1,499 research outputs found

    ATLAS Pixel Detector System Test

    Get PDF
    On June 25th of 2007 the ATLAS collaboration lowered the pixel detector into place, however before this the detector had to be qualified through a series of tests. Prior to assembly, each individual piece of the detector and services chain passed a set of quality controls. This was followed by the construction and test of the whole pixel detector. This test of the full chain of services -including the voltage supplies, opto-boards, cooling, temperature monitoring, control software, and the pixel modules themselves- is referred to as the Pixel System Test. The System Test took place in an above-ground laboratory setting at CERN and consisted of two main parts. The first half of the test focused on one of the pixel detector’s endcaps. This endcap consists of 144 modules, making up roughly 10% of the total pixel detector. For the pixel endcap test, most of the 144 modules were operated simultaneously which required that the pixel endcap’s cooling system be functioning as well[1]. Additionally, four scintillators were added above and below the detector which trigged on cosmic muons. As a result, the pixel detector measured its first cosmic tracks during this test. After the cosmic test the pixel collaboration connected the entire pixel detector a few modules at a time. The cooling for the pixel detector could not be used in this setting, and to prevent overheating any componants only one chip was powered on at a time. This half of the system test is referred to as the connectivity test[3]

    Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

    Full text link
    The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4x10**12 ppp. Still, the Fermilab neutrino experiments call for even higher intensity of 5.5x10**12 ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Perceptual, mechanical and electromyographic responses to different relative loads in the parallel squat

    Get PDF
    The effectiveness of the OMNI-RES (0-10) and the electromyographic signal for monitoring changes in the movement velocity was examined during a set to muscular failure using different percentages of one repetition maximum (1RM) in the parallel squat exercise (PSQ). Twelve males (26.3 ± 5.8 years) were evaluated on eight separate days with 48 hours of rest between sessions. After determining the 1RM value, participants underwent seven tests until achieving muscular failure with the following percentage ranges: 30 to 90%. An optical rotary encoder measured mean accelerative velocity (MAV) and the OMNI-RES (0-10) scale was used to express the Rating of Perceived Exertion (RPE) after every repetition of each set. Additionally, the normalized root mean square (RMS) signal of the surface electromyography (N-EMG) was calculated for the vastus medialis muscle. The RPE expressed after the first repetition and when the maximum value of MAV was achieved along the sets was lower (p 0.8) than the RPE that corresponded to a 10% drop in MAV and at failure. Additionally, the initial RPE was useful to distinguish different loading zones by anchoring the OMNI-RES value to the magnitude of the relative load (<60%, 60 to <70% or ≤ 70% 1RM). Similar patterns were observed using the N-EMG. In conclusion, apart from differentiating between relative loads during a set to failure in the PSQ, the RPE and the N-EMG can both reflect changes associated with the initial, maximal, 10% drop in movement velocity and the muscular failure

    Measurements of single top quark production cross sections and |Vtb| in ppbar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present measurements of production cross sections of single top quarks in \ppbar collisions at s=1.96  TeV\sqrt{s}=1.96\;\rm TeV in a data sample corresponding to an integrated luminosity of 5.4  fb15.4\;\rm fb^{-1} collected by the D0 detector at the Fermilab Tevatron Collider. We select events with an isolated electron or muon, an imbalance in transverse energy, and two, three, or four jets, with one or two of them containing a bottom hadron. We obtain an inclusive cross section of \sigma({\ppbar}{\rargap}tb+X, tqb+X) = 3.43\pm^{0.73}_{0.74}\;\rm pb and use it to extract the CKM matrix element 0.79<Vtb10.79 < |V_{tb}| \leq 1 at the 95% C.L. We also measure \sigma({\ppbar}{\rargap}tb+X) = 0.68\pm^{0.38}_{0.35}\;\rm pb and \sigma({\ppbar}{\rargap}tqb+X) = 2.86\pm^{0.69}_{0.63}\;\rm pb when assuming, respectively, tqbtqb and tbtb production rates as predicted by the standard model.Comment: 11 pages, 8 figures, submitted to Phys. Rev.

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore