638 research outputs found

    Source of the Bursty Bulk Flow Diffuse Aurora: Electrostatic Cyclotron Harmonic and Whistler Waves in the Coupling of Bursty Bulk Flows to Auroral Precipitation

    Get PDF
    Electron cyclotron harmonic (ECH) and whistler chorus waves are recognized as the two mechanisms responsible for the resonant waveparticle interactions necessary to precipitate plasma sheet electrons into the ionosphere, producing the diffuse Aurora. Previous work has demonstrated ECH waves dominate electron scattering at L shells >8, while whistler chorus dominates scattering at L shells L 1, consistent with electron betatron acceleration. Here, however, we nd whistler chorus emissions throughout an interval of fast ows where Te,/Te,||< 1. Parallel electron beams account for the enhanced parallel electron temperature and serve as the instability mechanism for the whistler chorus. The parallel electron beams and associated cigarshaped distributions are consistent with Fermi acceleration at dipolarizations in fast ows. We demonstrate that the scattering efciency of the whistler chorus exceeds that of ECH waves, which THEMIS also detects during the fast ows. The obliquity of the whistler waves permits efcient scattering of lowerenergy electrons into the diffuse aurora. We conclude that Fermi acceleration of electrons provides one important freeenergy source for the waveparticle interactions responsible for coupling plasma sheet electrons into the diffuse aurora during substorm conditions

    Effects of Fermi energy, dot size and leads width on weak localization in chaotic quantum dots

    Full text link
    Magnetotransport in chaotic quantum dots at low magnetic fields is investigated by means of a tight binding Hamiltonian on L x L clusters of the square lattice. Chaoticity is induced by introducing L bulk vacancies. The dependence of weak localization on the Fermi energy, dot size and leads width is investigated in detail and the results compared with those of previous analyses, in particular with random matrix theory predictions. Our results indicate that the dependence of the critical flux Phi_c on the square root of the number of open modes, as predicted by random matrix theory, is obscured by the strong energy dependence of the proportionality constant. Instead, the size dependence of the critical flux predicted by Efetov and random matrix theory, namely, Phi_c ~ sqrt{1/L}, is clearly illustrated by the present results. Our numerical results do also show that the weak localization term significantly decreases as the leads width W approaches L. However, calculations for W=L indicate that the weak localization effect does not disappear as L increases.Comment: RevTeX, 8 postscript figures include

    Optimal Pricing and Ordering Policy under Permissible Delay in Payments

    Get PDF
    This study develops an inventory model to determine an optimal cycle time and optimal total annual profit for non-deteriorating items under permissible delay in payments. Mathematical models have been derived for obtaining the optimal cycle time and optimal price, so that the annual total profit is maximized. This paper also develops the model by considering particular cases (A) and (B) respectively. We obtain price and lot size simultaneously when supplier offers a permissible delay in payments. The demand rate is assumed to be a function of price and time. Finally, a numerical example is given to illustrate the proposed model. Key words: Pricing, Inventory, Permissible delay, Non- deterioration, Finance, Quantit

    Flux-rope twist in eruptive flares and CMEs : due to zipper and main-phase reconnection

    Get PDF
    Funding: UK Science and Technology Facilities CouncilThe nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.PostprintPublisher PDFPeer reviewe

    Search for electroweak production of single top quarks in ppˉp\bar{p} collisions.

    Get PDF
    We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv

    Search for new particles in the two-jet decay channel with the D0 detector

    No full text
    We present the results of a search for the production of new particles decaying into two jets in pbarp collisions at sqrt{s} = 1.8 TeV, using the DZero 1992-1995 data set corresponding to 109 pb^-1. We exclude at the 95% confidence level the production of excited quarks (q*) with masses below 775 GeV/c^2, the most restictive limit to date. We also exclude standard-model-like W' (Z') bosons with masses between 300 and 800 GeV/c^2 (400 and 640 GeV/c^2). A W' boson with mass << 300 GeV/c^2 has been excluded by previous measurements, and our lower limit is therefore the most stringent to date

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe
    corecore