593 research outputs found
Aggressive display and territoriality of the bateleur Terathopius ecaudatus
Bateleurs exhibit an aggressive display to conspecifies that incorporates an ‘attack’ pattern; the display has a territorial function because it drives intruders away from the nest, usually by a gain in altitude by the intruder. Resident breeding adults typically displayed at adults of the same sex or any of the non-adult age-classes, and each sex displayed equally often. The intensity of adult aggression was highest during the incubation period and decreased thereafter. Territories were maintained throughout the year, even after breeding failure and in non-breeding years. Bateleurs seem to maintain territories mainly for feeding, but other causes of territory formation, such as mate, progeny or nest-site protection, are not discounted. The intensity of adult aggression towards non-adults may influence non-adult movements, local distribution, and abundance. Aggression by non-adults was infrequent and was considered to be ‘play’ behaviour
Convex recovery of a structured signal from independent random linear measurements
This chapter develops a theoretical analysis of the convex programming method
for recovering a structured signal from independent random linear measurements.
This technique delivers bounds for the sampling complexity that are similar
with recent results for standard Gaussian measurements, but the argument
applies to a much wider class of measurement ensembles. To demonstrate the
power of this approach, the paper presents a short analysis of phase retrieval
by trace-norm minimization. The key technical tool is a framework, due to
Mendelson and coauthors, for bounding a nonnegative empirical process.Comment: 18 pages, 1 figure. To appear in "Sampling Theory, a Renaissance."
v2: minor corrections. v3: updated citations and increased emphasis on
Mendelson's contribution
Observations on the post-natal development of the tiny musk shrew, Crocidura bicolor
Crocidura bicolor is the smallest of southern Africa's Crocidura shrews and little is known of its biology. A female, captured in the Kruger National Park, was observed giving birth to two young. The post-natal development of the young reported here was slower than the two previously published Incidences. Suggested reasons for the discrepancies are the differential diets of the mothers, their geographical origins and the smaller size of this female
Masses of ground and excited-state hadrons
We present the first Dyson-Schwinger equation calculation of the light hadron
spectrum that simultaneously correlates the masses of meson and baryon ground-
and excited-states within a single framework. At the core of our analysis is a
symmetry-preserving treatment of a vector-vector contact interaction. In
comparison with relevant quantities the
root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our
results is agreement between the computed baryon masses and the bare masses
employed in modern dynamical coupled-channels models of pion-nucleon reactions.
Our analysis provides insight into numerous aspects of baryon structure; e.g.,
relationships between the nucleon and Delta masses and those of the
dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians
Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co,
Ni, and Cu are presented, by using a quantum-chemical approach. We believe that
these are the first HFA results to have been done for crystalline 3d transition
metals. Our approach uses a linearized muffin-tin orbital calculation to
determine Bloch functions for the Hartree one-particle Hamiltonian, and from
these obtains maximally localized Wannier functions, using a method proposed by
Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and
two-particle Coulomb matrix elements are calculated. The resulting
second-quantized multi-band Hamiltonian with ab-initio parameters is studied
within the simplest many-body approximation, namely the unscreened,
self-consistent HFA, which takes into account exact exchange and is free of
self-interactions. Although the d-bands sit considerably lower within HFA than
within the local (spin) density approximation L(S)DA, the exchange splitting
and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger
in HFA than what is obtained either experimentally or within LSDA. The HFA
total energies are lower than the corresponding LSDA calculations. We believe
that this same approach can be easily extended to include more sophisticated
ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table
Looking into the matter of light-quark hadrons
In tackling QCD, a constructive feedback between theory and extant and
forthcoming experiments is necessary in order to place constraints on the
infrared behaviour of QCD's \beta-function, a key nonperturbative quantity in
hadron physics. The Dyson-Schwinger equations provide a tool with which to work
toward this goal. They connect confinement with dynamical chiral symmetry
breaking, both with the observable properties of hadrons, and hence provide a
means of elucidating the material content of real-world QCD. This contribution
illustrates these points via comments on: in-hadron condensates; dressed-quark
anomalous chromo- and electro-magnetic moments; the spectra of mesons and
baryons, and the critical role played by hadron-hadron interactions in
producing these spectra.Comment: 11 pages, 7 figures. Contribution to the Proceedings of "Applications
of light-cone coordinates to highly relativistic systems - LIGHTCONE 2011,"
23-27 May, 2011, Dallas. The Proceedings will be published in Few Body
System
State sampling dependence of the Hopfield network inference
The fully connected Hopfield network is inferred based on observed
magnetizations and pairwise correlations. We present the system in the glassy
phase with low temperature and high memory load. We find that the inference
error is very sensitive to the form of state sampling. When a single state is
sampled to compute magnetizations and correlations, the inference error is
almost indistinguishable irrespective of the sampled state. However, the error
can be greatly reduced if the data is collected with state transitions. Our
result holds for different disorder samples and accounts for the previously
observed large fluctuations of inference error at low temperatures.Comment: 4 pages, 1 figure, further discussions added and relevant references
adde
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
