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Abstract The nature of three-dimensional reconnection when a twisted flux tube erupts
during an eruptive flare or coronal mass ejection is considered. The reconnection has two
phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade,
parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main-phase recon-
nection” in the low corona around a flux rope during its eruption produces coronal loops and
chromospheric ribbons that propagate away from the PIL in a direction normal to it. One
scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of
roughly one turn (2π radians of twist), and then main-phase reconnection builds up the bulk
of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario
starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core
with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare
ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uni-
form twist to the twisted central core. Both phases and scenarios are modeled in a simple
way that assumes the initial magnetic flux is fragmented along the PIL. The model uses con-
servation of magnetic helicity and flux, together with equipartition of magnetic helicity, to
deduce the twist of the erupting flux rope in terms the geometry of the initial configuration.
Interplanetary observations show some flux ropes have a fairly uniform twist, which could
be produced when the zipper phase and any pre-existing flux rope possess small or moderate
twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up
to five turns), which could be produced when there is a pre-existing flux rope and an active
zipper phase that creates substantial extra twist.
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1. Introduction

The generally accepted overall scenario for an eruptive solar flare or coronal mass ejection
that we adopt here may be described as follows (e.g., Priest and Forbes, 2000, Priest, 2014).
During the pre-eruption phase, the magnetic configuration surrounding a solar prominence
consists of a highly sheared magnetic structure, which gradually evolves through a series of
force-free equilibria until it loses equilibrium or goes unstable and erupts. The eruption starts
slowly and then suddenly increases in speed. Reconnection is driven below the erupting
prominence, and the onset of reconnection is probably what allows the sudden increase in
speed, since it cuts loose some of the overlying field lines that had previously been holding
the prominence down. (Other points of view include the suggestions that: eruptions are
driven by Lorentz forces in the photosphere (Manchester et al., 2004); reconnection triggers
the eruption (Shibata and Magara, 2011); and that reconnection is not necessary (Chen,
2011).)

The magnetic field in and around the prominence may consist of a highly sheared field
or, more often, it is in the form of a flux rope (a twisted magnetic flux tube). The recon-
nection has the effect of either creating a new flux rope or enhancing the flux and twist
of a pre-existing flux rope (Gibson et al., 2004, 2006), since this is a natural consequence
of three-dimensional reconnection (Priest, Longcope, and Janvier, 2016) and the erupting
prominence is often observed to be much more highly twisted than was evident in its pre-
eruptive state (e.g., Mackay et al., 2010; Mackay and Yeates, 2012).

Previously, there have been many numerical magnetohydrodynamic (MHD) studies of
the build-up to, and initiation and evolution of, flares and CMEs (see e.g., Priest, 2014).
Ways of forming a flux rope include flux emergence (Archontis and Hood, 2008), flux can-
cellation (van Ballegooijen and Martens, 1989), quasi-separator or slip-running reconnec-
tion (Aulanier et al., 2010) and separator reconnection (Longcope and Beveridge, 2007).
Possible causes of the eruption include magnetic nonequilibrium (Priest and Forbes, 1990;
Forbes and Isenberg, 1991; Lin and Forbes, 2000), kink instability (Hood and Priest, 1979;
Fan and Gibson, 2003, 2004; Gibson et al., 2004; Török, Kliem, and Titov, 2004), torus
instability (Kliem and Török, 2006; Török and Kliem, 2005) or breakout (Antiochos, De-
Vore, and Klimchuk, 1999; DeVore and Antiochos, 2008). In particular, physical mecha-
nisms for the initiation and evolution of an eruption have been modeled numerically by
Linker et al. (2003), Gibson and Fan (2008), Fan (2010), Karpen, Antiochos, and DeVore
(2012), Aulanier, Janvier, and Schmieder (2012) and Titov et al. (2012). Also, the heating
rate in flare loops produced by reconnection has been predicted (Longcope et al., 2010) and
compared with Solar Dynamics Observatory observations (Qiu, Liu, and Longcope, 2012;
Li, Qiu, and Ding, 2014).

During the rise phase of a flare, Hα ribbons form, and during the main phase the ribbons
move apart and are joined by a series of hot flare loops, whose location rises as the flare
progresses and whose shear becomes smaller (Moore et al., 2001; Qiu et al., 2010; Cheng,
Kerr, and Qiu, 2012). As a coronal mass ejection (CME) propagates away from the Sun, it
may be observed as an interplanetary coronal mass ejection (ICME) or magnetic cloud (MC)
(Burlaga and Behannon, 1982; Burlaga, 1995; Lepping, Burlaga, and Jones, 1990; Lepping
et al., 1997), whose structure is that of a magnetic flux rope (Webb, 2000; Démoulin, 2008;
Vourlidas, 2014). Magnetic clouds possess a low plasma beta and a strong magnetic field
that rotates in direction. Indeed, it is likely that all ICMEs and MCs consist of flux ropes
(Gopalswamy et al., 2013). Initially, such interplanetary flux ropes were modeled as one-
dimensional linear force-free fields or uniform-twist fields (Farrugia et al., 1999; Dasso
et al., 2006), but more recently the observations have instead been compared with two-and-
a-half dimensional Grad–Shafranov models (Hu and Sonnerup, 2002; Hu et al., 2014). The
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lengths of such flux tubes have been estimated from measurements of electron travel-times
(Larson et al., 1997; Kahler, Haggerty, and Richardson, 2011) to be usually between 1 and
2 AU (Hu, Qiu, and Krucker, 2015).

Several authors have compared the properties of interplanetary flux ropes with those of
the erupting flux ropes at the Sun. Qiu et al. (2007) showed that the poloidal flux (Fp)
in magnetic clouds is roughly equal to the total reconnected flux (FR) at the Sun (Fp ≈
1.1F 0.8

R ), which is strongly suggestive that interplanetary flux ropes are formed mainly by
reconnection at the Sun during the initiation of the CME. Also, the axial (toroidal) flux (Ft)
is less than the reconnection flux (Ft ≈ 0.3F 1.2

R ). During a CME, regions of coronal images
darken, a process called “coronal dimming” (Harrison and Lyons, 2000), and such regions
are thought to map the feet of the erupting flux rope and the surrounding region, since the
erupting/opening process would allow plasma to escape outwards. Qiu et al. (2007) found
that the dimming flux (Fd) is roughly equal to the toroidal flux in the MC (Fd ≈ Ft) (see also
Webb, 2000).

Hu et al. (2014) extended the analysis to more events and suggested a division into two
possible types, which needs to be confirmed in the future, bearing in mind the many different
models that have been proposed (see, e.g., Dasso et al., 2007 for references). Hu et al. (2014)
found in their study that the twist either decreases with distance from the axis or is fairly
small and constant. Half of the interplanetary flux ropes (MCs) have a twist that is roughly
constant and is small (1.5 – 3 turns per AU), whereas the other half have a higher twist
(up to about 5 turns per AU) that is concentrated in the core of the flux rope. When the
eruption is associated with a prominence (or filament), the mean twist tends to be lower.
They also found that the sign of magnetic helicity in MCs is consistent with that of the
flaring coronal arcade and confirmed that the poloidal flux in MCs is roughly equal to the
measured reconnected flux in flares.

One puzzle that we aim to consider in this paper is the cause of these variations in
flux-rope twist, in particular what mechanisms could produce high twist in the core of
some events but a low uniform twist in others. Another puzzle is an observational one
that has been highlighted by Fletcher, Pollock, and Potts (2004) and Qiu (2009), namely,
that the reconnection during a flare or CME often has two distinct phases with different
characteristics (Yang et al., 2009; Qiu, 2009; Qiu et al., 2010), although sometimes the
two phases overlap. During the first phase (the rise phase of an event), the flare bright-
ening in Hα, EUV and hard X-rays starts at one point on each flare ribbon and the
two points spread rapidly in the same direction along the polarity inversion line (PIL)
by what we call here “zipper reconnection”. By contrast, during the main phase, the
flare ribbons move outwards in a direction normal to the PIL, by what we call “main-
phase reconnection”. The speed of spread along the PIL lies between 3 and 200 km s−1,
whereas the speed normal to the PIL starts very fast (at sometimes 100 km s−1) and
slows down later to as small as 1 km s−1. Sometimes, rather than being unidirectional,
the flare kernel motions are bidirectional in the sense that they may spread out from
one point in both directions along the ribbons (Su, Golub, and Van Ballegooijen, 2007;
Yang et al., 2009). Sometimes shear motion is observed, in the sense that conjugate foot-
points move in opposite directions: at the same time, the angle between the footpoints and
the polarity inversion line starts out small and increases as the flare progresses and the cor-
responding flare loops rotate. This, however, is different from the zipper effect of footpoints
moving in the same direction that we are modeling here. Shear motion is usually thought to
be associated with the progression of reconnection from low highly sheared fields to high
less-sheared fields that we are describing here as main-phase reconnection.

