103 research outputs found

    Lietuvių populiacijos struktūros įvertinimas pagal etnolingvistines grupes

    Get PDF
    The studies about the homogeneity of the Lithuanian population according to ethnolinguistic groups were carried out in various areas – psychological, anthropological, genetic, etc. From diverse research results, we know that the ethnic Lithuanian population is not homogeneous. For the analysis of the Lithuanian population according to ethnolinguistic groups, one should first know the population structure according to the mentioned groups so that a two-stage stratified random sample could be drawn. As to author’s knowledge, there are no publications about the structure of the Lithuanian population by ethnolinguistic groups. Statistics Lithuania does not produce such information. In the paper, the expert estimation of the Lithuanian population structure by ethnolinguistic groups is provided, based on annual population figures at the beginning of the year (2001–2013) from Statistics Lithuania. According to final 2001 and preliminary 2011 population census data, it was calculated that the ethnic Lithuanian population consists of 24.5 per cent of žemaičiai and 75.5 per cent of aukštaičiai. The latter is rather the estimation of the Lithuanian population structure living in the ethnolinguistic areas than the structure of the Lithuanian population by ethnolinguistic groups. Therefore, the results obtained should be used as an approximate estimate of the Lithuanian population structure by ethnolinguistic groups in empirical studies.Lietuvių populiacijos struktūros pagal etnolingvistines grupes homogeniškumo vertinimai vykdomi įvairiais aspektais: psichologiniais, antropologiniais, genetiniais ir pan. Iš mokslinių tyrimų rezultatų žinome, kad lietuvių populiacija nėra homogeniška. Nagrinėdami populiacijų tyrimus pagal etnolingvistines grupes, pirmiausia turėtume žinoti populiacijos struktūrą pagal minėtas grupes, kad galėtume sudaryti dvipakopę atsitiktinę sluoksninę imtį. Autorių žiniomis, nėra publikacijų, kuriuose būtų įvertinta lietuvių populiacijos struktūra pagal etnolingvistines grupes. Lietuvos statistikos departamentas tokios informacijos nerengia. Šiame straipsnyje pateiktas ekspertinis Lietuvių populiacijos struktūros įvertinimas pagal etnolingvistines grupes. Pagal Lietuvos statistikos departamento gyventojų skaičiaus metų pradžioje duomenis pagal administracines teritorijas ir atsižvelgiant į galutinius 2001 m. ir preliminarius 2011 m. Lietuvos Respublikos visuotinio gyventojų ir būstų surašymo rezultatus, apskaičiuota, kad lietuvių populiaciją sudaro 24,5 procento žemaičių (8,9 proc. šiaurės žemaičių, 7,4 proc. pietų žemaičių ir 8,2 proc. vakarų žemaičių) ir 75,5 procento aukštaičių (32,7 proc. rytų aukštaičių, 7,7 proc. pietų aukštaičių ir 35,1 proc. vakarų aukštaičių). Šis įvertinimas labiau atspindi lietuvių, gyvenančių etnolingvistinėse teritorijose, struktūrą nei lietuvių populiacijos pagal etnolingvistines grupes struktūrą, todėl praktiniuose tyrimuose gautieji rezultatai turėtų būti naudojami kaip apytikslis lietuvių populiacijos pagal etnolingvistines grupes struktūros įvertinimas

    Diagnostic Testing in Epilepsy Genetics Clinical Practice

    Get PDF
    Changing landscape of epilepsy genetic testing gives vast opportunities to both patients and clinicians. Significance of precise genetic diagnosis in patients affected by epilepsy cannot be overestimated: it not only gives the opportunities of personalized therapeutical approaches but is also associated with multiple additional benefits for patients, their families, and society. Although the burden of Mendelian and chromosomal diseases amenable to current diagnostic testing measures is unknown, recently, we have comprised a database of more than 880 human genes associated with monogenic diseases involving epilepsy or seizures, EpiGene database (http://www.kimg.eu/en/tools/epigene-database). Besides, more than 50 chromosomal syndromes are related to epilepsy or seizures. Currently, there are no recommendations or guidelines for genetic testing in epilepsy patients addressing specificities of next-generation sequencing technologies. However, as every genetic testing modality has its own characteristics of specificity/sensitivity, range of clinical indications, and possible bioethical and psychosocial implications, genetic testing in epilepsies must be properly selected and applied along with proper clinical genetics/genetic counseling services. In this chapter, an overview of genetic testing modalities and workflows taking into account genetic architecture of epilepsies is given, and practical aspects of genetic testing in epilepsies, including advantages/limitations and clinical utility of tests, are discussed

    Association of BMP4 polymorphisms with non-syndromic cleft lip with or without cleft palate and isolated cleft palate in Latvian and Lithuanian populations

    Get PDF
    Cleft lip with or without cleft palate (CLP and CL, respectively) and isolated cleft palate (CP) represent one of the most common human birth defects, with a prevalence of approximately 1 in 300-2500 depending on the population. Formation of non-syndromic CL/CLP and CP arises from the interaction of environmental and genetic factors. The objective of this study was to investigate the association between the BMP4 gene (encoding bone morphogenetic protein 4) and non-syndromic CL/CLP and CP in order to clarify the role of this gene in the aetiology of the malformation in Latvian and Lithuanian populations. We genotyped three markers of the BMP4 gene (rs17563, rs2071047 and rs1957860) in order to perform single marker and haplotype association analyses for Latvian and Lithuanian non-syndromic CL/CLP and CP patients and controls. Transmission disequilibrium test was also conducted for Latvian and Lithuanian proband-parent trios. The case-control analysis revealed that SNP rs2071047 allele A was associated with a decreased risk of CL/CLP in the Latvian population, which was confirmed by the haplotype analysis. A modest association was detected between SNP rs1957860 and CP in the Lithuanian population, where allele C was associated with a decreased risk of this cleft phenotype, corroborating haplotype analysis data. Our findings support a role of the BMP4 gene in the aetiology of non-syndromic CL/CLP and CP in the studied populations.publishersversionPeer reviewe

    A European spectrum of pharmacogenomic biomarkers: Implications for clinical pharmacogenomics

    Get PDF
    Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant interpopulation pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective

    KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis.

    Get PDF
    Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kučinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore