ned to be its addition to the

workspace.

h(est('); B); �i
�

�!h(E;B); � ^ 'i

{ The veri�cation of a constraint succeeds if it is implied by the knowledge

base.

h(verify('); B); �i
�

�!h(E;B); �i if K(�;x; B) ` '

{ The emittance of a constraint along a channel is de�ned for those con-

straints that are implied by the knowledge base.

h(send(c; '); B); �i
c ! '

�! h(E;B); �i if K(�;x; B) ` '

{ The reception of a constraint ' relative to the constraint along a channel,

succeeds for those constraints ' of which addition to the knowledge base

yields a base from which is derivable.

h(receive(c;); B); �i
c ? '

�! h(E;B ^ '); �i if (K(�;x; B) ^ ') `

Informally, an establishment of a constraint corresponds to the idea that this

constraint is brought about. The actions for emittance and reception denote

intentions to communicate. They are not executed until in a parallel context,

there is an agent with a matching intention. The statement receive(c;) indi-

cates that the agent is willing to accept any information along the communica-

tion channel c from which it is able to conclude . We remark that this action

integrates two alternative communication primitives. One is the uncontrolled

reception of simply any constraint provided along the channel c, which can be

mimicked by receive(c; true). In the other, the receiver stores the conclusion

it wants to draw from the information provided along the channel, thereby ig-

noring any stronger information possibly included. The transition for the latter

action is given by

h(receive only(c;); B); �i
c ? '

�! h(E;B ^); �i if (K(�;x; B) ^ ') ` :

Hence, the action receive(c;) represents the trade-o� between the storage of

just anything provided by the sender, and the storage of only a speci�c conclu-

sion drawn from the information received; it accepts any information provided

that the conclusion can be drawn from it.

279

Example 7. (Information Retrieval)

Information Retrieval techniques [12] aim to support, in very large collections

of data, the search for documents that satisfy some relevance criteria. One of

the criteria is called aboutness, which is used to evaluate documents on their

bearing on some particular piece of information. This example illustrates how

the primitive actions from our framework can be used by agents assisting in

an information retrieval process. We consider an information retrieval system

containing a collection of documents distributed over several sites. Each site

is assigned a group of agents, whose windows consist of information on the

documents they can access, which are a sub-collection of all the documents lo-

cated at the site. The agents use the primitives est('), verify('), send(c; ') and

receive(c; ') in gathering information concerning the aboutness of documents.

First of all, if at a particular site an agent has ascertained by some decision

procedure that the document x is about p, where x is one of the agent's acces-

sible documents, it performs est(about(x; p)) to exhibit its establishment in the

workspace. Subsequently, this constraint may be inspected by all agents oper-

ating at this site that have the document x in their view; an agent performs

verify(about(x; p)) to check whether the constraint about(x; p) has already been

established (by the agent itself or some other agent having access to x). This

action is also used in case the document x is outside the agent's expertise, as

the agent may already have gathered relevant information in its communication

base. Alternatively, the agent may choose to communicate with other agents.

By performing receive(c; about(x; p)) it indicates that it accepts any constraint

along the channel c from which it is able to derive about(x; p). Such agent

may for instance communicate with another agent, possibly located at another

site that performs send(c; about(x; p)). Successful communication requires this

sending agent to have about(x; p) in its knowledge base.

Definition 8. (Inference rule for non-deterministic choice between

prefixed statements)

h(aj ; B); �i
�

�!h(E;B0); �0i

h((
P

i2Iai:Si); B); �i
�

�!h(Sj ; B0); �0i where j 2 I

The transition of a non-deterministic choice between pre�xed statements is

given by a transition of one of these statements. The �rst computation step

of a pre�xed statement equals the transition of its pre�x. Hence, from the

transition of one of the pre�xes aj , which is labeled by � and which changes the

communication store B to B0 and the workspace � to �0, we infer a transition of

the non-deterministic choice
P

i2Iai:Si, which propagates the label � together

with the communication store and workspace changes. It additionally identi�es

the statement Sj as the part that remains to be executed.

280

Definition 9. (Inference rule for internal parallelism)

h(S1; B); �i
�

�!h(S01; B
0); �0i

h(S1 & S2; B); �i
�

�!h(S01 & S2; B0); �0i

h(S2 & S1; B); �i
�

�!h(S2 & S01; B
0); �0i

An inference rule with several conclusions above each other, is used to ab-

breviate a collection of rules, each having one of them as its conclusion. The

execution of a parallel statement S1 & S2 is modeled as an interleaving of the

computation steps of S1 and S2. The statement S1 & S2 performs a computa-

tion step if one of the statements S1 and S2 executes one. Therefore, from a

transition of S1 we can infer a transition of S1 & S2 in which S1 acts as the

left operand, or a transition of S2 & S1 in which it is the right operand. We

de�ne S & E and E & S to be equal to S.

To constitute a computational model the framework allows the introduction

of local variables. As in CCP, to describe its transition, we extend the syntax

with a construct loc�
y
S that expresses the variables y to be local in S and � the

store of constraints on it. In this representation, the statement loc
y
S is de�ned

as loctrue
y

S. The corresponding transition rule is analogous to the one in CCP

except that it also covers the communication of constraints along channels.