Various studies have been made of the spread of reconnection along the PIL (Vorpahl,
1976; Kitahara and Kurokawa, 1990; Fletcher and Warren, 2003; Krucker, Hurford, and



 25 Page 4 of 31 E.R. Priest, D.W. Longcope

Lin, 2003; Fletcher, Pollock, and Potts, 2004; Bogachev et al., 2005; Tripathi, Isobe, and
Mason, 2006; Su, Golub, and Van Ballegooijen, 2007; Li and Zhang, 2009; Qiu et al., 2010;
Cheng, Kerr, and Qiu, 2012). For example, Li and Zhang (2009) found half of the events
in their sample have a speed of 10 – 40 km s−1 in one direction (opposite to j ‖) along the
PIL, whereas the other half have speeds of 100 – 200 km s−1 that are either bidirectional (in
both directions from the starting point) or are in the same direction as j ‖. Aulanier et al.
(2000) describe the 1998 Bastille Day flare, and suggest the standard 2D model that the
formation of the flare ribbons is due to relaxation of field lines that have been blown open
by an eruption. In our scenario, this only refers to the transverse motion of the ribbons,
whereas the formation is associated with the zipping of a new flux rope (usually around a
pre-existing one).

Several 3D computations of flux rope eruptions followed by reconnection have been
described, but none of them, to our knowledge, have focused on the difference in the nature
of the reconnection and the motion of chromospheric brightenings during the rise and main
phases of the flare. For example, Amari et al. (2003) model the formation and eruption of
a twisted flux rope. They show that the magnetic helicity remains constant and describe
reconnection in the main phase. Fan and Gibson (2003, 2004, 2007) and Fan (2010) show
how eruption occurs by the kink or torus instability and how the reconnection builds up twist
in the flux rope during the main phase.

Furthermore, DeVore and Antiochos (2008) model an active region containing a coronal
null and show how multiple eruptions can be driven by the magnetic breakout scenario.
Also, Masson et al. (2009, 2012) and Aulanier et al. (2010) have proposed that the flipping
(or slipping) motion, which is a natural feature of 3D reconnection at a null point, separator
or quasi-separator, can account for motion of brightenings along ribbons. This seems an
excellent explanation for the shear motions in opposite directions reported in some flares by
Su, Golub, and Van Ballegooijen (2007) and Yang et al. (2009), but this is different from the
case of zipper motions in the same direction that we are modeling here.

New features we bring here are an explanation for the initial motion of flare brightenings
parallel to the PIL and a suggestion as to how the structure of the resulting twist in the
erupting flux rope arises and is related to the initial configuration and the two reconnection
phases.

Three explanations have previously been offered to explain the spreading of flare emis-
sion along the polarity inversion line. Bogachev et al. (2005) and Liu, Alexander, and Gilbert
(2009) described observations of hard X-ray sources and suggest that the flare acceleration
region is moving along the PIL (with which we agree), but they give no description of the
nature or consequences of the reconnection. Des Jardins et al. (2009) modeled the topology
of a flare with null points in which the hard X-ray sources move along a series of spines by
separator reconnection. Finally, Li and Zhang (2014, 2015) and Dudík et al. (2014, 2016)
considered flares without null points, but modeled the quasi-topology and the reconnection
in terms of quasi-separator (or slipping) reconnection. Our ideas build on the two latter ideas
by using concepts of magnetic helicity conservation to deduce the effect of either separa-
tor or quasi-separator reconnection on the build-up of twist in the erupting flux rope. We
deal with separator reconnection, but, if the null points are replaced by weak-field regions,
it simply becomes quasi-separator reconnection. In both cases, the reconnecting field lines
experience flipping motions.

We find that our model shows how zipper reconnection acting on a sheared arcade fol-
lowed by main-phase reconnection produces a core twist of at most 2π inside a region of
uniform twist, and this can naturally explain observed cases of low uniform twist. By con-
trast, zipper and main-phase reconnection acting on a twisted pre-existing flux rope can
naturally give rise to erupting flux ropes with high core twist.
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Figure 1 (a) The magnetic field
lines of a sheared arcade viewed
from above, whose footpoints are
indicated by dots and are located
either side of a polarity inversion
line (PIL). (b) The flux regions
viewed from above taking part in
the zipper and main phases of
reconnection.

Section 2 describes the initial state of the model, and Section 3 uses concepts of flux and
helicity conservation and equipartition proposed in Priest, Longcope, and Janvier (2016) to
model elementary reconnection events of two types, namely a “simple zippette” between
a pair of flux tubes in a sheared arcade and a “helical zippette” when the arcade overlies
an initial flux rope. Such helicity-conserving reconnection is also important in tokamaks
and for heating multi-threaded coronal loops (Browning et al., 2016; Hood et al., 2016).
Section 4 presents the model for 3D zipper reconnection, both for an initial sheared arcade
and for an initial arcade containing a flux rope, while Section 5 discusses the subsequent
main-phase reconnection.

2. Setting up the Model – the Initial State

Our approach is to set up a simple model to predict the twist in an erupting flux rope in
terms of the properties of the pre-eruptive state by imposing conservation of magnetic flux
and magnetic helicity and equipartition of magnetic helicity. In future, it is hoped this can
be applied both to observations and to computational models. The extra constraint of energy
was suggested by Linton, Dahlburg, and Antiochos (2001) and considered briefly by Priest,
Longcope, and Janvier (2016), but needs computational modeling and so is outside the scope
of the present paper. When energy effects are included they may allow the thermodynamic
properties to be determined and they also have the potential to provide extra constraints and
so rule out some scenarios that are energetically unfavorable.

We consider first a pre-eruptive sheared coronal arcade, the shear of whose field lines
decreases as one moves away from the polarity inversion line (PIL) (Figure 1a). The length
of the arcade is L and its width is wf , while the shear of the arcade as a whole is s. We as-
sume, following the standard procedure in the well-established “magnetic charge topology”
approach (Sweet, 1958; Molodensky and Syrovatsky, 1977; Welsch and Longcope, 1999;
Brown and Priest, 1999a; Longcope and Klapper, 2002; Beveridge, Priest, and Brown, 2002;
Longcope, 2005), that the magnetic field sources in the photosphere are modeled as a series
of discrete sources rather than a continuous distribution. As an example, Figure 1a shows
a set of four rows of four sources. If the discrete sources become continuous or are placed
below the photosphere rather than on it, many of the null points and separators become
weak-field regions and quasi-separators, but the nature of the reconnection is very similar
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Figure 2 The geometry for quantifying a “simple zippette”, a typical single reconnection event in the zipper
phase of a sheared coronal arcade. (a) The initial configuration (XY), in which sources X+ and X− are
connected by one flux tube (X), and Y+ and Y− are joined by a second tube (Y ). (b) The final configuration
(UR), in which the initial flux tubes have reconnected to form a flux rope (R) connecting X+ to Y−. This
lies above a second underlying flux loop (U ), which connects Y+ to X−. Interior angles (θj ) are indicated
for both configurations.

(Seehafer, 1986; Gorbachev and Somov, 1988; Démoulin, Henoux, and Mandrini, 1992;
Priest and Démoulin, 1995).

We suppose that three-dimensional reconnection takes place in two phases. During the
rise phase, reconnection starts in general at any point within the innermost field lines and
spreads in both directions along the arcade parallel to the PIL by zipper reconnection (Sec-
tion 4). For simplicity, we start by modeling the case where it starts at one end and proceeds
in one direction. The flux that takes part in the zipper reconnection occupies two narrow
regions either side of the PIL separated by a distance wz (Figure 1b).

During the main phase of the flare, reconnection takes place by main-phase reconnection
(Section 5), in which the reconnection spreads out laterally in a direction perpendicular to
the PIL. The magnetic flux that takes part in this phase occupies two strips whose inner and
outermost parts are separated by w0 and wf , respectively (Figure 1b).

As a second case, we consider instead as the initial state in Section 4.2 a sheared coronal
arcade overlying a flux rope, since this is thought in many cases to be more representative of
the pre-eruptive configuration around a prominence that erupts to give the flare or coronal
mass ejection.

3. Elementary Reconnection Events

3.1. A Simple Zippette: a Single Reconnection Event of a Sheared Arcade

We assume that the zipper reconnection phase of a sheared arcade is composed of multiple
individual reconnection events, called “simple zippettes”, between tube pairs of equal flux.
Figure 2 depicts a single generic event viewed from above in which flux tubes X and Y re-
connect to form a new pair of flux tubes, U and R. All sources, and therefore all flux tubes,
have exactly the same magnetic flux, F . The positive sources (X+ and Y+) are separated
by some distance �, while the negatives (X− and Y−) are separated by a possibly different
distance (r) along a parallel line—shown here as vertical. The two opposing lines are them-
selves separated by a perpendicular distance w, and X− is located a distance t further along
its line than X+. The figure shows a case with t > 0, but the generic calculation applies to
t < 0 as well. Figure 2a gives the general directions of the flux tubes linking the sources
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initially, but, as we shall discuss in the next subsection, they are made up of field lines that
are curved and not parallel so that they can reconnect. Furthermore, we are assuming here
in Figure 2b that R lies above U , since we are considering a scenario in which long erupt-
ing flux ropes are created. An argument to suggest that this is energetically allowable was
presented briefly in Priest, Longcope, and Janvier (2016).

The process of reconnection converts the initial configuration, designated XY , to a final
configuration (UR) with a flux rope R above an underlying arcade loop U (see Figure 2).
The reconnection process is assumed to conserve helicity, but it changes the partitioning
between self-helicity and mutual helicity. The self-helicity of a single flux tube twisted by
total angle Φ (positive for right-handed twist) is H s = F 2Φ/2π .

The mutual helicity of a particular configuration is proportional to the signed sum of its
two interior angles, designated θj in Figure 2 (Demoulin, Pariat, and Berger, 2006). One
interior angle is computed for each footpoint of the overlying flux tube. When the flux tubes
are separated and neither is above the other, then either may be selected as the first flux
tube—tube X has been chosen in Figure 2a. The interior angle for a given footpoint, the
angle’s vertex, is that subtended by the two footpoints of the other flux tube. A positive sign
is assigned if the footpoints of that tube appear counter-clockwise when proceeding from
the source with the same sign as the vertex. Thus, the interior angle of X+, designated θ1 in
Figure 2a, contributes to the mutual helicity with a negative sign, since going from Y+ to
Y− is a clockwise direction when viewed from X+.

All angles are assigned values in the range 0 ≤ θj ≤ π and the sign discussed above is
used when computing the mutual helicity. For the orientations in Figure 2 we find the mutual
helicities

H m
XY = F 2

π
(θ2 − θ1), H m

UR = −F 2

π
(θ3 + θ4), (1)

in agreement with similar expressions in Priest, Longcope, and Janvier (2016), who treated
the special case (r = l) of a parallelogram. Having accounted for their signs in Equation (1),
all angles can be found from the geometry of the figure. The angles in the XY configuration,
shown in Figure 2, are

tan θ1 = w

r + t
= 1

r̄ + t̄
, tan θ2 = w

� − t
= 1

�̄ − t̄
, (2)

where we introduce dimensionless distances normalized with respect to the polarity sep-
aration w, namely, t̄ = t/w, r̄ = r/w, and �̄ = �/w. The angles in the UR configuration
are

tan θ3 = 1

t̄
, tan θ4 = 1

t̄ + r̄ − �̄
. (3)

The figures depict a case where t > 0, so the overlying flux rope R, is longer than U , and
both θ3 and θ4 are acute angles. Inspection of the figures reveals, however, that (2) and (3)
are valid even when t < 0, in which case at least θ3 becomes obtuse (tan θ3 < 0). Since the
quadrilateral Y+X+X−Y− retains its orientation for all values of t , none of the angles change
their sense, and Equation (1) remains valid when t < 0.

A reconnection event begins in configuration XY , with flux in tubes X and Y being
twisted by, say, angles ΦX and ΦY , respectively. The tubes U and R in the final configu-
ration are also be twisted in general. We assume that the reconnection process contributes
equal self-helicity to each, an assumption we call “helicity equipartition”. This means that
ΦU = ΦR . The conservation of total helicity therefore implies

F 2

2π
(ΦX + ΦY ) + H m

XY = F 2

π
ΦR + H m

UR. (4)
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Substituting the mutual helicity expressions from Equation (1), we are able to deduce the
final twist in terms of the properties of the initial configuration

ΦR = 1

2
(ΦX + ΦY ) + (θ3 + θ4 + θ2 − θ1) = 1

2
(ΦX + ΦY ) + �Φm, (5)

where �Φm is the twist contribution due to a change of mutual helicity.
For configurations with the qualitative appearance of Figure 2, �Φm = θ3 + θ4 + θ2 − θ1

is positive. This reflects the fact that configuration UR has a single crossing in the negative
sense (Berger, 1993; Berger and Prior, 2006), which makes its mutual helicity negative [see
Equation (1)]. A positive self-helicity, i.e., right-handed twist, is required to compensate and
thereby conserve total helicity.

In the special case when the quadrilateral Y+X+X−Y− is a rectangle (t = 0, � = r) it is
evident that θ3 = θ4 = π/2 and θ2 = θ1, so that reconnection adds exactly one half-twist to
each tube: �Φm = π . This startling fact is a natural and elegant consequence of conversion
(with equipartition) of mutual helicity to self-helicity in the special geometry when the foot-
points lie on the vertices of a rectangle. In this case, the initial and final mutual helicities of
the two tubes become simply from Equation (1)

H m
XY = 0, H m

UR = −F 2, (6)

whereas the sum of the final self-helicities of the two tubes becomes (F 2/π)ΦR , so that,
when the initial self-helicities vanish (ΦX = ΦY = 0), Equation (4) implies ΦR = π . This
result was confirmed numerically in the three-dimensional resistive MHD experiment of
Linton and Priest (2003). When the sources do not form a rectangle, then �Φm �= π , but we
shall find that, even so, often it does not depart much from π : for example, when L̄ < 6

√
2

the twist lies between π/2 and 3π/2 (see the Appendix).
Explicit dependence on angles can be eliminated by using Equations (2) and (3) to give

tan
(
�Φm

) = r̄ �̄(2t̄ + r̄ − �̄)

[(r̄ + t̄ )(�̄ − t̄ ) + 1] [t̄ (t̄ + r̄ − �̄) − 1] − (2t̄ + r̄ − �̄)2
. (7)

A more tractable expression can be obtained by introducing the variable t̂ = t̄ + r̄ − �̄, whose
geometric significance is indicated in Figure 2b. Using this, Equation (7) can be written

tan
(
�Φm

) = − r̄ �̄(t̄ + t̂ )

(t̄ t̂ − 1 − r̄ �̄) (t̄ t̂ − 1) + (t̄ + t̂ )2
. (8)

The appropriate branch of tan can be assigned using the fact, established above, that
�Φm → π as the configuration becomes rectangular so that t̄ and t̂ tend to 0.

3.2. The Nature of Simple Zippette Reconnection

The way in which reconnection takes place in a simple zippette is by double separator re-
connection. This process is more complex than may be at first thought, because of the nature
of the topology and its changes, as has been discussed previously by, e.g., Brown and Priest
(1999a, 1999b), Parnell, Haynes, and Galsgaard (2008, 2010), Haynes et al. (2007), Long-
cope and Cowley (1996) and Longcope (2001). Suppose we have two positive flux sources
(P1 and P2) and two negative sources (N1 and N2), and that initially all the flux from P1 links
to N1, while all the flux from P2 links to N2. The resulting magnetic topology is sketched
in Figures 3a and 4a, as viewed from above and from the right, respectively. The flux (1-1)
from P1 to N1 is separated from the flux (2-2) from P2 to N2 by a vertical separatrix surface
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Figure 3 The topology of double separator reconnection during a simple zippette with positive (P1 and P2)
and negative (N1 and N2) flux sources, passing from (a) the initial topology through (b) an intermediate
phase to (c) the final topology. Null points lying midway between P1 and P2 and between N1 and N2 in the
photospheric plane are indicated by large dots. The diagrams on the top line represent the overall topology,
while those below show the detailed topology in the photospheric plane with dashed curves indicating the
intersections of separatrix surfaces with the photosphere. (a) Initially, there is flux (1-1) joining P1 to N1
and flux (2-2) joining P2 to N2, separated by a vertical separatrix surface V. (b) In the intermediate stage
during reconnection, there are two separatrix curves (S1 and S2) joining the null points (see above). Also,
some of the fluxes 1-1 and 2-2 have been converted into overlying flux (2-1O) joining P2 to N1 but lying
over separatrix S2, underlying flux (2-1U) joining P2 to N1 but lying underneath separatrix S1 and flux (1-2)
that joins P1 to N2 and passes through the ring formed by separators S1 and S2. (c) In the final stage the
reconnection has been completed and separator S2 has disappeared to infinity so that no flux 2-1O remains.

(V) which contains two null points (indicated by large dots in Figure 3). Thus, the whole re-
gion to the one side of V contains flux 1-1, while the whole region on the other side contains
flux 2-2.

Suppose for simplicity that, in the final state when reconnection has been completed, all
the flux (1-2) that goes from P1 passes over the underlying flux (2-1U) from P2 to N2. (It
is possible that such a state is not reached and that instead the final state has the form of
one of the intermediate states, but we shall not discuss such a situation here.) However, the
presence of some flux (2-2) from P2 to N2 and also flux (1-1) from P1 to N1 implies that
the footprint of the topology is as sketched in Figure 3c when viewed from above, with the
intersections of the separatrix surfaces with the photosphere indicated by dashed curves. The
separatrix surfaces are in the form of two domes which intersect in a separator curve (S1)
joining one null point to the other and lying above P2N1 but below P1N2. The feet of one
of the domes pass through the sources P1 and P2 and both null points, while the feet of the
other dome pass through N1, N2 and both nulls. In a vertical plane that passes through both
domes (Figure 4c) the intersection with the separator is indicated by a large dot S1.
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Figure 4 A vertical section through the separator reconnection process during zippette reconnection that is
described in Figure 3. (a) Two flux regions 1-1 and 2-2 filling the space either side of a vertical separatrix
surface (V). (b) Separator reconnection at two separators S1 and S2 transfers flux between 1-1, 2-2 and new
flux regions 1-2, 2-1U and 2-1O. (c) The final state possesses a separator S1 and flux regions 1-2 and 2-1U
in addition to the two initial regions.

As discovered in previous numerical experiments (Parnell, Haynes, and Galsgaard, 2008)
and analyses of topological bifurcations (Brown and Priest, 1999a, 1999b), it is clear that
the path from the initial to the final state involves a series of complex intermediate states
having the form shown in Figures 3b and 4b, in which the two separatrix domes intersect in
two separators (S1 and S2) which link the two null points. The flux linking P2 to N1 consists
of a underlying and an overlying part, one of which (2-1U) lies underneath separator S1,
while the other (2-1O) overlies separator S2.

The two separators S1 and S2 form by a global separator bifurcation (Brown and Priest,
1999a) as the two flux surfaces touch and intersect one another. In the final state the upper
separator has disappeared to infinity. During separator reconnection at the lower separator
S1, flux is transferred from regions 1-1 and 2-2 into 2-1U and 1-2, while reconnection at the
upper separator S2 transfers flux from 2-1O and 1-2 into 1-1 and 2-2.

