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ARTICLE

Anchoring Cu1 species over nanodiamond-
graphene for semi-hydrogenation of acetylene
Fei Huang1,2,11, Yuchen Deng3,11, Yunlei Chen4,5,11, Xiangbin Cai 6,11, Mi Peng3, Zhimin Jia1,2, Jinglin Xie3,

Dequan Xiao 7, Xiaodong Wen 4,8, Ning Wang 6, Zheng Jiang 9,10*, Hongyang Liu 1,2* & Ding Ma 3*

The design of cheap, non-toxic, and earth-abundant transition metal catalysts for selective

hydrogenation of alkynes remains a challenge in both industry and academia. Here, we report

a new atomically dispersed copper (Cu) catalyst supported on a defective nanodiamond-

graphene (ND@G), which exhibits excellent catalytic performance for the selective conver-

sion of acetylene to ethylene, i.e., with high conversion (95%), high selectivity (98%), and

good stability (for more than 60 h). The unique structural feature of the Cu atoms anchored

over graphene through Cu-C bonds ensures the effective activation of acetylene and easy

desorption of ethylene, which is the key for the outstanding activity and selectivity of the

catalyst.
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Selectively hydrogenating remnant acetylene in the raw olefin
streams to ethylene while avoiding the over-hydrogenation
to undesired ethane is a key industrial reaction to manu-

facture polymer-grade raw materials for the production of poly-
ethylene1–3. The most commonly used industrial catalyst for the
reaction is based on supported Pd nanoparticles (NPs) modified
by Ag additives4. Although the Pd-Ag catalyst prevents the usage
of toxic promoters such as lead or sulfur (Lindlar catalyst)5, the
extremely high cost of Pd leaves ample room for improving the
cost-effectiveness in catalyst design. In an effort to develop
environment-friendly and cost-effective catalysts, various
approaches have been pursued, including (i) reducing the amount
of noble metals by “site-isolation” strategy or engineering a
minimal ensemble6–11 and (ii) developing non-noble metals/
metal oxides catalysts12–18.

The key to the first strategy is to prepare atomically dispersed
metal catalysts, a burgeoning class of catalytic materials, in which
isolated metal atoms were anchored on the solid supports7,19–23.
Owing to their unique structural and electronic features, the
atomically dispersed noble metal catalysts not only displayed
unrivaled advantages for their maximal atomic utilization and
high turnover frequency (TOF) but also strongly promoted the
studies related to active site identifications and reaction
mechanisms23–28. For the second approach, it is highly desired to
develop new catalysts using cheap, non-toxic, and earth-abundant
transition metals, such as Cu or Fe, to achieve comparable cata-
lytic performance to that of Pd-based catalysts. Indeed, non-noble
metal oxides have been investigated extensively for the develop-
ment of low-cost and high-performance alkyne hydrogenation
catalysts, including ceria12–16. Owing to limited H2 activation
ability29, semihydrogenation of alkynes over these oxide catalysts
normally required a relatively high-operating temperature. In an
elegant work recently, Pardo et al. reported a metal–organic
framework-based Fe(III)-O catalyst18. This single-site cationic
species was active for acetylene hydrogenation at up to 150 °C,
which is an important advance in non-noble metal catalyst for
this reaction. Alternatively, earth-abundant metal especially Cu-
based catalysts have been developed and evaluated for the reac-
tion, suggesting that Cu, as an inexpensive and non-toxic catalyst,
has an activity for acetylene hydrogenation over other afore-
mentioned non-noble metals30. Yet, a small quantity of Pd pro-
moter was still a must for achieving satisfactory catalytic
performance31,32.

Herein we report the fabrication of cheap atomically dispersed
Cu catalysts without other noble metals to effectively catalyze
selective hydrogenation of acetylene. In the followings, we will first
show adequate experimental evidences that isolated Cu atoms
were anchored over the surface-defective nanodiamond–graphene
(ND@G) support (Cu1/ND@G). Second, we will demonstrate that
Cu1/ND@G possessed remarkable catalytic performance: high
conversion (95%), high selectivity (98%), and good stability (for
>60 h) for acetylene hydrogenation, compared to the Cu-cluster
catalyst supported over the same host (denoted as Cun/ND@G).
Finally, by density functional theory (DFT) calculations, we will
show that the unique structure of the atomically dispersed Cu
catalyst facilitates the activation of acetylene and the desorption of
ethylene, which is pivotal for the enhanced activity and selectivity
of Cu1/ND@G compared to Cun/ND@G.

Results
Synthesis and characterization of Cu1/ND@G and Cun/ND@G.
We prepared the Cu1/ND@G and Cun/ND@G catalysts follow-
ing the preparation procedure in the “Methods” section. Here we
will probe the dispersion states of Cu atoms in these two dif-
ferent catalysts. The substrate ND@G features a thin graphene

shell with abundant defects formed during the annealing of ND.
High-resolution transmission electron microscope (HRTEM)
images (see Fig. 1a and Supplementary Fig. 1), Raman spectra,
and X-ray photoelectron spectroscopic (XPS) measurements (see
Supplementary Figs. 3 and 4) revealed the unique defect-rich
structure of ND@G. The highly defective few-layer graphene
outer-shells served as hosts for anchoring metal atoms. By simply
modulating the reduction temperature (see the preparation
details in the “Methods” section) of Cu species deposited on
graphitic carbon shells, we could change the dispersion state of
Cu to prepare two different types of catalysts: atomically dis-
persed Cu catalyst (denoted as Cu1/ND@G) and Cu-cluster
catalyst (denoted as Cun/ND@G). Importantly, both of them
have identical Cu loading amount (0.25 wt%). From X-ray dif-
fraction (XRD) profiles (see Supplementary Fig. 5), no diffraction
associated with bulk Cu was detected on both catalysts,
demonstrating that the Cu species were highly dispersed over the
substrate surface. Further structural analysis of the catalysts (see
Supplementary Table 1) revealed that no obvious differences in
chemical structure were found between Cu1/ND@G and Cun/
ND@G except for the dispersion of Cu species. The aberration-
corrected high-angle annular dark-field scanning transmission
electron microscopic (HAADF-STEM) images showed that the
Cu1/ND@G catalyst was consisted of isolated bright spots,
indicating the atomically dispersed Cu species on ND@G
(Fig. 1c, d). In contrast, for Cun/ND@G, the Cu species was
dominated by Cu clusters, together with a small amount of
atomically dispersed Cu (see Fig. 1e, f). In good agreement with
the results of TEM, Cu dispersion state observed by N2O titra-
tion (99.8% for Cu1/ND@G and 85.2% for Cun/ND@G, see
Supplementary Table 1) further confirmed that the two catalysts,
sharing the same Cu loading, have different atomic dispersion
states.

The X-ray adsorption fine structure (XAFS) measurement was
employed to further investigate the distinct structure of Cu
species. Clearly, the near-edge feature of Cu1/ND@G or Cun/
ND@G samples was in between of those of Cu foil and CuO
(Fig. 2a), indicating that the Cu species were partially positively
charged (Cuδ+, 0 < δ < 2). Fourier-transformed k2-weighted
extended X-ray absorption fine structure (EXAFS) in R space
was performed to elucidate the coordination environments of Cu
atoms anchored on ND@G. For Cu1/ND@G, the only distinct
scattering was observed at 1.5 Å that corresponds to the first
coordination shell of Cu-C or Cu-O. This evidences the single
atom Cu on ND@G through Cu-C bonding, which is further
verified by the appearance of Cu-C peak at 283 eV in C 1s XPS
spectrum after Cu was loaded on ND@G (Fig. 3a)32. In contrast,
for Cun/ND@G, besides the scattering of Cu-C at 1.5 Å, a major
peak at 2.2 Å that ascribed to Cu-Cu scattering could be observed,
indicating the formation of Cu clusters. A wavelet transformation
(WT) of Cu k-edge EXAFS oscillations also displayed the
dispersion of Cu in both samples visually in both k and R
spaces. Figure 2c, d are the WT contour plots of Cu1/ND@G and
Cun/ND@G that showed a Cu-C back-scattering contribution
near 1.5 Å, indicating that both Cu1 and Cun were anchored on
ND@G through the Cu-C bonding. However, as shown in Fig. 2d,
another peak at 2.2 Å in Cun/ND@G, which is associated with the
Cu-Cu scattering, further verified the dispersion state of Cu
clusters.

