18 research outputs found
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
© 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe
Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Strike-slip tectonics in the Pannonian basin based on seismic surveys at Lake Balaton
Strike-slip tectonics has been the dominant style of deformation during the neotectonic (Pliocene and Quaternary) evolution of the Pannonian basin. Main faults are exposed in the “island mountains” of the basin, but strike-slip tectonic features can be best studied in the basin fill by seismic data. Lake Balaton offers the opportunity to carry out high to ultra-high-resolution seismo-acoustic surveys to image stratigraphic and tectonic features in the central part of the Pannonian basin. Several campaigns in the lake using different acquisition techniques have resulted in more than 2000-km seismo-acoustic profiles with a range of resolutions and penetration depths. Interpretation of faults and folds shows a few kilometers wide shear zone below the lake in Late Miocene–Pliocene strata. This zone can be identified as the continuation of the Balatonfő line known onshore to the east of the lake. Mapping revealed a set of duplex structures and highlighted the importance of this shear zone in the formation of Lake Balaton. Comparison of our results to analogue clay models suggests that the observed shear zone is sinistral and the horizontal displacement is on the order of hundreds of meters. Looking at 3D industrial seismic data to the south of the lake, we suggest that the first-order Balaton line, which represents the continuation of Periadriatic line, is also sinistral and characterized by small horizontal displacement of about 1.0–1.5 km during Pliocene and Quaternary times. This indicates a 0.2–0.3 mm/year average slip rate, which is compatible with recent GPS measurements
Recommended from our members
Obliquity-driven mountain permafrost-related fluvial magnetic susceptibility cycles in the Quaternary mid-latitude long-term (2.5 Ma) fluvial Maros Fan in the Pannonian Basin
Magnetic susceptibility (SUS) of the Quaternary long-term mid-latitude Maros fluvial fan (Pannonian Basin) was recorded to understand the stratigraphic features of source proximal fluvial depositional settings. Three fully cored 500 m deep boreholes were sampled with 0.5 m intervals; low field and frequency dependent magnetic susceptibility were measured, and complementary hysteresis and SEM-EDAX investigations were performed on selected samples. Logged SUS data were also used to log correlations established by a comparison of wireline log and laboratory measurements. The time-series analyses of the SUS records reveal the apparent occurrence of the ~41 ka frequency together with the customary ~100 ka cycles. Towards the source-distal sections the intensity of the ~41 ka cycles decreases, while that of the ~100 ka cycles remains strong. Stratigraphic and spectral similarities were observed between fluvial fan and loess SUS records ; however, based on complementary magnetic data, the magnetic phase of the Maros Fan sections is related to the detrital magnetite that originates from the catchment during early postglacial permafrost degradations. The amplification of the ~41 ka cycles revealed can be attributed to the very high SUS values in source proximal settings and to the special stratigraphic feature of the distributive fluvial settings. This comprises the increased avulsion frequency on the fluvial fans in ‘glacial recession periods’, in concert with the ‘early postglacial’ occurrence of the permafrost-related magnetite originated from the catchment. As a local phenomenon, this is significant since it records the obliquity-driven variations of permafrost development in a catchment. However, fluvial and alluvial fans are widespread depositional landforms within the Eurasian Mountains and were possibly the same during the Quaternary deglaciations. Thus, obliquity-driven SUS variations of source-proximal fan deposits attached or adjacent to regions of loess deposition should also be considered when scanning for potential source material of aeolian deposits