Definition 10. (Inference rule for local variables)

h(S;B1); �1i
�

�!h(S0; B2); �
0i

h(loc�
y
S;B); �i

�0

�!h(loc�
0

y
S0; B0); �0i

where B1 = 9yB; �1 = �^9y�; B0 = B ^9yB2; �
0 = �^9y�0 and �0 equals

� except that in case of communication its constraint ' is replaced by 9y'.

The transition of h(loc�
y
S;B); �i is derived from a transition involving the state-

ment S. As in loc�
y
S the variables y are regarded local, and both the communi-

cation base B and the workspace � contain constraints on the global variables

y, these global constraints should be overwritten by the local ones. This yields a

workspace �1. The communication base does not contain local constraints and

is simply given by B1. Additionally, it is implicitly assumed that the window is

expanded with y, as agents are allowed to verify and establish constraints on

their local variables. After one computation step S0 denotes the part of S that

remains to be executed and B2 and �
0 denote the new communication base and

workspace, respectively. The workspace �0 contains two types of constraints:

constraints on the local variables y and constraints on all the other variables.

The latter constraints are reected in the workspace visible outside the scope

of the statement, by the addition of 9y�0 to the information � preserved under

the computation step. The former ones are (although together with the other

constraints) stored as �0 in the construct loc�
0

y
S0. The visible change of the

communication base is reected by the addition of 9yB2 to the information B

281

preserved under the computation. Additionally, the label � is adapted by the

hiding of local constraints, yielding �0. We de�ne loc�
y
E to be equal to E. To

illustrate the rule we consider an example.

Example 11. (Transition involving local variables)

h(send(c; y = 0); true); y = z ^ z = 0i
c ! y = 0

�! h(E; true); y = z ^ z = 0i

h(locy=z
y send(c; y = 0); true); z = 0i

c ! true
�! h(E; true); z = 0i

We remark that in this transition rule, whenever possible, we replaced con-

straints by simpler, logically equivalent ones. The example shows that the in-

tention to send the local constraint y = 0 actually corresponds to the intention

to send true. The example additionally indicates that in contrast to CCP, there

is need for a special renaming paradigm. In CCP, the renaming of a variable

z to y in S, can be simulated by the construction of locy=z
y S. In our system

however, such simulation does not take communication into account. The in-

tention to send the local constraint y = 0 when y is a renamed version of z

should actually correspond to the intention to send z = 0 and not like in the

example, to the intention to send true. Hence, communication along channels

in our framework gives rise, in addition to a construct for local variables, to

the introduction of a separate renaming operator, as shown by example 11 and

example 14 given below.

Renaming of variables allows the design of modular statements; in renzyS

the variables which are outside known as z, are referred to as y. Before we

give the transition rule concerning renaming, we de�ne what we mean by a

simultaneous substitution.

Definition 12. We de�ne the simultaneous substitution of x to y in ' by

'[y=x] =def 9d(9x(' ^ x = d) ^ d = y)

where d are fresh variables not occurring in ' and distinct from x and y.

The variables d are introduced in order to avoid problems related to name

clashes between x and y. Employing the de�nition above we for instance derive

that (x = 0)[x=x] equals 9d(9x(x = 0 ^ x = d) ^ d = x), which is logically

equivalent to 9d(d = 0 ^ d = x), and which subsequently equals x = 0.

Definition 13. (Inference rule for the renaming of variables)

h(S;B1); �1i
�

�!h(S0; B2); �2i

h(renzyS;B); �i
�0

�!h(renzyS0; B0); �0i

where B1 = (9yB)[y=z], �1 = (9y�)[y=z], B0 = B^B2[z=y], �
0 = �^�2[z=y]

and �0 equals � except that in case of communication its constraint ' is replaced

by '[z=y].

282

Like for local variables, the transition of h(renzyS;B); �i is derived from a

transition involving S. In the statement S the variables z are known as y,

which implies that the global variables y are inaccessible. Hence, the constraints

on the global variables y can be removed from the communication base and

workspace. Additionally, the constraints on the variables z can be represented

as constraints on y, yielding B1 and �1. After one computation step, S0 rep-

resents the part of S that remains to be executed, B2 and �2 denote the new

communication base and workspace, respectively. The e�ects visible outside,

are reected by the addition of B2[z=y] and �2[z=y], in which the constraints

on y are represented as constraints on z, to B and �, respectively. The con-

straints in the label � are adapted accordingly, yielding �0. We put renzyE to

be equal to E.

Example 14. (Transition involving the renaming of variables)

h(send(c; y = 0); true); y = 0i
c ! y = 0

�! h(E; true); y = 0i

h(renzysend(c; y = 0); true); z = 0i
c ! z = 0
�! h(E; true); z = 0i

The example shows that the intention to send y = 0, where y is a renamed

version of z, actually corresponds to the intention to send z = 0.

Definition 15. (Axiom for procedure calls)

h(P (z); B); �i
�

�!h(renzyS;B); �i where P (y) :: S 2 W

The transition of a procedure call is an axiom of the transition system. The

computation step of the call P (z) is de�ned to be the replacement of the name

of the procedure by its body S, in which the actual parameters are renamed to

the formal ones. The workspace and the communication store are left intact.