XPS was used to study the valence states of Cu in two catalysts
(Fig. 3b). For Cu1/ND@G, the Cu 2p3/2 peak appeared at 933.7 eV,
situated between Cu0/Cu+ (932.4 eV) and Cu2+ (934.6 eV)33,34,
which is consistent with the XANES results (Fig. 2a and
Supplementary Fig. 6). The results imply that the Cu species in
Cu1/ND@G interact strongly with the substrate. Through Cu-C
bonds, an elevated chemical valence of single atom Cu species due
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to charge transferred from Cu atoms to substrate could be
observed, which was absent on Cun/ND@G due to the similar
properties between Cu clusters and bulk Cu.

Quantitative chemical configuration analysis of Cu1/ND@G
and Cun/ND@G were carried out through the least-squared
EXAFS fitting. The R-space fitting results are shown in Fig. 2e and
Supplementary Fig. 9, and the corresponding structure para-
meters are listed in Supplementary Table 2. The coordination
number of the center Cu atom with surrounding C atoms on Cu1/
ND@G was 3.1, and the mean bond length of Cu-C was 1.94 Å.
Based on these results, the proposed local atomic structure of Cu
was constructed as that in Fig. 2f. The isolated Cu atom was
anchored over the defective sites of graphene through bonding
with three C atoms.

Acetylene hydrogenation performance over Cu1/ND@G and
Cun/ND@G. Selective hydrogenation of acetylene was carried out
using Cu1/ND@G and Cun/ND@G, respectively, to gain insight
into the impact of the atomic structure and spatial arrangement
of Cu over the catalytic performance. The conversion and selec-
tivity as a function of temperature over these two catalysts are
shown in Fig. 4a. For aggregated Cu species in Cun/ND@G, the
conversion was still <20% even at 200 °C. Significantly, Cu1/
ND@G manifested robust catalytic activity and remarkably high
selectivity toward ethylene (see Fig. 4a). The conversion of acet-
ylene reached 95% at 200 °C, with ethylene selectivity of 98%. We
further compared the intrinsic activity of two catalysts, as shown
in Fig. 4b. Cu1/ND@G showed a high TOF of 0.0017 s−1 (4.25
times higher than that of Cun/ND@G) and a high ethylene yield

d = 0.20 nm
Diamond (111)

d = 0.34 nm
Graphite (002)

a b

c d

e f

Fig. 1 TEM characterization of ND@G support and Cu1/ND@G and Cun/ND@G catalysts. a HRTEM image of ND@G nanocarbon support. Scale bar, 5 nm.
b HAADF-STEM image of Cu1/ND@G at low magnification. Scale bar, 20 nm. c HAADF-STEM images of Cu1/ND@G at low magnification. Scale bar, 5 nm.
d HAADF-STEM images of Cu1/ND@G at high magnification. Scale bar, 2 nm. e HAADF-STEM images of Cun/ND@G at low magnification. Scale bar, 5
nm. f HAADF-STEM images of Cun/ND@G at high magnification. Scale bar, 2 nm. (The inset attached to b is diamond’s diffraction rings’ image. Atomically
dispersed Cu atoms are highlighted by white circles in d and Cu clusters are highlighted by orange squares in f.)
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of 93.1%, showing competitive advantages over former results
[<90%] (see Supplementary Table 3 and Supplementary Fig. 10).
Apparent activation energies (Ea) of the Cu1/ND@G and Cun/
ND@G catalysts were 41.9 and 54.3 kJ/mol, respectively (see
Fig. 4c), suggesting the superiority of atomically dispersed Cu
catalysts. The stability of Cu1/ND@G catalyst was found to be
excellent. As shown in Fig. 4d, the conversion and selectivity at
200 °C over Cu1/ND@G remained steady at 95% and 98%,
respectively, for at least 60 h under reaction conditions. The
atomic structure of the Cu1/ND@G catalyst was well maintained
(see Supplementary Figs. 7–9 and Supplementary Tables 1 and 2)
during the stability test. Meanwhile, under the reaction conditions
where the conversion is high enough to meet the industrialization

requirement (see Supplementary Fig. 11), Cu1/ND@G remained
stable for at least 30 h.