It should be noted that instead of regarding the flux sources for simplicity as point
sources, we could regard them as finite sources or as continuous sources, so that the photo-
spheric field is continuous. In this case, some of the null points, separatrix surfaces and sepa-
rators disappear, but remnants of them remain as weak-field regions, quasi-separatrix layers
and quasi-separators (or hyperbolic flux tubes) (Priest and Démoulin, 1995; Démoulin et al.,
1996, 1997; Aulanier, Pariat, and Démoulin, 2005; Aulanier et al., 2006, 2007).

3.3. A Helical Zippette: a Reconnection Event in an Arcade with a Flux Rope

We assume that the zipper reconnection phase of a coronal arcade that overlies an initial flux
rope Z is composed of multiple individual reconnection events, called “helical zippettes”,
between tube pairs of equal flux. Figure 5 depicts a single generic event viewed from above
in which flux tubes X and Y reconnect to form a new pair of flux tubes, one of which (U )
lies beneath rope Z while the other (R) wraps around Z.

This event is topologically identical to the simple case shown in Figure 2, except for the
presence of the third tube Z. Since that tube does not actually participate in the reconnection
process, it has no effect on the outcome. Thus, all results from Section 3.1 apply equally to
the present case, irrespective of the presence of flux tube Z. This fact is not, however, im-
mediately obvious owing to the way Z appears to impose itself into the configuration, such
that flux tube R ends up completely wrapped around it. We thus demonstrate our conclusion
by computing the mutual helicities before and after the event. This also shows that tube R

must end up above tube Z and must wrap about it once, as indicated in Figure 5.
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Figure 5 The geometry for quantifying a “helical zippette”, a typical single reconnection event between
flux tubes X and Y in the zipper phase of a coronal arcade that overlies an initial flux rope Z. The initial
and final states are shown in (a) and (b), respectively. The reconnection occurs beneath Z, and thus produces
an underlying tube, U . The other tube that is produced by the reconnection (R) overlies both U and Z, and
wraps one entire time around Z. The interior angles with flux rope Z are indicated.

With three flux tubes there are three distinct pairings for which mutual helicity contri-
butions must be calculated. When considering the pairs XY (before) and UR (after), it is
clear that their topology is identical to those in Figure 2: X and Y are separate, while R

overlies U . The mutual helicities are therefore given by Equation (1), with interior angles
given by Equations (2) and (3).

It remains, then, to compute the mutual helicity contributions from the other pairings.
The interior angles for these pairings are shown in Figure 5, with natural labels θx+, θx−,
etc. In terms of these, the mutual helicities of the initial configuration are

H m
XZ = FFz

π
(θx+ + θx−), H m

YZ = FFz

π
(θy+ + θy−), (9)

where Fz is the flux of rope Z, and the positive senses of all angles can be seen from Figure 5.
The final flux tube R connects footpoints X+ and Y− by going over rope Z. The foot-

points of this flux tube are used to compute the helicity, and they have the same interior
angles (θx+ and θy−) as used for the initial state. However, since the tube R wraps Z one
entire time, in the right-handed sense, as well as lying above it, the mutual helicity is

H m
RZ = FFz

π
(θx+ + θy− + 2π). (10)

Since flux tube Z lies above U , we must use its footpoints (Z+ and Z−) for the interior
angles to compute the mutual helicity of UZ

H m
UZ = −FFz

π
(θz+ + θz−), (11)

with a sign change due to the senses of the angles. The interior angles of the quadrilateral
X−Z−Y+Z+ must sum to 2π , and it follows that θz+ + θz− = 2π − θx− − θy+, which implies
that

H m
UZ = FFz

π
(θx− + θy+ − 2π). (12)

We therefore see that the mutual helicity contributions of Z, albeit non-trivial, do not change
through the reconnection process:

H m
XZ + H m

YZ = H m
RZ + H m

UZ .
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Had we stipulated at the outset that flux tube Z cannot affect the result, the foregoing
logic would have led us to the realization that in order for one of the resulting flux tubes (U )
to lie underneath Z, it is necessary for the other to not only overlie it, but also to wrap that
tube once completely in the right-handed sense. Following the same logic, we can generalize
to the case where flux ropes X and Y initially wrap around Z some numbers, Nx and Ny , of
times, respectively, in the right-hand sense. This would add 2πNx and 2πNy to the angles
in the mutual helicities of Equation (9). If flux rope U does not wrap Z, then flux rope R

must wrap it a total of Nx + Ny + 1 times in order to conserve mutual helicity.
The presence of flux rope Z does not, therefore, affect the change in mutual helicity

during the reconnection event. Nor does it affect the change in self-helicity since its twist
and its flux are preserved during the process. The only changes are therefore those same
changes accounted for in Section 3.1. As a result, flux ropes R and U have identical twists.
That twist is the mean, (ΦX + ΦY )/2, plus a contribution due to the reconnection given
by Equations (7) or (8). Thus, flux rope R has internal twist in addition to being wrapped
around Z.

The reconnection, however, creates a composite structure (consisting of the sum of R

and Z) whose self-helicity combines self and mutual contributions of its components. Sup-
pose we combine the new flux rope (R) and the initial one (Z) to give an erupting flux rope
of flux

FER = F + FZ. (13)

The twist (ΦER) of this composite structure is determined by the fact that its self-helicity
should be the sum of the self-helicities of R and Z together with their mutual helicity (H m

RZ)
from Equation (10), namely,

ΦERF 2
ER

2π
= ΦRF 2

2π
+ ΦZF 2

Z

2π
+ FFZ

π
(θx+ + θy− + 2π), (14)

so that

ΦER = ΦRF 2 + ΦZF 2
Z + 2FFZ(θx+ + θy− + 2π)

F 2
ER

. (15)

If, as an example, we adopt the typical values F = FZ , θx+ = θy− = π/2, and ΦR = π , then

ΦER = ΦZ + 7π

4
, (16)

so that the net twist is roughly a quarter of the initial twist plus one turn, which is what one
would guess qualitatively from Figure 5.

4. 3D Zipper Reconnection Phase

We assume that the zipper reconnection phase is composed of multiple individual recon-
nection events between tube pairs of equal flux. When the initial state is a sheared arcade
these elementary events are simple zippettes (Figure 2) as analyzed in Section 3.1, whereas
when the initial state includes a flux rope they are helical zippettes (Figure 5) as described
in Section 3.3.



Flux-Rope Twist due to Zipper and Main-Phase Reconnection Page 13 of 31  25 

Figure 6 A sequence of zippettes for zipper reconnection in a sheared arcade consisting of N = 4 flux tubes.
In the initial state (a) all flux tubes (thick solid lines) are parallel, connecting sources A+ → A− , etc. The
reconnection sequence consists of 3 individual reconnection zippettes (b) – (d). The tubes just eliminated by
reconnection are depicted by thin dashed lines. The overlying twisted flux tube is designated R, and the
reconnected arcade tube generated in reconnection event n is designated with that number, i.e. 1, 2, or 3.

4.1. Zipper Reconnection in a Sheared Arcade

The zipper reconnection occurs between two rows of N identical, equally spaced sources
arranged along parallel lines of length L, separated by w = wz. The N positive sources are
denoted by A+, B+, C+, etc., and the N negative sources, A−, B−, C−, etc., as depicted in
Figure 6. The initial arcade is sheared by s̄ = s/wz by displacing the entire row of negative
sources northward a distance s. For illustration Figure 6 shows the N = 4 case with s > 0,
but our calculation is equally valid when s < 0. Both lines of N sources extend a distance L,
and are therefore spaced by L/(N −1). The initial state is an arcade of N flux tubes, A+A−,
B+B−, C+C−, etc. We assume all have the same initial twist, Φ0: for the most part, we
naturally assume Φ0 = 0 for our basic analysis, but we include it here for completeness.

The reconnection occurs in a sequence of individual zippette events. The nth zippette
produces new flux tubes with identical twist (thanks to helicity equipartition), which we des-
ignate Φn. We begin by considering a sequence whose first event is at the southern (lower)
end, between A+A− and B+B−, producing an overlying flux rope A+B− and a twisted ar-
cade tube B+A−; these are designated R and 1 in Figure 6b, and each has twist Φ1. Each
subsequent event reconnects the twisted flux rope anchored at A+, denoted R in Figure 6,
with an unreconnected tube in the arcade. In this way the reconnection spreads along the
arcade with its right-hand footpoint sweeping northward along the negative polarity line
like a zipper. It terminates after N − 1 events, leaving an overlying flux rope connecting the
southern-most positive source (A+) to the northern-most negative source (D− in Figure 6).
The arcade has thus been reduced in flux by a factor (N − 1)/N . In the case shown, the
arcade’s shear has been reduced, but, if s were negative, the process would have increased
the magnitude of the arcade’s shear.

We apply the general formulation from Section 3.1 to the first reconnection zippette by
associating the generic tube X+X− with A+A− and Y+Y− with B+B−. Those assignments
lead to t̄ = s̄ = s/wz, r̄ = �̄ = L̄/3, and thus t̂ = s̄, for the case N = 4 shown in Figure 6.
Using these assignments in the general Equation (8) yields the first twist increment as

tan
(
�Φm

1

) = − 2L̄2s̄

9(s̄2 + 1)2 − (s̄2 − 1)L̄2
. (17)
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Since both initial flux tubes have initial flux ΦX = ΦY = Φ0, the twist in the overlying flux
rope (A+B−) is

Φ1 = Φ0 + �Φm
1 . (18)

This is also the twist in region L, which is B+A−. Since that region reconnects no further,
that twist value remains in that flux tube. It can be shown from Equation (17) that, when
s̄ > 0 then 0 < �Φm

1 < π , whereas when s̄ < 0 then π < �Φm
1 < 2π (see Appendix).