Definition 16. (Axiom for skip)

h(skip; B); �i
�

�!h(E;B); �i

The execution of the statement skip always succeeds and leaves the communi-

cation base and workspace intact.

Next, we de�ne transitions of compound agent systems.

Definition 17. (Inference rules for the parallel, non-deterministic and se-

quential composition of agent systems)

hA1; �i
�

�!hA01; �
0i

hA1 k A2; �i
�

�!hA01 k A2; �0i

hA2 k A1; �i
�

�!hA2 k A
0
1; �

0i

283

hA1; �i
�

�!hA01; �
0i

hA1 +A2; �i
�

�!hA01; �
0i

hA2 +A1; �i
�

�!hA01; �
0i

hA1; �i
�

�!hA01; �
0i

hA1 ; A2; �i
�

�!hA01 ; A2; �0i

We additionally de�ne successfully terminated basic agents (E;B) to be equal

to E. The agent systems E ; A, A k E and E k A are all de�ned to be equal

to A. The execution of the parallel composition A1 k A2 of two agent systems

coincides with that of the parallel composition S1 & S2 of two statements;

it is modeled as the interleaving of the execution steps of its components.

The computation steps the non-deterministic composition of two agent systems

takes, are exactly the computation steps of one of the agent systems involved.

The transitions of the sequential composition of two agent systems A1 and A2

are the computation steps of A1 followed by those of A2.

Definition 18. (Inference rule for communication)

hA1; �i
c ? '

�! hA01; �i hA2; �i
c ! '
�!hA02; �i

hA1 k A2; �i
�

�!hA01 k A
0
2; �i

hA2 k A1; �i
�

�!hA02 k A
0
1; �i

In case an agent in the agent system A1 and an agent in the agent system A2

want to communicate by means of the transport of the constraint ' along the

channel c, the transition of A1 k A2 can be inferred from both the transitions

of A1 and A2. We note that the workspace thereby is left intact. Our choice

in favour of synchronous communication is not essential. With respect to the

asynchronous variant, it however frees us from the necessity of bu�ering emitted

constraints.

Definition 19. (Inference rule for encapsulation)

hA; �i
�

�!hA0; �0i

h�c(A); �i
�

�!h�c(A0); �0i if � does not involve the channel c

The encapsulation of channels restricts the propagation of communicative labels

in inference rules. The operator �c when applied to the agent system A prohibits

an agent residing inside A to communicate along the channel c with an agent

that is located outside A. Hence, it de�nes c to be a local channel in the agent

system A. We de�ne �c(E) to be equal to E.

284

Example 20. (Local channels)

Consider the agentA1 = (send(c; '):S1; true) which intends to send information

and the agents A2 = (receive(c; '):S2; true) and A3 = (receive(c; '):S3; true)

which intend to receive information. In the agent system h�c(A1 k A2) k A3; �i,

the agent A1 can communicate with the agent A2 along the channel c, but is

however not able to use this channel to communicate with the agent A3. In

other words, the transition

h�c(A1 k A2) k A3; �i
�

�!h�c(A
0
1 k A

0
2) k A3; �i

where A01 = (S1; true) and A
0
2 = (S2; ') is derivable, whereas the transition

h�c(A1 k A2) k A3; �i
�

�!h�c(A
0
1 k A2) k A

0
3; �i

with A01 = (S1; true) and A
0
3 = (S3; ') is not derivable. To elucidate the latter

we remark that one of the premises, viz.

h�c(A1 k A2); �i
c ! '
�! h�c(A

0
1 k A2); �i

for application of the rule for communication is not derivable as its label c ! '

involves the channel c.

The transitions of agent systems give rise to computations.

Definition 21. A computation is a sequence

hA0; �0i
�0
�!hA1; �1i; hA1; �1i

�1
�!hA2; �2i; � � �

of transitions between subsequent con�gurations of an agent system. Such a

sequence is �nite if it has a �nal con�guration from which no transition is

derivable. In case this con�guration is of the form hE; �i we identify the cor-

responding computation to have successfully terminated ; in all other cases we

say that the computation has deadlocked . A computation is non-terminating if

the sequence of transitions is in�nite.

Before we examine semantics, we state two key properties concerning work-

spaces and communication bases in computations. One is the property that in

a computation the workspace increases in a monotonic fashion. That is, after

each computation step the resulting con�guration of the workspace implies

the former con�guration and hence, no information is ever removed from the

workspace.

Theorem 22. For every transition hA; �i
�

�!hA0; �0i we have �0 ` �.

The proof of the theorem as the proof of the subsequent theorem is postponed

to the appendix.

The second property amounts to the fact that in computations of the form

hA0; �0i
�

�!hA1; �1i; hA1; �1i
�

�!hA2; �2i; � � �

285

all communication bases remain reections of the workspace. That is, at each

point in a computation all communication bases are implied by the workspace

and hence, for instance, no communication base can become inconsistent with

the workspace. The property is stated in theorem 23.

Theorem 23. If all communication bases B of the basic agents (S;B) in the

initial agent system A0 are empty then it holds for each con�guration hAi; �ii

(i = 0; 1; 2; : : :) in the computation

hA0; �0i
�

�!hA1; �1i; hA1; �1i
�

�!hA2; �2i; � � �

that for all (S;B) in Ai : �i ` B.

