772 research outputs found

    Recombinant expression and functional analysis of a Chlamydomonas reinhardtii bacterial-type phosphoenolpyruvate carboxylase gene fragment

    Get PDF
    To investigate the function of a bacterial-type phosphoenolpyruvate carboxylase (PEPC2) derived from photosynthetically-grown Chlamydomonas reinhardtii, a fragment of the pepc2 gene was cloned and expressed in Escherichia coli. After optimal induction for 6 h, PEPC activity in the reverse mutant was lower than wild type (0.9 vs. 1.7 U/mg protein), and soluble protein was also lower than wild type (119 vs. 186 mg/g dry wt). In contrast, the total lipid content was increased from 56 (in wild type) to 71 mg/g dry wt, despite the growth rate being slightly diminished. The changes in PEPC activity, soluble protein and total lipid in the forward mutant were the opposite (2.4 U/mg, 230 mg/g, and 44 mg/g dry wt, respectively). Together, these data indicate that PEPC may function as a metabolic pivot in the regulation of protein and lipid accumulation in this alga

    ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

    Full text link
    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table

    Fuzheng Huayu recipe prevents nutritional fibrosing steatohepatitis in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fuzheng Huayu recipe (FZHY), a compound of Chinese herbal medicine, was reported to improve liver function and fibrosis in patients with hepatitis B virus infection. However, its effect on nutritional fibrosing steatohepatitis is unclear. We aimed to elucidate the role and molecular mechanism of FZHY on this disorder in mice.</p> <p>Methods</p> <p>C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 8 weeks to induce fibrosing steatohepatitis. FZHY and/or heme oxygenase-1 (HO-1) chemical inducer (hemin) were administered to mice, respectively. The effect of FZHY was assessed by comparing the severity of hepatic injury, levels of hepatic lipid peroxides, activation of hepatic stellate cells (HSCs) and the expression of oxidative stress, inflammatory and fibrogenic related genes.</p> <p>Results</p> <p>Mice fed with MCD diet for 8 weeks showed severe hepatic injury including hepatic steatosis, necro-inflammation and fibrosis. Administration of FZHY or hemin significantly lowered serum levels of alanine aminotransferase, aspartate aminotransferase, reduced hepatic oxidative stress and ameliorated hepatic inflammation and fibrosis. An additive effect was observed in mice fed MCD supplemented with FZHY or/and hemin. These effects were associated with down-regulation of pro-oxidative stress gene cytochrome P450 2E1, up-regulation of anti-oxidative gene HO-1; suppression of pro-inflammation genes tumor necrosis factor alpha and interleukin-6; and inhibition of pro-fibrotic genes including α-smooth muscle actin, transforming growth factor beta 1, collagen type I (Col-1) and Col-3.</p> <p>Conclusions</p> <p>Our study demonstrated the protective role of FZHY in ameliorating nutritional fibrosing steatohepatitis. The effect was mediated through regulating key genes related to oxidative stress, inflammation and fibrogenesis.</p

    Anchoring Cu 1 species over nanodiamond-graphene for semi-hydrogenation of acetylene

    Get PDF
    The design of cheap, non-toxic, and earth-abundant transition metal catalysts for selective hydrogenation of alkynes remains a challenge in both industry and academia. Here, we report a new atomically dispersed copper (Cu) catalyst supported on a defective nanodiamondgraphene (ND@G), which exhibits excellent catalytic performance for the selective conversion of acetylene to ethylene, i.e., with high conversion (95%), high selectivity (98%), and good stability (for more than 60 h). The unique structural feature of the Cu atoms anchored over graphene through Cu-C bonds ensures the effective activation of acetylene and easy desorption of ethylene, which is the key for the outstanding activity and selectivity of the catalyst

    Tin Assisted Fully Exposed Platinum Clusters Stabilized on Defect-Rich Graphene for Dehydrogenation Reaction

    Get PDF
    Tin assisted fully exposed Pt clusters are fabricated on the core-shell nanodiamond@graphene (ND@G) hybrid support (a-PtSn/ND@G). The obtained atomically dispersed Pt clusters, with an average Pt atom number of 3, were anchored over the ND@Gsupport by the assistance of Sn atoms as a partition agent and through the Pt-C bond between Pt clusters and defect-rich graphene nanoshell. The atomically dispersed Pt clusters guaranteed a full metal availability to the reactants, a high thermal stability, and an optimized adsorption/desorption behavior. It inhibits the side reactions and enhances catalytic performance in direct dehydrogenation of n-butane at a low temperature of 450 °C, leading to \u3e98% selectivity toward olefin products, and the turnover frequency (TOF) of a-PtSn/ND@G is approximately 3.9 times higher than that of the traditional Pt3Sn alloy catalyst supported on Al2O3 (Pt3Sn/Al2O3)

    Molecular Cloning of the Genes Encoding the PR55/Bβ/δ Regulatory Subunits for PP-2A and Analysis of Their Functions in Regulating Development of Goldfish, Carassius auratus

    Get PDF
    The protein phosphatase-2A (PP-2A), one of the major phosphatases in eukaryotes, is a heterotrimer, consisting of a scaffold A subunit, a catalytic C subunit and a regulatory B subunit. Previous studies have shown that besides regulating specific PP-2A activity, various B subunits encoded by more than 16 different genes, may have other functions. To explore the possible roles of the regulatory subunits of PP-2A in vertebrate development, we have cloned the PR55/B family regulatory subunits: β and δ, analyzed their tissue specific and developmental expression patterns in Goldfish ( Carassius auratus). Our results revealed that the full-length cDNA for PR55/Bβ consists of 1940 bp with an open reading frame of 1332 nucleotides coding for a deduced protein of 443 amino acids. The full length PR55/Bδ cDNA is 2163 bp containing an open reading frame of 1347 nucleotides encoding a deduced protein of 448 amino acids. The two isoforms of PR55/B display high levels of sequence identity with their counterparts in other species. The PR55/Bβ mRNA and protein are detected in brain and heart. In contrast, the PR55/Bδ is expressed in all 9 tissues examined at both mRNA and protein levels. During development of goldfish, the mRNAs for PR55/Bβ and PR55/Bδ show distinct patterns. At the protein level, PR55/Bδ is expressed at all developmental stages examined, suggesting its important role in regulating goldfish development. Expression of the PR55/Bδ anti-sense RNA leads to significant downregulation of PR55/Bδ proteins and caused severe abnormality in goldfish trunk and eye development. Together, our results suggested that PR55/Bδ plays an important role in governing normal trunk and eye formation during goldfish development

    Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Get PDF
    Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs) and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II-) induced proliferation and migration of vascular smooth muscle cells (VSMCs). Dichlorofluorescein diacetate (DCFH-DA) staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA) protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting
    corecore