The second reconnection zippette occurs between the overlying flux rope A+B− with
twist Φ1 and the next arcade tube in line C+C− (see Figure 6c). We apply the generic
result by associating X+X− with tube A+B− and Y+Y− with C+C−. The generic variables
then take the values �̄ = 2L̄/3, r̄ = L̄/3, t̄ = s̄ + L̄/3, and therefore t̂ = s̄. Making these
substitutions in Equation (8) gives

tan
(
�Φm

2

) = − 2L̄2(6s̄ + L̄)

(9s̄2 + 3L̄s̄ − 2L̄2 − 9) (3s̄2 + L̄s̄ − 3) + 3(6s̄ + L̄)2
. (19)

Since flux tube C+C− has twist ΦY = Φ0, the twist in the new overlying flux tube, A+C−,
is

Φ2 = 1

2
(Φ0 + Φ1) + �Φm

2 = Φ0 + 1
2 �Φm

1 + �Φm
2 , (20)

where the final expression results after substituting from Equation (18). The self-helicity
from the first-generation flux rope (Φ1) is equally divided between the two tubes produced
in the reconnection, designated R and 2 in Figure 6c. Only half of the reconnection-created
twist (�Φm

1 ) ends up in the second-generation flux rope.
Repeating this procedure one more time yields the twist Φ3 in the final overlying flux

tube A+D−. The left panel in Figure 7 plots this value, as well as Φ1 and Φ2, for the case
L̄ = 3, Φ0 = 0, for a range of values of s, both positive and negative. Note that the twist
in the rope increases with each reconnection event. This is natural since each reconnection
event introduces a new crossing into the configuration and thus contributes a typical twist of
�Φm

n ≈ π (although it can lie between 0 and 2π ; see Appendix). This does not, however,
lead to a final twist Φ3 ≈ 3π , since at each stage the flux rope loses half its accumulated
twist to the newly created arcade loop.

In Figure 7, the graph of the rope twist (Φ1) after the first zippette from Equation (17)
is antisymmetric about s = 0 relative to π . It shows a twist of π for s = 0 and a twist
that is larger for s < 0 but smaller for s > 0 and that tends to π as |s| tends to infinity.
This may be understood from the symmetric location of the sources when s = 0, since
conservation and equipartition of magnetic helicity then imply that the reconnection adds
exactly half a turn of twist. For s = 0, Figure 6 has A−, B−, C− and D− lying directly
opposite A+, B+, C+ and D+, so that the tangent of the first twist decrement (tan�Φm

1 )
vanishes from Equation (17) and �Φm

1 = π . When s < 0 the negative sources lie below their
partners and the overlying reconnected rope A+B− is shorter than when s > 0. This results
in greater twist when the shear is negative than for an equivalent positive shear. Furthermore,
the antisymmetric property (evident in Equation (17)) arises from the antisymmetric nature
of the setup for the first zippette.

However, the asymmetry is lost after the second and subsequent reconnections, where
tan�Φm

n �= 0 when s = 0 and Φ2 tends to 3π/2 as |s| tends to infinity. This can be seen
from Equation (19) and Figure 7. It arises from a comparison of the geometry of Figure 6
when s < 0 and s > 0. Thus, since the reconnection is proceeding in the direction from B−
to C− to D−, after the second reconnection the geometrical location of the reconnected rope
is no longer antisymmetric.



Flux-Rope Twist due to Zipper and Main-Phase Reconnection Page 15 of 31  25 

Figure 7 Twist values in each of the newly reconnected sections, and in the final flux rope, for the zipper
phases as a function of shear s̄ = s/wz for two different cases, both involving initially untwisted flux ropes
(Φ0 = 0). Left: an arcade of length L = 3wz , resolved into N = 4 components. Right: an arcade of length
L = 5wz , resolved into N = 8 components.

The same procedure can be applied to cases with more flux tubes in the initial arcade.
The twist in the rope after its nth zippette is

Φn = 1

2
Φ0 + 1

2
Φn−1 + �Φm

n . (21)

The right panel of Figure 7 shows all twist values for the case with N = 8, L̄ = 5, and
Φ0 = 0. It appears that, for cases when |s̄| � L̄, this approaches an upper bound of Φn ≈ 2π .
This is the asymptotic fixed point for relation (21) when �Φm

n ≈ π .

4.2. Zipper Reconnection in an Arcade Overlying a Flux Rope

Consider next zipper reconnection in an arcade that initially overlies a flux rope of twist Φr ,
say (Figure 8). In this case it occurs by a series of helical zippettes as described in Sec-
tion 3.3, but the surprising result there was that the initial flux rope does not affect the twists
or helicity of the tubes that participate in the reconnection. Thus, the twist in the core of
the resulting flux rope is the same as in the initial flux rope (Φr ), and it is surrounded by a
sheath with the twist that is calculated in Figure 7.

Note that, after the first zippette, each of the n−1 subsequent zippette reconnections adds
no flux to the new flux rope R but adds an extra turn of twist to the composite structure. Thus,
suppose that, as in Section 3.3, we combine the new flux rope (R) and the initial one (Z) to
give an erupting flux rope of flux

FER = F + FZ (22)

and twist ΦER , which is determined by the fact that its self-helicity is the sum of the self-
and mutual helicities of R and Z. The resulting twist is of the same form as Equation (15),
except that the presence of the n turns implies that the term 2π in the last bracket is replaced
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Figure 8 A sequence of helical zippettes for zipper reconnection in an arcade containing an initial flux
rope and consisting of N = 4 flux tubes. In the initial state (a) all flux tubes (thick solid lines) are parallel,
connecting sources A+ → A− , etc. These overlie the pre-existing flux rope Z connecting Z+ → Z− . The
reconnection sequence consists of three individual reconnection events (b) – (d). The overlying twisted flux
tube is designated R, and the reconnected arcade tube generated in reconnection event n is designated with
that number, i.e. 1, 2, or 3.

by 2nπ , and also the angles θx+ and θy− now refer to angles Z−A+Z+ and Z−D−Z+ in
Figure 8. Thus, the net twist becomes

ΦER = ΦRF 2 + ΦZF 2
Z + 2FFZ(θx+ + θy− + 2nπ)

F 2
ER

. (23)

If, as an example, we adopt the typical values F = FZ , θx+ = θy− = π/2, and ΦR = 2π ,
then

ΦER = ΦZ

4
+ (n + 1)π, (24)

so that the net twist is roughly a quarter of the initial twist plus (n + 1)/2 turns.
The number of turns is determined by the number of zippettes, which depends on how

far the ribbons extend along the polarity inversion line and so how much magnetic flux is
contained within them. In other words,

n = Fribbon

FR

, (25)

where FR is the magnetic flux of the new flux rope (A+ in Figure 8) and Fribbon is the mag-
netic flux in one of the flare ribbons when it is first fully formed (A+B+C+D+ in Figure 8).
The greater the magnetic flux in the initial flare ribbons, the larger the number of turns and
so the more highly twisted is the core of the erupting flux rope.

4.3. Other Sequences of Zipper Reconnection

The previous two subsections consider a particular reconnection sequence in which recon-
nection propagates northward to produce an overlying flux rope linking the southern-most
positive source (A+) to the northern-most negative source (D−). This same final connec-
tion can be produced by other reconnection sequences, whether there is an initial flux rope
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Figure 9 Two sequences of zipping reconnection with N = 4 flux tubes that are different from the case of
northward propagation depicted in Figure 6. (a) Southward propagation produces similar results but with twist
distributed in the opposite order, so that D+C− has twist Φ1 rather than Φ3. (b) In a converging sequence, the
third reconnection event (shown in (c)) occurs between two flux ropes (A+B− and C+D−) with twist Φ1.

present or not. The mutual helicity of the final configuration is determined by connectivity,
so the change in mutual helicity is independent of the sequence that produces it. Since total
helicity is conserved, the self-helicity is also independent of the sequence, so it is tempt-
ing to conclude that the final state itself is independent of the sequence. The distribution of
self-helicity depends, however, on the sequence owing to our assumption of helicity equipar-
tition. We therefore find different distributions of twist for different reconnection sequences.

To illustrate this sequence-dependence, consider a second sequence where reconnection
propagates southward beginning from two northern-most tubes, C+C− and D+D−. This
event is identical to the first event in the original sequence, so Φ1 is the same. The resulting
overlying flux rope (C+D−) reconnects next with the untwisted tube to its south (B+B−), as
shown in Figure 9a. This event is not identical to the second event from before, since t̄ = s̄,
l̄ = L̄/3, r̄ = 2L̄/3, and t̂ = s̄ + L̄/3. It is an inverted version of that event, and can be trans-
formed into it by swapping �̄ and r̄ and swapping t̄ and t̂ . It is evident from the symmetric
form of Equation (8), that this transformation leaves �Φm

2 unchanged. This means that Φ2 is
the same, and similar reasoning applies to Φ3. We therefore see that southward-propagating
reconnection leads to an overlying flux rope and a set of arcade tubes with the same twist as
in the northward-propagating case. These tubes are, however, arranged in the opposite order,
with the most-twisted tube (3) located at the south end rather than the north end as it was
before.