The operational semantics of a programming language is usually given by a

notion of observables. These observables, which express what we want to observe

of an agent system, are various: entire computations, subsequent workspace

changes, the output workspaces, sequences of transition labels, and so on. In

our system, we choose the observables to be resulting workspaces (and thereby

abstract from mental attitudes).

Definition 24. (Observables of successfully terminating agent sys-

tems)

O(A)(�) = f�n j hA; �i
�1
�!hA1; �1i; � � � ; hAn�1; �n�1i

�n
�!hE; �nig

Because of the monotonic-increasing behaviour of workspaces, we are in the

position to assign results to non-terminating computations. The observables of

such computations are in�nite conjunctions of subsequent workspaces.

Definition 25. (Observables of agent systems)

O
1(A)(�) = O(A)(�) [f� ^ �1 ^ � � � j hA; �i

�1
�!hA1; �1i; hA1; �1i

�2
�! � � � g

where �^�1^� � � denotes the least upper bound with respect to the information

order induced by `.

A denotational semantics based on a notion of observables, constitutes a for-

mal basis for the design and speci�cation/veri�cation of programs. In future

research, we will hence aim to develop a compositional description constituting

such a denotational model.

We end our discussion by giving an example, which is adapted from an

example implemented in the DESIRE [4] framework.

4. Example of cooperating agents

Three basic agents A1, A2 and A3 explore a 3-dimensional grid, which is con-

stituted by the orthogonal base vectors x, y and z. The agent A1 observes it

286

through the 2-dimensional grid constituted by the vectors x and z, i.e. it in-

spects the projection on this grid. We model this by assigning the agent x and

z as its accessible variables. For instance, the formula ap((x; z); square) denotes

that a square of unity length is centred at (x; z) in the projection, where x and

z in x and z, respectively, and the predicate ap stands for `appears'. In this

example, the agent A1 intends to provide along the channel c the centre of any

object in its view:

(
P

i;j;osend(c; ap((i; j); o)); true);

in which the index variables i; j; o range over the elements of x, z and the set

of observable 2-dimensional objects, respectively.

In contrast, the agent A2 senses the 3-dimensional grid through the grid

constituted by the vectors y and z. Hence, it is assigned y and z as its accessible

variables. In this case, A2 intends to send along the channel d the centre of any

object in its view:

(
P

i;j;osend(d; ap((i; j); o)); true);

where the index variables i; j; o range over the elements of y, z and the set of

observable 2-dimensional objects, respectively.

The agent A3, which has no view on the grid, invokes the assistance of the

agents A1 and A2 in establishing a picture of it. The agent considers the space

as a collection v of positions. It for instance establishes ap(v; o) whenever it

has concluded that the 3-dimensional object o is centred at the position v. In

this example, the agent A3 asks the agent A1 to examine the object centred at

(x; z) in the (x; z) grid. Subsequently, it requests the agent A2 to take a look at

the object centred at (y; z) in the (y; z) grid. The reception of the constraints

provided by A1 and A2 gives the agent A3 su�cient information to conclude the

3-dimensional object that is centred at the position v, where v corresponds to

the point (x; y; z) in the 3-dimensional grid. The agent is given by (P (s); true).

Its statement consists of a call to the procedure P (r) :: S, in which S, S0 and

S00 are the following abbreviations:

S =
P

o1
receive(c; ap((r1; r3); o1)):S

0

S0 =
P

o2
receive(d; ap((r2; r3); o2)):S

00

S00 = est(ap(r4; f(o1; o2)))

The index variables o1 and o2 range over the set of observable 2-dimensional ob-

jects and the vectors s and r are abbreviations for (x; y; z; v) and (r1; r2; r3; r4),

respectively. From this example we extract that agents have in addition to ex-

plicit knowledge collected in their knowledge base, implicit knowledge present

in their statements. For instance, the call P (s) implicitly assumes that the posi-

tion v is associated with the point (x; y; z) in the 3-dimensional grid. By calling

this procedure the agent A3 somehow knows of this relation (this strongly re-

lates to the traditional distinction between the notions know what and know

how).

We now determine the operational semantics of the agent system con-

stituted by the parallel composition of the basic agents A1, A2 and A3 in

287

the workspace � = (ap((x; z); square) ^ ap((y; z); circle) ^ f(square; circle) =

cylinder): That is, we want to compute

O((A1 k A2) k A3)(�):

To do this, we �rst show the formal derivation of one of the successfully termi-

nating computations, which will consist of the derivations of seven consecutive

computation steps by means of the transition system.

Computation step 1.

The �rst computation step concerns the execution of the procedure call P (s)

by the agent A3. It consists of the replacement of the call by the body of

the procedure in which the actual parameters s are renamed to the formal

parameters r. Using the transition system, we derive from the instantiation

h(P (s); true); �i
�

�!h(rensrS; true); �i

of the axiom for procedure calls, by means of the rule for the parallel com-

position of agent systems, the following transition, which constitutes the �rst

computation step of our agent system:

h(A1 k A2) k A3; �i
�

�!h(A1 k A2) k A
0
3; �i (1)

where A03 = (rensrS; true).

Computation step 2.

The second computation step of the agent system consists of the communication

of ap((x; z); square) along the communication channel c between the agent A1

and the agent A3. First, the following instantiation

h(send(c; ap((x; z); square)); true); �i
c ! ap((x; z); square)

�! h(E; true); �i

of the emittance axiom is valid, as the knowledge base K(�; (x; z); true) equals

9y�, which implies the formula ap((x; z); square). Applying the rule for non-

deterministic choice, we obtain the transition (recall that the construct
P

i2I ai
is an abbreviation for the statement

P
i2I ai:skip):

h(
P

i;j;osend(c; ap((i; j); o)); true); �i
c ! ap((x; z); square)

�! h(skip; true); �i:

From this transition we derive by means of the rule for parallel composition,

the computation step of the sub-agent system A1 k A2, which is given by:

hA1 k A2; �i
c ! ap((x; z); square)

�! hA01 k A2; �i (2)

288

where A01 = (skip; true). Secondly, from the instantiation

h(receive(c; ap((r1; r3); square)); true); �[r=s]i
c ? ap((r1; r3); square)

�!

h(E; ap((r1; r3); square)); �[r=s]i

of the reception axiom, which is valid as its condition is trivially satis�ed, we

deduce employing the rule for non-deterministic choice, the transition:

h(
P

o1
receive(c; ap((r1; r3); o1)):S

0; true); �[r=s]i
c ? ap((r1; r3); square)

�!

h(S0; ap((r1; r3); square)); �[r=s]i:

From this transition we subsequently derive by means of the inference rule for

the renaming of variables, the transition:

h(rensr
P

o1
receive(c; ap((r1; r3); o1)):S

0; true); �i
c ? ap((x; z); square)

�!

h(rensrS
0; ap((x; z); square)); �i: (3)

The rule for communication enables us to conclude from the transitions (2) and

(3), the following, second computation step of the agent system:

h(A1 k A2) k A
0
3; �i

�
�!h(A01 k A2) k A

00
3 ; �i (4)

where A003 = (rensrS
0; B) and B = ap((x; z); square).

Computation step 3.

In order to deduce the next computation step of the agent system, which

comprises of the communication of the fact ap((y; z); circle) along the com-

munication channel d between the agents A2 and A3, we ascertain that the

instantiation

h(send(d; ap((y; z); circle)); true); �i
d ! ap((y; z); circle)

�! h(E; true); �i

of the emittance axiom is valid, as the knowledge base K(�; (y; z); true), which

is equal to 9x� implies ap((y; z); circle). Using the inference rule for non-

deterministic choice, we infer the following transition:

h(
P

i;j;osend(d; ap((i; j); o)); true); �i
d ! ap((y; z); circle)

�! h(skip; true); �i:

From this transition we conclude using the rule for parallel composition, the

computation step of the sub-agent system A01 k A2, which looks like:

hA01 k A2; �i
d ! ap((y; z); circle)

�! hA01 k A
0
2; �i (5)

where A02 = (skip; true). Additionally, an application of the transition rule for

non-deterministic choice to the instantiation

289

h(receive(d; ap((r2; r3); circle)); B[r=s]); �[r=s]i
d ? ap((r2; r3); circle)

�!

h(E;B[r=s] ^ ap((r2; r3); circle)); �[r=s]i

of the reception axiom (its condition is trivially satis�ed), yields the transi-

tion

h(
P

o2
receive(d; ap((r2; r3); o2)):S

00; B[r=s]); �[r=s]i
d ? ap((r2; r3); circle)

�!

h(S00; B[r=s] ^ ap((r2; r3); circle)); �[r=s]i

The inference rule for the renaming of variables subsequently enables us to

derive from this transition:

h(rensr
P

o2
receive(d; ap((r2; r3); o2)):S

00; B); �i
d ? ap((y; z); circle)

�!

h(rensrS
00; B ^ ap((y; z); circle)); �i: (6)

We �nally conclude the third computation step of the system by applying the

inference rule for communication to the transitions (5) and (6), giving:

h(A01 k A2) k A
00
3 ; �i

�
�!h(A01 k A

0
2) k A

000
3 ; �i (7)

where A0003 = (rensrS
00; B0) and B0 = B ^ ap((y; z); circle).

Computation step 4.

Concerning the next computation step, which consists of the establishment of

ap(v; f(square ; circle)) in the workspace � by the agent A3, we infer from the

instantiation

h(est(ap(r4; f(square; circle))); B
0[r=s]); �[r=s]i

�
�!

h(E;B0[r=s]); �[r=s] ^ ap(r4; f(square; circle))i

of the establishment axiom, employing the transition rule for the renaming of

variables, the transition :

h(rensrest(ap(r4; f(square; circle))); B
0); �i

�
�!

h(rensrskip; B
0); � ^ ap(v; f(square ; circle))i:

If we use the rule for the parallel composition, we obtain from this transition

the next computation step of the agent system:

h(A01 k A
0
2) k A

000
3 ; �i

�
�!h(A01 k A

0
2) k A

0000
3 ; �0i (8)

where A00003 = (rensrskip; B
0) and �0 = � ^ ap(v; f(square; circle)) .

290

Computation steps 5, 6 and 7.

The next three computation steps are given by the executions of the skip state-

ment by A2, A1 and A3 successively. From the instantiation

h(skip; true); �0i
�

�!h(E; true); �0i

of the axiom for skip we infer using the inference rule for parallel composition

and the simpli�cations (E; true) = E and A01 k E = A01, the transition:

h(A01 k A
0
2); �

0
i

�
�!hA01; �

0
i:

Another application of the rule for parallel composition enables us to derive

from this transition, the computation step:

h(A01 k A
0
2) k A

0000
3 ; �0i

�
�!hA01 k A

0000
3 ; �0i: (9)

We are also able to infer from the above instantiation of the axiom for skip,

using the rule for parallel composition and the simpli�cations (E; true) = E

and E k A03 = A03, the computation step:

hA01 k A
0000
3 ; �0i

�
�!hA00003 ; �0i: (10)

Finally, from the instantiation

h(skip; B0); �0i
�

�!h(E;B0); �0i

of the axiom for skip, we conclude using the inference rule for renaming and

the simpli�cation rensrE = E, the following transition:

h(rensrskip; B
0); �0i

�
�!h(E;B0); �0i:

The inference rule for parallel composition enables us to derive from this tran-

sition, using the simpli�cation (E;B0) = E, the �nal computation step of the

agent system:

hA00003 ; �0i
�

�!hE; �0i: (11)

The transitions (1), (4), (7), (8), (9), (10) and (11) constitute a successfully

terminating computation of the agent system. Its resulting workspace �0 implies

ap(v; cylinder). We state that all other successfully terminating computations

also lead to this workspace �0. Hence, the operational semantics of the agent

system in the workspace � is given by

O((A1 k A2) k A3)(�) = f�0g:

5. Extensions of the framework

We distinguish two principal directions for supplementary research. One com-

prises the deepening of the formalization of the current framework at hand.

For instance, we aim, given the operational semantics, to develop an equivalent

291

denotational semantics. As such a denotational model provides a basis for the

speci�cation and veri�cation of programs, we might subsequently investigate

the link with logical speci�cation languages (for instance, the one described in

[14]).

Alternatively, seen in the light of agent-oriented languages, the development

of the framework of Modular Information-passing Agents is yet still in a prelim-

inary phase. Many aspects of multi-agent systems need to be passed in review.

One of the primary goals of future research is the incorporation of workspaces

that are updated in a non-monotonic fashion, introducing the problems related

to belief revision. For instance, if the external world is continuously subject to

changes, information obtained from communication may be outdated. Secondly,

in multi-agent systems there is need for elaborate communication primitives as

requesting, informing, refusing, promising and so on. Such primitives at least

imply the incorporation of agent-identity; the assignment of unique names to

agents. Additionally, as statements govern the behaviours of agents, we should

aim to get a hold on the implicit knowledge present in these statements. Related

to this topic are the incorporation of goal-directed behaviour, as comprehen-

sively examined in [10], and meta-knowledge, which constitute two essential

characteristics of agent-oriented systems. Finally, an interesting aspect for fu-

ture examination concerns the inheritance of knowledge from agents to complex

agent systems. For instance, it is not immediately clear what kind of knowledge

bases should be assigned to compound agent systems.

6. Related work
In addition to some connections alluded to, we will lightly touch upon the

relation with some other a�ned approaches.

First of all, our research has connections with the work of R�ety (cf. [17])

on distributed concurrent constraint programming. One of the main di�er-

ences with this framework is our agent-oriented starting-point; R�ety does not

consider aspects as windows and knowledge bases. Additionally, in contrast

to our approach, R�ety's framework considers a global constraint store that

is distributed over several sites. Processes at di�erent locations interact with

each other via the exchange of constraints along interconnecting communica-

tion channels. This communication mechanism proceeds as follows. A sending

process transfers information of the form �x:'(x) in which is abstracted from

the sender's private variables x, while the receiving process instantiates this

abstraction with its own variables y, yielding the information (�x:'(x))(y).

That is, constraints on x are translated to constraints on y. In [6] we consider

an extension of our current framework, which covers a more general transla-

tion method allowing translations of terms and predicates rather than just of

variables. Secondly, we are currently studying a re�nement in which the con-

structed translations are maintained for later use, whereas in the distributed

concurrent constraint programming paradigm they are immediately lost after

the communication.

292

Secondly, Concurrent Transaction Logic [3] is a well-founded programming

language designed for entities updating the state of a global store (i.e. a rela-

tional database, a knowledge base, a collection of communication bu�ers and

so on). The language principally focuses on the interaction between the enti-

ties and the global database. In our framework, however, we additionally stress

the knowledge each agent has about the store, necessitating communication of

this knowledge among the agents. Secondly, whereas our approach concentrates

on constraint languages, Transaction Logic leaves the underpinning language

unspeci�ed.

The modeling of communication among agents by means of interactions be-

tween actors is described in [8]. The approach incorporates the actor model,

which is a framework that facilitates the expression of attitudes towards incom-

ing messages. Moreover, in this model, the behaviour of entities is completely

governed by the incoming messages (underlined by the fact that actors in order

to change their attitude even send messages to themselves). The fact that the

inhabited environment is left implicit additionally contrasts with our frame-

work.

