107 research outputs found

    Every fifth published metagenome is not available to science

    Get PDF
    Have you ever sought to use metagenomic DNA sequences reported in scientific publications? Were you successful? Here, we reveal that metagenomes from no fewer than 20% of the papers found in our literature search, published between 2016 and 2019, were not deposited in a repository or were simply inaccessible. The proportion of inaccessible data within the literature has been increasing year-on-year. Noncompliance with Open Data is best predicted by the scientific discipline of the journal. The number of citations, journal type (e.g., Open Access or subscription journals), and publisher are not good predictors of data accessibility. However, many publications in high–impact factor journals do display a higher likelihood of accessible metagenomic data sets. Twenty-first century science demands compliance with the ethical standard of data sharing of metagenomes and DNA sequence data more broadly. Data accessibility must become one of the routine and mandatory components of manuscript submissions—a requirement that should be applicable across the increasing number of disciplines using metagenomics. Compliance must be ensured and reinforced by funders, publishers, editors, reviewers, and, ultimately, the authors.info:eu-repo/semantics/publishedVersio

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 10 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status. [Abstract copyright: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (&lt;0.1% to 38.3%), being positively correlated (p &lt; 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    Genomic microbial epidemiology is needed to comprehend the global problem of antibiotic resistance and to improve pathogen diagnosis

    Get PDF
    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ?-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (< 0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    Tackling antibiotic resistance: the environmental framework

    Get PDF
    Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment

    Pharmaceutical pollution of the world's rivers

    Get PDF
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals

    Evolution of atrazine-degrading capabilities in the environment

    No full text
    International audienceSince their first introduction in the mid 1950s, man-made s-triazine herbicides such as atrazine have extensively been used in agriculture to control broadleaf weed growth in different crops, and thus contributed to improving crop yield and quality. Atrazine is the most widely used s-triazine herbicide for the control of weeds in crops such as corn and sorghum. Although atrazine was initially found to be slowly and partially biodegradable, predominantly by nonspecific P450 monoxygenases which do not sustain microbial growth, microorganisms gradually evolved as a result of repeated exposure, started using it as a growth substrate and eventually succeeded in mineralizing it. Within three decades, an entirely new hydrolase-dependent pathway for atrazine mineralization emerged and rapidly spread worldwide among genetically different bacteria. This review focuses on the enzymes involved in atrazine mineralization and their evolutionary histories, the genetic composition of microbial populations involved in atrazine degradation and the biotechnologies that have been developed, based on these systems, for the bioremediation of atrazine contamination in the environment
    corecore