The foregoing argument can be applied more generally to any sequence in which a single
overlying flux rope reconnects with the neighboring unreconnected tube on either side—
north or south. Due to symmetry, �Φm

n is the same regardless of the direction in which the
reconnection proceeds. This is even true for a sequence where northward and southward
propagation is interleaved.

The results are not the same, however, if multiple overlying ropes are produced through
separate sequences and then merged. An example of such a case, depicted in Figure 9b–c,
has two flux ropes, each with twist Φ1, reconnecting to form the final overlying rope. That
final reconnection event is characterized by t̄ = t̂ = s̄ + L̄/3 and �̄ = r̄ = 2L̄/3, from which
Equation (8) yields

tan
(
�Φm

2′
) = − 24L̄2(3s̄ + L̄)

(9s̄2 + 6L̄s̄ + L̄2 + 9)2 − 4L̄2(9s̄2 + 6L̄s̄ + L̄2 − 9)
, (26)
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which is different from Equation (19) for the simple northward case. Moreover, since the
reconnecting tubes have identical twist, the products have twist Φ2′ = Φ1 +�Φm

2′ . This is in
general greater than the Φ2 produced by simple northward propagation. Moreover, in order
that total helicity is the same in both scenarios, we find the relation

2Φ2′ + 2Φ1 = Φ1 + Φ2 + 2Φ3.

This can be rearranged to find Φ2′ = Φ3 + �Φm
2 /2 − �Φm

1 /4, so the final flux rope is more
twisted in this merging scenario than it is in the case where a single flux rope is progressively
formed.

Reconnection sequences producing the opposite sense of connectivity naturally produce
flux ropes with the opposite twist. Thus, for example, consider the basic simple zippette
process in Section 3.1 and suppose for simplicity that ΦX = ΦY = 0, so that Equation (4)
becomes

F 2

π
ΦR = H m

XY − H m
UR, (27)

which implies that the twist in the rope due to the change in mutual helicity is

ΦR = θ3 + θ4 + θ2 − θ1. (28)

Thus, ΦR is exactly equal to π in the special case of a rectangle (when θ3 = θ4 = π/2 and
θ2 = θ1). For the configuration shown in Figure 2, the twist is positive since the initial mutual
helicity (H m

UR) is positive and the final mutual helicity (H m
XY ) of the flux tube R lying over the

tube U is negative. This may be seen from the right-hand rule in the sense that, if the fingers
of the right hand are directed along the overlying magnetic field, then the sign is positive if
the underlying magnetic field is in the direction of the thumb.

If the tube R instead passes under the tube U , the helicity H m
UR becomes positive and

θ3 + θ4 is replaced by θ5 + θ6, where θ5 and θ6 are the angles X+Y+Y− and X+X+Y−.
However, θ3 + θ4 + θ5 + θ6 = 2π , so the net effect is that θ3 + θ4 is replaced by θ3 + θ4 − 2π

in Equation (28), which now implies that ΦR < 0 and for a rectangle ΦR = −π . (The result
ΦR < 0 arises because in Figure 2 the angle X+Y+X− is θ2 since X+Y+ and X−Y− are
parallel and so θ3 and θ2 form two angles of the triangle X+Y+X−. Thus, θ3 + θ2 < π ,
θ4 < π and θ1 > 0, so that θ3 + θ2 + θ4 − θ1 < 2π , as required.)

Consider also a version of northward propagation (i.e., Figure 6), but where the negative
foot (A−) remains fixed at each stage, and the reconnection propagates along the positive
sources until it reaches D+. This is a mirror image of the original case depicted in Figure 6a.
It can be converted to that same sequence by taking x → −x, s → −s, and reversing polar-
ities, Bz → −Bz. The act of spatial reversal (x → −x) changes the sign of the helicity. The
set of twist variables for this reversed case is related to the original by Φ(r)

n (s) = −Φn(−s),
where the functions Φn(s) are plotted in Figure 7a.

5. The Quasi-2D Main-Phase Reconnection Process

We next assume that a twisted flux rope (Z), which is produced (or enhanced if a flux
rope is present initially) through zipper reconnection of an arcade, erupts. In so doing it
pushes the overlying flux ahead of it. This flux drapes around the erupting rope forming
a current sheet beneath it, often called the “flare current sheet” (Priest and Forbes, 2000;
Karpen, Antiochos, and DeVore, 2012; Longcope and Forbes, 2014). Reconnection at this
trailing current sheet disconnects some of the overlying flux from the photosphere, thereby
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Figure 10 The two innermost sets of field lines of the coronal arcade seen from above, showing: (a) the initial
sheared state; (b) the situation after the zipper phase of the flare when reconnection has proceeded parallel
to the polarity inversion line to produce the zipper flux rope (A+D−) lying under the next set of field lines
joining footpoints E+E−, F+F−, G+G−, H+H−; (c) the first part of the main phase after reconnection has
progressed sideways to reconnect the next sheath of field lines and create a spiral sheath that wraps around
the zipper flux rope and enhances its flux and magnetic helicity.

assisting in the eruption of flux rope Z. In strictly two-dimensional models this so-called
“flare reconnection” is a case of self-reconnection, since field lines reconnect with them-
selves. The result is a closed underlying arcade loop and a disconnected loop completely
encircling flux rope Z.

In quasi-two-dimensional or three-dimensional scenarios, however, the reconnection in-
volves two different field lines, connecting two pairs of footpoints, say X+ → X− and
Y+ → Y−, as has been mentioned in some simulations of eruptive flares and CMEs (Manch-
ester et al., 2004; Fan and Gibson, 2007) and made explicit in Figure 5 of Aulanier, Janvier,
and Schmieder (2012). The reconnection thus creates two closed field lines and no discon-
nected loop results. One of these field lines (U ) is underneath rope Z, while the disconnected
loop in the two-dimensional picture becomes the other field line (R), which remains above
Z and twists about it. This is in fact the scenario we designated a helical zippette, as dis-
cussed in Section 3.3 and illustrated in Figure 5. This phase is “quasi-two-dimensional” in
the sense that it produces a rising arcade of flare ribbons and two separating Hα ribbons as
a series of nested flux sheaths reconnect.

5.1. Reconnecting the First Overlying Sheath of Flux by Helical Zippettes

Consider first the main phase of the eruption of a sheared arcade containing a flux rope
created by the zipper phase. This phase consists of multiple helical zippettes of the kind
analyzed in Section 3.3. Figure 10 illustrates how this might proceed for the next layer
outside the zipper flux rope in the N = 4 case used for illustration above. That next layer
consists initially of four parallel flux ropes, E+E−, F+F− etc., with identical initial twist Φ0

which make up a sheath of flux whose feet form the narrow ellipses indicated in Figure 10a.
(We assume Φ0 is constant here, but later consider the possibility that it varies between
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Figure 11 Plot of Φ1 against w

for values of
s/wz = −2,−1,−0.3,0,0.3,1,2.
The extreme values, s/wz = ±2,
are plotted with dashed curves
from clarity. The other
parameters, L/wz = 3 and N = 4
are the same as for Figure 7a. It is
evident from that plot that the
twist is maximum and minimum
when s = −1 and s = +1,
respectively.

layers.) The eruption of the twisted flux rope (A+D−) formed in the zipper phase, leads to
reconnection around that erupting tube.

Figure 10 shows the case where the basic process in that reconnection occurs in two sepa-
rate events like the XYZ → URZ case described in Section 3.3. The result is two underlying
arcade loops, F+E− and H+G−, which form an underlying sheath of flux, and two flux
ropes, E+F− and G+H−; the latter form a sheath of flux, which wraps around the flux rope
A+D− and which has feet forming two narrow ellipses shown in Figure 10c. All flux tubes
have the same internal twist, Φ1. This is the same as in Section 3.3, given by Equation (17)
but with slightly different values of s̄ and L̄. Figure 1 shows that s and L are the same as in
the zipper phase, but w > wz, so the re-scaled variables s̄ = s/w and L̄ = L/w are smaller
at this phase; they are smaller still at each successive phase thereafter. Given the complex
structure of the curves in Figure 10, we need to incorporate the structure of the arcade in
order to determine in which sense Φ1 changes as a result.

The twist is determined by the zipper process inside the core of the arcade (w < wz)
and by the main phase process outside the core (wz < w < wf ), where Φ1 is given by
Equation (18) with s̄ = s/w. The resulting graph of twist as a function of w for Φ0 = 0 and
several values of s is shown in Figure 11. The internal twist is only a weak function of w,
and generally increases for positively sheared arcades (s > 0). This internal twist does not,
however, account for the fact that the flux from the second layer (E+–H−) ends up wrapped
around the central core. We account for that below.

As in our discussion of a helical zippette in Section 3.3, we may combine the main phase
flux rope (of flux FM , and twist ΦM , say) and the zipper flux rope (of flux FER and twist ΦER

from Equations (22) and (23)) to give a total erupting flux rope of flux

FT = FM + FER (29)

and twist ΦT , which is determined by the fact that its self-helicity should be the sum of the
self- and mutual helicities of the main phase and zipper flux. The resulting twist has the
same form as Equation (15):

ΦT = ΦMF 2
M + ΦERF 2

ER + 2FMFER(θx+ + θy− + 2π)

F 2
T

. (30)

Thus, the twist depends crucially on the zipper twist and the ratio of the main phase and
zipper fluxes, but for a weak zipper twist it is typically one turn.
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5.2. Some Ways of Increasing the Twist

The simple reconnection scenario described in Section 5.1 starting with a sheared arcade
results in a flux rope which is roughly uniformly twisted by about one turn surrounding a
less twisted core. This is a result of the main-phase reconnection occurring around a core
created by the initial zipping reconnection. The latter has been found to produce no more
twist than approximately one turn.