DFT calculations. To better understand the nature of the
superior acetylene hydrogenation activity of Cu1/ND@G, the
reaction process was studied by DFT. The details of the com-
putational simulation methods can be found in the “Methods”
section. Cu1 supported over graphene layer (Cu1@Gr) was used to
model the Cu1/ND@G catalyst, while a Cu13 cluster on ND@G to
model the Cun/ND@G catalyst. The computational details are
summarized in Supplementary Information, including all of the
possible binding modes of different adsorbates on the catalytic
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Fig. 2 Synchrotron XAFS measurements of Cu1/ND@G and Cun/ND@G catalysts. a Cu k-edge XANES profiles for Cu1/ND@G, Cun/ND@G, Cu foil, and
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surfaces. The energy profiles (including the entropy contribution)
for the catalysis of Cu1/ND@G are shown in Fig. 5. On Cu1/
ND@G, the adsorption energy of acetylene on Cu atoms is
−1.19 eV (see Supplementary Table 4). Then the molecular
hydrogen undergoes dissociative adsorption. This step is exo-
thermic by 0.36 eV with an energy barrier of 1.36 eV (from B to
C), which is the rate determining step (RDS) for acetylene
hydrogenation. On the Cu13 cluster catalyst, the barrier of RDS is
1.50 eV (see Supplementary Fig. 14), implying that the cluster
catalyst is less active than the Cu1 catalyst (see Supplementary
Fig. 16). More importantly, the transition-state energy of ethylene
hydrogenation on Cu1/ND@G (TS2, 1.27 eV) is above the energy
of gas-phase ethylene (1.08 eV), suggesting that ethylene favors
desorption over further hydrogenation in the following step. In
another word, the high selectivity of acetylene hydrogenation here

is due to the priority of ethylene desorption at the atomically
dispersed Cu sites of Cu1/ND@G. This calculated result is con-
sistent with the observed difference in catalytic performance
between Cu1/ND@G and Cun/ND@G.

Discussion
In summary, we synthesized an atomically dispersed Cu1/ND@G
catalyst for acetylene semihydrogenation reaction. It exhibited
remarkably outstanding acetylene conversion (~95%), ethylene
selectivity (~98%), and stability (>60 h), exceeding the Cu-cluster
catalyst with the same Cu loading. The unique bonding structure
and electronic property of Cu atoms on Cu1/ND@G facilitate the
acetylene activation and ethylene desorption, which clearly elu-
cidates the importance of isolated Cu atoms in catalysts for high-
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performance acetylene semihydrogenation. Our results and con-
clusions pave the way for rational design of promising non-noble
catalysts for hydrogenation processes.

Methods
Materials. ND powders were purchased from Beijing Grish Hitech Co., Ltd, China.
Copper (II) nitrate trihydrate (Cu(NO3)2·3H2O) was the analytical reagent and
purchased from Sinopharm Chemical Reagent Co., Ltd, China. Deionized (DI)
water with the specific resistance of 18.25 MΩ cm was used in all our experiments.

Preparation of ND@G. ND@G was prepared by annealing ND powders at 1100 °C
(heating rate 5 °C min−1) for 4 h under flowing Ar gas (100 mLmin−1) and then
naturally cooled to room temperature. The as-prepared products were further
purified by hydrochloric acid for 24 h and then washed with DI water. Finally, the
ND@G nanocarbon support was obtained after drying in vacuum at 60 °C for 24 h.

Preparation of Cu1/ND@G and Cun/ND@G. Typically, 200 mg ND@G was
dispersed into 30 mL DI water in a 100-mL round-bottom flask, and the mixture
was ultrasonically treated for 30 min to obtain a homogeneous suspension. Then
the pH value of ND@G support suspension was adjusted to about 11 by dropping
0.25M Na2CO3 solution. Afterwards, 4 mL Cu(NO3)2·3H2O solution (containing
0.125 mgmL−1 Cu) was introduced into ND@G support suspension dropwise
under magnetic stirring at 100 °C in oil bath and then kept stirring for 1 h. At the
end, the mixture was naturally cooled to room temperature, collected by filter,
washed several times with DI water, and dried in vacuum at 60 °C for 12 h.

The catalysts were reduced in H2 (10 vol% in He, flow rate= 50 mLmin−1) at
200 °C for 1 h to yield Cu1/ND@G and at 600 °C for 1 h to obtain Cun/ND@G. The
catalysts after the 60-h reaction were denoted as Cu1/ND@G-60h and Cun/ND@G-
60h, respectively.

