Solving the electronic structure from a generalized or standard eigenproblem
is often the bottleneck in large scale calculations based on Kohn-Sham
density-functional theory. This problem must be addressed by essentially all
current electronic structure codes, based on similar matrix expressions, and by
high-performance computation. We here present a unified software interface,
ELSI, to access different strategies that address the Kohn-Sham eigenvalue
problem. Currently supported algorithms include the dense generalized
eigensolver library ELPA, the orbital minimization method implemented in
libOMM, and the pole expansion and selected inversion (PEXSI) approach with
lower computational complexity for semilocal density functionals. The ELSI
interface aims to simplify the implementation and optimal use of the different
strategies, by offering (a) a unified software framework designed for the
electronic structure solvers in Kohn-Sham density-functional theory; (b)
reasonable default parameters for a chosen solver; (c) automatic conversion
between input and internal working matrix formats, and in the future (d)
recommendation of the optimal solver depending on the specific problem.
Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800
basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table