Remembering that the interplanetary observations of magnetic clouds (Hu et al., 2014)
suggest either a flux rope with a constant twist of 1.5 to 3 turns or one with an enhanced
core twist of up to 5 turns, we now consider extra effects that may increase the twist above
that of our basic cases.

The most natural way is to adopt as our initial state a coronal arcade that overlies a pre-
formed flux rope with large twist Φr , as suggested in Section 4.2. The zipping phase would
then be by helical zippettes, which produces a central concentration in Φr , around which
there can be many turns.

In Section 4.3 we have also shown how zipper reconnection occurring in several places
along the polarity inversion line (rather than starting at one end) increases twist above the
unidirectional value.

Another possibility is to allow each arcade flux tube to possess its own initial internal
twist Φ0. This adds a constant to the twist at each generation. Such a pattern is evident in
the first two generations, given by Equations (18) and (20). Induction using Equation (21)
shows that the pattern persists to arbitrary n. Any non-vanishing initial twist is thus added to
every curve in Figure 7. If we start initially with a sheared arcade, such addition could twist
the reconnected flux rope R to an angle significantly above 2π to trigger a kink instability
(Hood and Priest, 1979).

A further possibility during the main phase (Section 5.1) considered in detail in the next
subsection is to allow extra reconnection along each sheath between the flux tubes that make
up the sheath in Figure 10.

5.3. 3D Main Phase Reconnection – Extra Reconnection Within Each Sheath
Along Its Length

After the quasi-2D main phase process, two overlying flux tubes (E+F− and G+H−) in
Figure 10c could reconnect to produce another underlying arcade tube (G+F−) and a single
overlying flux tube (E+H−). This event consists of flux tubes X and Y each initially wrapped
Nx = 1 and Ny = 1 times around the central tube, Z. Following the previous discussion, the
R tube wraps Nx + Ny + 1 = 3 times around the erupting rope. Otherwise the sequence
is the same as that for a converging reconnection as illustrated in Figure 9b–c, so the final
arcade loop, and the wrapping tube, are twisted by Φ2′ , as found in Section 4.3.

This produces an erupting flux rope composed of two separate strands. The inner core
is tube A+D− produced by the zipper phase, with internal twist Φ3. Wrapped about this
is a second strand (E+H−) with internal twist Φ2′ . We can lump these components into a
single erupting flux rope with Fz,2 = 2F whose footpoints lie midway between the feet of
its components: i.e., midway between A+ and E+ in the south and midway between D−
and H− in the north. The self-helicity of this tube is a sum of the self-helicities and mutual
helicity of its constituents

H s
z,2 ≈ F 2

2π
Φ3 + F 2

2π
Φ2′ + F 2

π
(2θr + 6π) = F 2

z,2

2π
Φ̄z,2, (31)
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Figure 12 The distribution of twist for a flux rope erupting from an arcade with s = L = 3wz . Eight arcade
layers run to w = wf = 2wz , each represented by N = 4 sources. The left panel shows the mean twist Φ̄z,n

from Equation (35) after the nth arcade layer for arcades with initial twist, Φ0 = 0 (diamonds) and Φ0 = 2π

(squares). The right panel shows the distribution of twist, Φ(f ), defined in Equation (40) for the same two
cases, as a function of flux f or (top axis) radius r/R, where R is the outer radius.

after using the footpoints of the composite tube in Equation (10) with

θx+ = θy− = θr = tan−1

[
s̄ + L̄

(w + wz)/2

]
. (32)

The effective twist of the erupting rope is

Φ̄z,2 = 1

4
(Φ3 + Φ2′ + 12π + 4θr). (33)

The reconnection of the sheath of flux results, therefore, in an erupting flux rope with
roughly the same connectivity and some additional twist. The sequence we use for illus-
tration moves the flare ribbons outward, with little evident tendency to move northward or
southward.

The next layer reconnects in a manner exactly like the previous one except that the central
flux rope (Z) now has flux Fz,2 = 2F . After the complete reconnection of that second layer
the central rope is wrapped three times by an overlying flux rope, twisted by Φ2′ . The flux
of the central rope is raised to Fz,3 = 3F , and its self-helicity is increased. Generalizing
Equation (31) to the nth stage of reconnection gives

F 2
z,n−1

2π
Φ̄z,n−1 + F 2

2π
Φ2′ + FFz,n−1

π
(6π + 2θr) = F 2

z,n

2π
Φ̄z,n, (34)

where Fz,n = nF is the flux of the rope and Φ̄z,n is its effective twist. Such a requirement
can be used to form a recursion relation for the effective twist:

Φ̄z,n = (n − 1)2

n2
Φ̄z,n−1 + 4(3π + θ(n)

r )(n − 1)

n2
+ 1

n2
Φ

(n)

2′ , (35)

where we introduce superscripts to Φ
(n)

2′ and θ(n)
r as a reminder that s̄ and L̄ decrease with

increasing n. The footpoint of the flux rope is now located at (wn−1 + wz)/2 so

θ(n)
r = tan−1

[
4(s̄ + L̄)

2wn + wn−1 + wz

]
. (36)
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Figure 13 The distribution of twist for an erupting flux rope beginning with a pre-formed flux rope with
twist Φr = 8π . The configuration is the same as in Figure 12, and the dashed curve, labeled “zipper”, repeats
the case Φ0 = 0 from that plot.

Expression (35) reduces to Equation (33) for the case n = 2 after defining Φ̄z,1 = Φ3, as a
result of the zipper phase. It also approaches the limit

Φ̄z,n → 6π + 2θ(n)
r , n � 1, (37)

reflecting the dominant contribution of the wrapping of each flux tube added to the central
rope. Figure 12 shows the mean twist values Φ̄z,n for a flux rope with L = s = 3wz and an
arcade spanning wz < w < wf = 2wz. The values are found by iterating Equation (35) for
n = 1,2, . . . ,8.

The flux rope that ultimately erupts is built up by a sequence of reconnection phases,
described above, which add both flux and magnetic helicity. We designate the accumulated
flux by f = Fz,n = nF and the effective twist within the central portion of flux f by Φ̄(f ) =
Φ̄z,n, which satisfies approximately the differential equation

dΦ̄

df
≈ Φ̄z,n − Φ̄z,n−1

F
= F − 2f

f 2
Φ̄ + 4(3π + θ(n)

r )(f − F)

f 2
+ FΦ2′(f )

f 2
. (38)

For an axisymmetric flux tube with twist density Φ(f ), the mean twist within the central
flux f is the weighted average (Priest, Longcope, and Janvier, 2016)

Φ̄(f ) = 2

f 2

f∫

0

Φ
(
f ′)f ′ df ′. (39)

Inverting this and using Equation (38) yields the twist density

Φ(f ) = 1

2f

d

df

[
f 2Φ̄(f )

]

= 6π + 2θr(f ) + F

2f

[
Φ̄(f ) + Φ2′(f ) − 12π − 4θr(f )

]
. (40)

The result, plotted in the right panel of Figure 12, is close to a uniform twist of Φ ≈ 6π , due
to the wrapping of flux from reconnecting the overlying layers. A very small central core
produced by the zipper phase is less twisted.

The above scenario produces a flux rope which is roughly uniformly twisted surrounding
a less twisted core. A highly twisted core is instead produced if the initial state includes a
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pre-formed flux rope with large twist Φr . This assumes the role of flux rope Z in Figure 5,
and the main-phase reconnection is of the form described in Section 4.2. The entire process
follows Equation (35), with Φ̄z,1 = Φr . Figure 13 shows the result when the initial flux rope
has Φr = 8π . This produces a central concentration in Φ(f ), around which is relatively
uniform twist closely matching the previous case (see dashed curve).

Several obvious modifications are possible to this scenario or to the earlier zipper case.
The number of elements (N ) in the outer layers may be increased. We have seen in the
previous section that increasing N makes only a modest change to the flux rope produced
by the zipper phase: ΦN−1 generally approaches 2π as N increases. It has a significant
effect on the main phase, since it results in a flux rope wrapping N − 1 times around the
core. The factor 3π + θ(n)

r is therefore replaced by (N − 1)π + θ(n)
r in Equation (35). More

generally, the partitioning of layers could vary with distance, in which case the factor would
be (Nn − 1)π + θ(n)

r , and the profile would become less uniform and approaches 2(Nn −
1)π +2θ(n)

r , instead of Equation (37). With this parametric freedom it appears to be possible
to produce twist profiles with a wide variety of forms.

6. Discussion

One of the key features of flares is that they start at some point along a polarity inversion
line and then spread during the rise phase in a direction along it. Later, during the main
phase the flare spreads outwards in a direction normal to the inversion line. Another feature
is that, when a flux rope that has originated in an erupting flare or a coronal mass ejection
is observed in interplanetary space, it can have either a relatively uniform twist profile or a
highly twisted core surrounded by a region where the twist is much more uniform.

