In tackling QCD, a constructive feedback between theory and extant and
forthcoming experiments is necessary in order to place constraints on the
infrared behaviour of QCD's \beta-function, a key nonperturbative quantity in
hadron physics. The Dyson-Schwinger equations provide a tool with which to work
toward this goal. They connect confinement with dynamical chiral symmetry
breaking, both with the observable properties of hadrons, and hence provide a
means of elucidating the material content of real-world QCD. This contribution
illustrates these points via comments on: in-hadron condensates; dressed-quark
anomalous chromo- and electro-magnetic moments; the spectra of mesons and
baryons, and the critical role played by hadron-hadron interactions in
producing these spectra.Comment: 11 pages, 7 figures. Contribution to the Proceedings of "Applications
of light-cone coordinates to highly relativistic systems - LIGHTCONE 2011,"
23-27 May, 2011, Dallas. The Proceedings will be published in Few Body
System