A logical treatment of modular agent systems; called a Logic of Contexts is

described in [9]. Giunchiglia et al. have developed a formalism in which agent

systems are hierarchies of logical theories, called contexts, connected by lifting

and lowering bridge rules. A lifting rule ensures that if some speci�ed formula

' holds in a sub-context, the associated formula '0 holds in the encompassing

context. A lowering rule establishes the converse.

The DESIRE [4] framework used to design and specify interacting and rea-

soning components, also propagates modularity. It supports the modeling of

modular components, which interact with each other via the transport of infor-

mation along interconnecting links. The components may be built from smaller

ones; the components that cannot be decomposed, are assigned a knowledge

base expressing their reasoning capabilities and an information state represent-

ing their knowledge. In many applications, the external world is also modeled

as a component. Each link in the framework transfers information between two

components and as these components use distinct signatures (languages), the

transfer necessitates the translation of information. The major distinctions with

our framework are the use of signatures, the incorporation of meta-level reason-

ing, the modeling of the world as a component and the presence of mechanisms

to update knowledge. However, as DESIRE currently possesses a semantics

based on temporal logic, we believe that our framework may serve as an initial

approach towards a structural operational semantics of the DESIRE method-

ology.

7. Appendix
In this appendix we show the proofs of theorem 22 and theorem 23.

Theorem 22. For every transition hA; �i
�

�!hA0; �0i we have �0 ` �.

293

Proof. The proof will proceed by induction on the length of derivation of the

transition hA; �i
�

�!hA0; �0i. Concerning the induction basis we remark that

for the only axiom h(est('); B); �i
�

�!h(E;B); � ^ 'i in which the workspace

changes, the condition �^' ` � certainly holds. The induction step in all cases

immediately follows from an application of the induction hypothesis.

Before we commence the proof of theorem 23, which will consist of the proofs

of three lemmas, let us �rst introduce a convenient abbreviation.

Definition 26. The property P for agent system con�gurations is de�ned as

P (hA; �i), for all basic agents (S;B) in A it holds that � ` B:

The core of the proof of theorem 23 is constituted by the proof of lemma 29

which subsequently uses two results stated in lemma 27 and lemma 28.

Lemma 27. If hA; �i
c ! '
�! hA0; �0i and P (hA; �i) then P (hA0; �0i) and � ` '.

Proof. The proof proceeds by induction on the length of derivation of the

transition hA; �i
c ! '
�! hA0; �0i. First, we consider the crucial case

A � (send(c; '); B):

Its transition is given by the axiom

h(send(c; '); B); �i
c ! '

�! h(E;B); �i if (window (�;x) ^ B) ` ':

To show the claim we assume (window (�;x) ^ B) ` ' and additionally

P (h(receive(c;); B); �i);

that is, � ` B. From these assumptions, P (h(E;B); �i), i.e. � ` B immediately

follows. We also conclude using the fact � ` window (�;x) the other consequent:

� ` '.

Additionally, we will work out the case A � (loc�
y
S;B) and omit all other

cases as these require a similar, straightforward use of the induction hypothesis.

The transition of this basic agent is given by the rule

h(S;B1); �1i
c ! '
�! h(S0; B2); �

0i

h(loc�
y
S;B); �i

c ! 9y'

�! h(loc�
0

y
S0; B0); �0i

where B1 = 9yB; �1 = � ^ 9y�; B0 = B ^ 9yB2; �
0 = � ^ 9y�0.

In the following, we will frequently employ the fact that ' ` implies 9y' `

9y . From the assumption � ` B and the above mentioned fact we derive that

P (h(S;B1); �1i) holds.

294

As the length of derivation of h(S;B1); �1i
c ! '
�! h(S0; B2); �

0i is shorter, we

subsequently apply the induction hypothesis, yielding �0 ` B2 and �1 ` '.

From the former and � ` B we conclude P (h(loc�
0

y
S0; B0); �0i). Secondly, from

�1 ` ' we conclude (as by theorem 22 we have �0 j= �1) that �
0 ` 9y' holds,

which completes the right-hand side of the claim.

Lemma 28. If hA; �i
c ? '

�! hA0; �0i and P (hA; �i) and � ` ' then P (hA0; �0i).

Proof. We will prove this using induction on the length of derivation of

the transition hA; �i
c ? '

�! hA0; �i. We consider the most relevant case A �

(receive(c;); B). The applicable transition is given by

h(receive(c;); B); �i
c ? '

�! h(E;B ^ '); �i:

To show the claim we assume � ` B and � ` '. From these assumptions

P (h(E;B ^ '); �i), i.e. � ` B ^ ' immediately follows.

In all other cases, the claim follows by a straightforward application of the

induction hypothesis.

Lemma 29. If hA; �i
�

�!hA0; �0i and P (hA; �i) then P (hA0; �0i).

Proof. We prove this claim by induction on the length of derivation of the

transition hA; �i
�

�!hA0; �i. We consider the most interesting case A � A1 k A2.

One of its possible transitions is given by the inference rule

hA1; �i
c ? '

�! hA01; �i hA2; �i
c ! '
�!hA02; �i

hA1 k A2; �i
�

�!hA01 k A
0
2; �i

for communication. To show the lemma we assume P (hA1 k A2; �i), from which

we derive P (hA1; �i) and P (hA2; �i). Using lemma 27 we conclude from the

latter P (hA02; �i) and � ` '. Additionally, using lemma 28 we conclude from

P (hA1; �i) and � ` ' that P (hA01; �i) holds. Combining both results we deduce

P (hA01 k A
0
2; �i).