Catalyst characterization methods. HRTEM images were taken by a FEI Tecnai
G2 F20 working at 200 kV. Atomic resolution STEM images were recorded by a
JEOL JEM ARM 200CF aberration-corrected cold field-emission scanning trans-
mission electron microscope at 200 kV. XPS were carried out on ESCALAB 250
instrument with Al Kα X-rays (1489.6 eV, 150W, 50.0 eV pass energy) and the C 1s
peak at 284.6 eV as internal standard. XRD patterns were collected by using an X-
ray diffractometer (Bruker Smart APEX II) using a Cu Kα source at a scan rate of
2° min−1. N2 physisorption were measured at −196 °C using a Micrometrics
ASAP-2020 instrument. The porosity of samples was obtained through
Brunauaer–Emmetr–Teller analysis with the pore volume measured at p/p0= 0.99,
and the pore size distribution was analyzed by BJH method from desorption
branch. The dispersion of Cu species on catalysts was measured by a surface
oxidation–reduction method on a AutoChem II 2920 apparatus. Typically, 200 mg
sample was loaded in a quartz U-tube. After pretreatment with He at 100 °C for 30
min, the sample was reduced with 10 vol% H2 in Ar at 200 °C for 1 h (flow rate=
30 mLmin−1) and cooled to 90 °C in He flow. Then 10 vol% N2O in He was
introduced into the tube and kept for 3 h at 90 °C (flow rate= 30 mLmin−1). The
sample was purged with He again and cooled to 50 °C, and then the sample was

reduced with 10 vol% H2 in Ar (flow rate= 30 mLmin−1) from 50 °C to 450 °C
with a heating rate of 10 °C min−1. Ultraviolet-Raman spectroscopy was performed
on powder samples by using HORIBA LabRam HR Raman spectrometer, and the
excitation wavelength was 325 nm with a power of 0.2 mW (exposure 90 s, accu-
mulate 3 times). XAFS measurements were carried out at Shanghai Synchrotron
Radiation Facility. Elemental analysis of copper in the solid catalysts was detected
by inductively coupled plasma–atomic emission spectrometry (Optima 8300 DV).

Catalytic performance tests. The selective hydrogenation activity of the catalysts
was conducted in a quartz-bed flow reactor for acetylene hydrogenation with 200 mg
catalysts. A gas mixture of 1 vol% C2H2, 10 vol% H2, and 20 vol% C2H4 with He
balance (flow rate= 10mLmin−1, GHSV= 3000mL g−1 h−1) was introduced,
followed by ascending temperature testing. Gas chromatograph (GC) injections were
done at each temperature after stabilization for 30min. The reactants and products
were analyzed by GC (Agilent 7890 A) equipped with a flame ionization detector and
a HP-PLOT AL/S (HP-plot 19091 P-S15, Agilent, 50 m × 0.32mm× 8 μm) capillary
column with He as the carrier gas.

Acetylene conversion and selectivity to ethylene were calculated as the
following:

Conversion ¼ C2H2 feedð Þ � C2H2

C2H2
´ 100% ð1Þ

Selectivity ¼ 1 � C2H6 þ 2C4 olefin
C2H2 feedð Þ � C2H2

� �
´ 100% ð2Þ

Computational simulations of the catalytic mechanisms by Cu1/ND@G and
Cun/ND@G. All of the catalytic structures were obtained by the geometry opti-
mizations using the plane-wave-based DFT method implemented in the Vienna Ab
Initio Simulation Package35,36. We describe the electron–ion interaction using the
projector augmented wave method37,38. The generalized gradient approximation
and the Perdew–Burke–Emzerhof functional39,40 describes the exchange and cor-
relation energies for all systems. All the calculations take spin polarized into
consideration. The plane-wave expansion of the wave functions adopted an energy
cutoff of 400 eV. The Monkhorst–Pack k-point was set to 3 × 3 × 1 in the reciprocal
lattice. The convergence criteria for electronic self-consistent interactions is 10−5.
The geometries of bulk and surface were optimized by the conjugate gradient
algorithm until the maximum force on any ion was <0.03 eV Å−1, where all the
atoms in the catalyst and adsorbate were fully relaxed. The most stable config-
urations of the reactant and intermediates on Cu1@Gr were determined by using
the climbing image nudged elastic band method41, and vibrational frequencies
were analyzed to ensure the transition state with only one imaginary frequency.

Data availability
The data supporting this article and other findings are available from the corresponding
authors upon request. The source data underlying Figs. 2a, b, e, 3a, b, 4a–d, and 5 and
Supplementary Figs. 2a, b, 3a–c, 4a–f, 5, 6, 7a, b, 8a, b, 10, 11, 14, 15, and 16 are provided
as a Source Data file.

Received: 9 May 2019; Accepted: 11 September 2019;

References
1. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective

hydrogenation of acetylene. Science 320, 1320–1322 (2008).
2. Teschner, D. et al. Understanding palladium hydrogenation catalysts: when

the nature of the reactive molecule controls the nature of the catalyst active
phase. Angew. Chem. Int. Ed. 47, 9274–9278 (2008).

3. Chan, C. W. A. et al. Interstitial modification of palladium nanoparticles with
boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 5,
5787–5795 (2014).

4. Studt, F. et al. On the role of surface modifications of palladium catalysts in
the selective hydrogenation of acetylene. Angew. Chem. Int. Ed. 47, 9299–9302
(2008).

5. López, N. & Vargas-Fuentes, C. Promoters in the hydrogenation of alkynes in
mixtures: insights from density functional theory. Chem. Commun. 48,
1379–1391 (2012).

6. Pei, G. X. et al. Ag alloyed Pd single-atom catalysts for efficient selective
hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5,
3717–3725 (2015).

7. Vilé, G. et al. A stable single-site palladium catalyst for hydrogenations.
Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

8. Huang, F. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for
selective hydrogenation of acetylene. J. Am. Chem. Soc. 140, 13142–13146 (2018).

–4

–3

–2

–1

0

1

E
ne

rg
y 

(e
V

)

Reaction coordinate

A

TS1

C

D

TS2

E

F G

B

C2H4 (g)

C2H6 (g)

C2H2 (g)

1.36 eV

1.08 eV

1.27 eV

B) C2H2* C) C2H3* + H* D) C2H4*

E) C2H5* + H*

F) C2H6*

TS1

TS2

Fig. 5 Energy profile of acetylene hydrogenation on the Cu1/ND@G catalyst
and the structures of intermediates and transition states. Color code: Cu
(orange), C in graphene (black), C in reactant/intermediates/product
(gray), and H (white)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12460-7

6 NATURE COMMUNICATIONS |         (2019) 10:4431 | https://doi.org/10.1038/s41467-019-12460-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


9. Lin, R. et al. Design of single gold atoms on nitrogen-doped carbon for
molecular recognition in alkyne semi-hydrogenation. Angew. Chem. Int. Ed.
131, 514–519 (2019).

10. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to
thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

11. Huang, X. et al. Enhancing both selectivity and coking-resistance of a single-
atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 10, 1302–1312
(2017).

12. Vilé, G., Bridier, B., Wichert, J. & Pérez-Ramírez, J. Ceria in hydrogenation
catalysis: high selectivity in the conversion of alkynes to olefins. Angew. Chem.
Int. Ed. 51, 8620–8623 (2012).

13. Vilé, G., Colussi, S., Krumeich, F., Trovarelli, A. & Pérez-Ramírez, J. Opposite
face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angew.
Chem. Int. Ed. 53, 12069–12072 (2014).

14. Werner, K. et al. Toward an understanding of selective alkyne hydrogenation
on ceria: on the impact of O vacancies on H2 interaction with CeO2(111). J.
Am. Chem. Soc. 139, 17608–17616 (2017).

15. Cao, T. et al. An in situ DRIFTS mechanistic study of CeO2-catalyzed
acetylene semihydrogenation reaction. Phys. Chem. Chem. Phys. 20,
9659–9670 (2018).

16. Padole, M. C. et al. Adsorption of C2 gases over CeO2-based catalysts:
synergism of cationic sites and anionic vacancies. Phys. Chem. Chem. Phys. 19,
14148–14159 (2017).

17. Tejeda-Serrano, M. et al. Synthesis of supported planar iron oxide
nanoparticles and their chemo- and stereoselectivity for hydrogenation of
alkynes. ACS Catal. 7, 3721–3729 (2017).

18. Tejeda-Serrano, M. et al. Isolated Fe(III)-O sites catalyze the hydrogenation of
acetylene in ethylene flows under front-end industrial conditions. J. Am.
Chem. Soc. 140, 8827–8832 (2018).

