563 research outputs found

    Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst

    Get PDF
    Electrocatalysts for oxygen reduction are a critical component that may dramatically enhance the performance of fuel cells and metal-air batteries, which may provide the power for future electric vehicles. Here we report a novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes, demonstrating higher electrocatalytic activity for oxygen reduction than the state-of-the-art Pt/C catalyst as well as exceptional durability during cycling in alkaline media. Theoretical calculations suggest that the rehybridization of Fe 3d orbitals with the ligand orbitals coordinated from the axial direction results in a significant change in electronic and geometric structure, which greatly increases the rate of oxygen reduction reaction. Our results demonstrate a new strategy to rationally design inexpensive and durable electrochemical oxygen reduction catalysts for metal-air batteries and fuel cells.close34

    Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction

    Get PDF
    A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl-2, Br-2 and I-2, respectively. High BET surface areas of 471, 579 and 662 m(2)/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination during the ball-milling and subsequent workup processes. The newly-developed XGnPs can be well dispersed in various solvents, and hence are solution processable. Furthermore, XGnPs showed remarkable electrocatalytic activities toward oxygen reduction reaction (ORR) with a high selectivity, good tolerance to methanol crossover/CO poisoning effects, and excellent long-term cycle stability. First-principle density-functional calculations revealed that halogenated graphene edges could provide decent adsorption sites for oxygen molecules, in a good agreement with the experimental observations.open271

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst

    Get PDF
    The production of hydrogen at a large scale by the environmentally-friendly electrolysis process is currently hampered by the slow kinetics of the oxygen evolution reaction (OER). We report a solid electrocatalyst α-Li2IrO3 which upon oxidation/delithiation chemically reacts with water to form a hydrated birnessite phase, the OER activity of which is five times greater than its non-reacted counterpart. This reaction enlists a bulk redox process during which hydrated potassium ions from the alkaline electrolyte are inserted into the structure while water is oxidized and oxygen evolved. This singular charge balance process for which the electrocatalyst is solid but the reaction is homogeneous in nature allows stabilizing the surface of the catalyst while ensuring stable OER performances, thus breaking the activity/stability tradeoff normally encountered for OER catalysts

    Chemisorbed Oxygen at Pt(111): a DFT Study of Structural and Electronic Surface Properties

    Get PDF
    Simulations based on density functional theory are used to study the electronic and electrostatic properties of a Pt(111) surface covered by a layer of chemisorbed atomic oxygen. The impact of the oxygen surface coverage and orientationally ordered interfacial water layers is explored. The oxygen adsorption energy decreases as a function of oxygen coverage due to the lateral adsorbate repulsion. The surficial dipole moment density induced by the layer of chemisorbed oxygen causes a positive shift of the work function. In simulations with interfacial water layers, ordering and orientation of water molecules strongly affect the work function. It is found that the surficial dipole moment density and charge density are roughly linearly dependent on the oxygen surface coverage. Moreover, we found that water layers exert only a small impact on the surface charging behavior of the surface

    Measurement of VH, H → b b ¯ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Cross-sections of associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the `simplified template cross-section' framework. The results are obtained using 79.8 fb-1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons
    corecore