We present a simple model to try and explain these observations by adopting three as-
sumptions, namely, conservation of magnetic flux and magnetic helicity and equipartition of
magnetic helicity, which allow us to compare the pre-flare and flaring situation. We suggest
that, during the phase of so-called 3D “zipper reconnection”, reconnection spreads along the
arcade away from the initiation site, and in so doing creates a twisted flux rope.

This either acts as the core for the erupting flux rope if the initial state is a sheared arcade,
or it wraps around a twisted flux rope that is present in the pre-flare state. In the former case
a twisted flux rope is created with a moderate twist of typically only one turn. In the latter
case when a pre-flare flux rope is present, a much more highly twisted core can be produced
with a typical twist of

ΦER = ΦZ

4
+ (n + 1)π, (41)

namely, roughly (n + 1)/2 turns. Here

n = Fribbon

FR

, (42)

where FR is the magnetic flux of the new flux rope (A+ in Figure 8) and Fribbon is the mag-
netic flux in one of the flare ribbons when it is first fully formed (A+B+C+D+ in Figure 8).
Hence the greater the number of times that the new flux rope reconnects with the magnetic
flux of the initial flare ribbons as it zippers its way along the polarity inversion line, the
larger the number of turns produced.

The initial phase of a two-ribbon flare is clearly not produced by 2D reconnection, since
the flare ribbons do not form instantaneously. Rather, the energy release is observed to be
inhomogeneous and to fragment along the PIL: it starts at one location and then spreads
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along the PIL by what we term zipper reconnection. Thus, the magnetic flux is quantized,
in the sense that only one part of the flux reconnects initially. We suggest that this initial
quantum of flux then reconnects again with another quantum located further along the PIL
and so the process continues in a zipper-like manner and forms the whole flare ribbon.

The cause of this quantization may be that the initial resistive instability involves just one
part of the whole configuration or is focused in one part with a certain quantum of flux; or
perhaps in some events the photospheric flux itself is concentrated rather than being spread
uniformly along the PIL. As we have seen the size of the quantum is important, since the
resulting twist created by zipper reconnection is proportional to the ratio of the total flux to
the quantum (see Equation (25)).

We have chosen to model the zipper process most simply by assuming the magnetic flux
itself is fragmented in a series of flux sources located along the PIL (e.g., Figure 6). It may
be possible in the future to simulate the process with an initial field that is not fragmented,
but in which the magnetic reconnection begins at one location (as observed) rather than
beginning simultaneously all along the PIL (as in a purely 2D model).

After the zipper phase, quasi-2D “main-phase reconnection” causes the reconnection to
spread in a direction normal to the polarity inversion line, enhancing the flux rope with
a twist that is uniform along the rope but varies with radius. It also creates an arcade of
rising flare loops and separating chromospheric ribbons. Our simple model shows how the
mean twist in the flux rope depends on the various geometrical properties of the pre-flare
configuration, and we are also able to deduce the variation with flux of the internal twist
inside the flux rope.

The new aspects are: a deduction of the amount of twist in the erupting flux rope from
the initial geometry and the nature of the reconnection; the suggestion that the initial zipper
phase of reconnection during the establishment of the flare loops and flare ribbons can build
up strong core twist in the erupting flux rope; and a new relation between the resulting core
twist and the ratio of the fluxes in the ribbons and the new part of the flux rope.

Interplanetary flux ropes of uniform twist could be produced either from an initial sheared
arcade (provided it becomes eruptively unstable) or from an arcade containing an initial flux
rope of moderate twist (up to one or two turns, which is more likely to become unstable).
Interplanetary ropes of high twist, on the other hand, could be produced if the initial flux
rope has high twist (in excess of two turns) or an active zipper phase creates many new turns
around the initial flux rope.

In the future, to help predict radial twist profiles in magnetic clouds, it would be useful
to measure the pre-flare geometry and dimensions of the flare region, the twist in an initial
flux rope before eruption, and the magnetic fluxes in the initial ribbons and the new initial
flux rope as well as the total flux mapped out by the ribbons in their transverse motion.

Other important aspects to study include: determining whether the assumption of mag-
netic helicity equipartition is a good one or needs to be modified; comparing the model with
observations and computational experiments, and making it more realistic; including the ex-
tra constraints from energy considerations; deducing the twist in an initial flux rope from
observations; and determining the flux of the zipper flux rope by comparison with that of
the overlying arcade and its effect on the erupting flux rope.
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Appendix: Twist Produced by the First Zippette

The twist produced by the first zippette from two initially untwisted flux tubes is, from
Equation (17),

tan(Φ1) = − 2L̄2s̄

9(s̄2 + 1)2 − (s̄2 − 1)L̄2
, (43)

where, when there is no shear initially (i.e., when s̄ = 0), we know that Φ1 = π .
After writing L̄2 = 18a and tan(Φ1) = f̄ = 4af , the function f (s̄, a) becomes

f (s̄, a) ≡ − s̄

g(s̄, a)
= − s̄

s̄4 + 2(1 − a)s̄2 + 1 + 2a
. (44)

First of all, note that f = 0 (and so Φ1 = π ) at s̄ = 0 and as s̄ tends to ±∞. Also, f is
an odd function of s̄, so that Φ1 − π is an antisymmetric function of s̄. For values of a for
which g(s̄, a) > 0 (namely, 0 < a < 4, as we shall prove below), f < 0 when s̄ > 0 so that
π/2 < Φ1 < π , whereas f > 0 when s̄ < 0 so that π < Φ1 < 3π/2. On the other hand,
if g(s̄, a) dips below 0 (which occurs when a > 4), then there is a range of s̄ for which
0 < Φ1 < π/2 for s̄ > 0 and 3π/2 < Φ1 < 2π for s̄ < 0.

In order to establish these facts and sketch the curves, consider first g(s̄, a) = s̄4 + 2(1 −
a)s̄2 + 1 + 2a, which is an even function of s̄, so we focus on its behavior when s̄ ≥ 0. At
s̄ = 0, g = 1 + 2a, which is always positive (since a > 0) and increases with a, as indicated
by the variation in the position of the large dot in the top row of Figure 14. Also, g(s̄, a) is
positive when a < 4 but vanishes when a > 4 at two positive values and two negative values
given by

s̄2 = a − 1 ± √
a(a − 4). (45)

The two positive values coincide at s̄ = √
3 when a = 4.

Turning points of g(s̄, a) as a function of s̄ for fixed a are given by

∂g

∂s̄
= 4s̄

(
s̄2 + 1 − a

)
. (46)

Thus, when a < 1 there is only one turning point (a minimum) at s̄ = 0. However, when
a > 1 two more turning points appear at

s̄ = ±√
a − 1, (47)

which increases in magnitude with a. The value of g(s̄, a) at these two new turning points
is

gmin = a(4 − a), (48)

which represent minima, since there is only one turning point in the range s̄ > 0, g(0, a) > 0
and g → +∞ as s̄ → +∞. Thus, when a > 1, the turning point at the origin becomes a
maximum. The minimum value gmin is positive when 1 < a < 4 but is negative when a > 4,
namely, when the four extra zeros of g(s̄, a) appear. Putting together this information, we
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Figure 14 The forms of g(s̄, a) and the flux rope twist Φ1(s̄, a) after one zippette as functions of s̄ for:
(a) 0 < a < 1 (i.e., 0 < L̄ < 3

√
2; (b) 1 < a < 4 (i.e., 3

√
2 < L̄ < 6

√
2); and (c) a > 4 (i.e., L̄ > 6

√
2), where

L̄2 = 18a, s̄ = s/wz is the ratio of the arcade shear to its width in Figure 6, and L̄ = L/wz is the ratio of the
arcade length to its width.

arrive at the qualitative behavior of g(s̄, a) for different ranges of a shown in the top row of
Figure 14.

Next, consider f (s̄, a) = tanΦ1/(4a) and the corresponding form for the twist Φ1. First
of all, note that f vanishes only at s̄ = 0 and as s̄ → ±∞ and its gradient ∂f/∂s̄ at the origin
is −1/(1 + 2a), which is always negative and decreases in magnitude as a increases.

For 0 < a < 4 (i.e., L̄ < 6
√

2), g > 0 and so f is finite. It is negative when s̄ is positive
and positive when s̄ is negative, so that π/2 < Φ1 < 3π/2 (see the bottom row of Figure 14a
and b).

Furthermore, f (s̄, a) as a function of s̄ possesses a turning point where

∂f

∂s̄
= − (s̄2 + 1)(−3s̄2 + 1 + 2a)

(s̄4 + 2(1 − a)s̄2 + 1 + 2a)2
(49)

vanishes, namely, at

s̄ = ±
√

1 + 2a

3
. (50)

The value (fmin) at s̄ = +√
(1 + 2a)/3 is

fmin = 3
√

3

4
√

1 + 2a(a − 4)
, (51)

which is positive when a > 4 and negative when 0 < a < 4.
When a > 4 (i.e., L̄ > 6

√
2), in the region where s̄ > 0 there are two locations where f

becomes infinite, and between them f becomes positive and possesses a minimum. These



 25 Page 28 of 31 E.R. Priest, D.W. Longcope

correspond to two locations where Φ1 passes through π/2, between which Φ1 possesses a
minimum larger than 0. In the region s̄ < 0 there are also two locations where f becomes
infinite, between which f is negative and possesses a maximum. These correspond to two
locations where Φ1 passes through 3π/2, between which Φ1 possesses a maximum smaller
than 2π . These features are indicated on the bottom row of Figure 14c.
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