The other possible transition is given by the inference rule

hA1; �i
�

�!hA01; �
0i

hA1 k A2; �i
�

�!hA01 k A2; �0i

for parallel composition. From the assumption P (hA1 k A2; �i) we derive

P (hA1; �i) and P (hA2; �i). As the length of derivation of hA1; �i
�

�!hA01; �
0i is

shorter, we subsequently apply the induction hypothesis and obtain P (hA01; �
0i).

Secondly, from theorem 22 we infer �0 ` �, and hence we deduce from P (hA2; �i)

that P (hA2; �
0i) holds. If we combine both results we conclude P (hA01 k A2; �

0i),

which was to be shown.

We remark that in all other cases the claim follows from a simple application

of the induction hypothesis and hence, these cases are omitted.

295

We are now in the position to prove theorem 23, which we will repeat below.

Theorem 23. If all communication bases B of the basic agents (S;B) in the

initial agent system A0 are empty then it holds for each con�guration hAi; �ii

(i = 0; 1; 2; : : :) in the computation

hA0; �0i
�

�!hA1; �1i; hA1; �1i
�

�!hA2; �2i; � � �

that for all (S;B) in Ai : �i ` B.

Proof. For each con�guration the claim directly follows from i consecutive

applications of lemma 29.

References

1. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communi-

cation. Information and Control, 60:109{137, 1984.

2. C. Beyssade, P. Enjalbert, and C. Lef�evre. Cooperating logical agents. In

Proceedings of IJCAI'95 Workshop (ATAL), volume 1037 of LNAI, pages

299{314. Springer-Verlag, 1995.

3. A. Bonner and M. Kifer. Concurrency and communication in transaction

logic. In Proceedings of the Joint International Conference and Symposium

on Logic Programming, pages 142{156, Bonn, 1996. MIT Press.

4. F. Brazier, B. Dunin-Keplicz, N. Jennings, and J. Treur. Formal speci�ca-

tion of multi-agent systems: a real-world case. In Proceedings of ICMAS-95,

pages 25{32. MIT Press, 1995.

5. R. M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer.

Information-passing and belief revision in multi-agent systems. In Proceed-

ings of ATAL'98, LNCS, Paris, France, 1998. Springer-Verlag. To appear.

6. R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Systems

of communicating agents. In Proceedings of the 13th biennial European

Conference on Arti�cial Intelligence (ECAI-98), pages 293{297, Brighton,

UK, 1998. John Wiley & Sons, Ltd.

7. P. G�ardenfors. Knowledge in ux: Modelling the dynamics of epistemic

states. Bradford books, MIT, Cambridge, 1988.

8. M. Gaspari. Modelling interactions in agent system. In Proceedings of

the 4th Congres of the Italian Association for Arti�cial Intelligence, pages

426{438. LNAI 992, 1995.

9. F. Giunchiglia, L. Sera�ni, E. Giunchiglia, and M. Frixione. Non-omniscient

belief as context-based reasoning. In IJCAI-93, pages 548{554, 1993.

10. K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. A formal

semantics for an abstract agent programming language. In M.P. Singh,

A. Rao, and M.J. Wooldridge, editors, Proceedings of ATAL'97, volume

1365 of LNAI, pages 215{229. Springer-Verlag, 1998.

11. C.A.R. Hoare. Communicating sequential processes. Communications of

the ACM, 21(8):666{677, 1978.

296

12. Th. Huibers. An Axiomatic Theory for Information Retrieval. PhD thesis,

Universiteit Utrecht, 1996.

13. Y. Lesp�erance, H.J. Levesque, F. Lin, D. Marcu, R. Reiter, and R.B. Scherl.

Foundations of a logical approach to agent programming. In Proceedings

of IJCAI'95 Workshop (ATAL), volume 1037 of LNAI, pages 331{346.

Springer-Verlag, 1995.

14. B. van Linder, W. van der Hoek, and J.-J.Ch. Meyer. Communicating

rational agents. In KI-94: Advances in AI, volume 861 of LNCS, pages

202{213. Springer-Verlag, 1994.

15. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer-Verlag, 1980.

16. G. Plotkin. A structured approach to operational semantics. Technical

Report DAIMI FN-19, Computer Science Department, Aarhus University,

1981.

17. Jean-Hugues R�ety. Langages concurrents avex contraintes, communication

par messages et distribution. PhD thesis, University of Orleans, France,

1997.

18. V.A. Saraswat and M. Rinard. Concurrent constraint programming. In

Proceedings of Seventeenth ACM Symposium on Principles of Programming

Languages, 1990.

19. Y. Shoham. Agent-oriented programming. Arti�cial Intelligence, 60:51{92,

1993.

20. M. Wooldridge. A Knowledge-Theoretic Semantics for Concurrent

MetateM. In Proceedings of ECAI'96 Workshop (ATAL), volume 1193

of LNAI, pages 357{374. Springer-Verlag, 1996.

21. M. Wooldridge and N. Jennings. Intelligent agents: theory and practice.

The Knowledge Engineering Review, 10(2):115{152, 1995.

297