19. Lin, L. et al. Low-temperature hydrogen production from water and methanol
using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

20. Li, T. et al. Maximizing the number of interfacial sites in single-atom catalysts
for the highly selective, solvent-free oxidation of primary alcohol. Angew.
Chem. Int. Ed. 57, 7795–7799 (2018).

21. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat.
Chem. 3, 634–641 (2011).

22. Lee, B.-H. et al. Reversible and cooperative photoactiviation of single-atom
Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019).

23. Derita, L. et al. Structural evolution of atomically dispersed Pt catalysts
dictates reactivity. Nat. Mater. 18, 746–751 (2019).

24. Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst
for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361
(2019).

25. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing
homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707
(2018).

26. Qiao, B. et al. Highly efficient catalysis of preferential oxidation of CO
in H2-rich stream by gold single-atom catalysts. ACS Catal. 5, 6249–6254
(2015).

27. Lin, J. et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water
gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

28. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for
preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

29. Riley, C. et al. Design of effective catalysts for selective alkynes hydrogenation
by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 140,
12964–12973 (2018).

30. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective
heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

31. Pei, G. X. et al. Performance of Cu-alloyed Pd single-atom catalyst for
semihydrogenation of acetylene under simulated front-end conditions. ACS
Catal. 7, 1491–1500 (2017).

32. Jasson, U. et al. Design of carbide-based nanocomposite thin films by selective
alloying. Surf. Coat. Technol. 206, 583–590 (2011).

33. Qu, Y. et al. Direc transformation of bulk copper into copper single sites via
emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).

34. Gong, J. et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts
with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 134, 13922–13925
(2012).

35. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab inito total-
energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186
(1996).

36. Kresse, G. & Furthmüller, J. Effeciency of ab-inito total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.
6, 15–50 (1996).

37. Blӧchl, P. E. Projector augmented-wave method. Phys. Rev. B 50,
17953–17979 (1994).

38. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

40. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

41. Graeme, H., Uberuaga, B. P. & Hannes, J. A climbing image nudged elastic
band method for finding saddle points and minimum energy paths. J. Chem.
Phys. 113, 9901–9904 (2000).

Acknowledgements
This work was supported by the Ministry of Science and Technology (2016YFA0204100,
2017YFB0602200), the National Natural Science Foundation of China (91845201,
21573254, 91545110, 21725301, 91645115, 21932002 and 21473003), the Joint Fund of
National Natural Science Foundation of China (U1732667), the Youth Innovation
Promotion Association, and Chinese Academy of Science (CAS). N.W. hereby
acknowledges the funding support from the Research Grants Council of Hong Kong
(Project Nos. C6021-14E and 16306818). The XAS experiments were conducted in
Shanghai Synchrotron Radiation Facility (SSRF).

Author contributions
H.L. and D.M. conceived the research. F.H. conducted material synthesis and carried out
the catalytic performance test. Y.D., Z.J. and M.P. conducted the X-ray absorption fine
structure spectroscopic measurements and analyzed the data. M.P. and J.X. conducted
the X-ray photoelectron spectroscopy. Y.C. and X.W. performed the DFT calculations.
X.C. and N.W. contributed to the aberration-corrected high-angle annular dark-field
scanning transmission electron microscopy. Z.J. performed some of the experiments. The
manuscript was primarily written by F.H., Y.D., H.L. and D.M. and revised by D.X. All
authors contributed to discussions and manuscript review.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-12460-7.

Correspondence and requests for materials should be addressed to Z.J., H.L. or D.M.

Peer review information Nature Communications thanks Antonio Leyva-Pérez and the
other anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12460-7 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4431 | https://doi.org/10.1038/s41467-019-12460-7 | www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-019-12460-7
https://doi.org/10.1038/s41467-019-12460-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Anchoring Cu 1 species over nanodiamond-graphene for semi-hydrogenation of acetylene
	Publisher Citation
	Comments

	Authors

	Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene
	Results
	Synthesis and characterization of Cu1/ND@G and Cun/ND@G
	Acetylene hydrogenation performance over Cu1/ND@G and Cun/ND@G
	DFT calculations

	Discussion
	Methods
	Materials
	Preparation of ND@G
	Preparation of Cu1/ND@G and Cun/ND@G
	Catalyst characterization methods
	Catalytic performance tests
	Computational simulations of the catalytic mechanisms by Cu1/ND@G and Cun/ND@G

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


