38 research outputs found

    Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain.

    Get PDF
    The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N = 6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data

    COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex

    Get PDF
    International audienceVasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE(2)) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE(2) is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets

    Contributions and complexities from the use of in-vivo animal models to improve understanding of human neuroimaging signals.

    Get PDF
    Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in-vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anaesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologues within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges

    Dysregulation of neuronal iron homeostasis as an alternative unifying effect of mutations causing familial Alzheimer's disease

    Get PDF
    The overwhelming majority of dominant mutations causing early onset familial Alzheimer's disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An effect-in-common of these mutations is alteration of production of the APP-derived peptide, amyloid ß (Aß). It is this key fact that underlies the authority of the Amyloid Hypothesis that has informed Alzheimer's disease research for over two decades. Any challenge to this authority must offer an alternative explanation for the relationship between the PSEN genes and APP. In this paper, we explore one possible alternative relationship - the dysregulation of cellular iron homeostasis as a common effect of EOfAD mutations in these genes. This idea is attractive since it provides clear connections between EOfAD mutations and major characteristics of Alzheimer's disease such as dysfunctional mitochondria, vascular risk factors/hypoxia, energy metabolism, and inflammation. We combine our ideas with observations by others to describe a "Stress Threshold Change of State" model of Alzheimer's disease that may begin to explain the existence of both EOfAD and late onset sporadic (LOsAD) forms of the disease. Directing research to investigate the role of dysregulation of iron homeostasis in EOfAD may be a profitable way forward in our struggle to understand this form of dementia

    Expression et fonction des présénilines vasculaires et exploration de l’hypothèse vasculaire de la Maladie d’Alzheimer

    No full text
    Les présénilines PS1 et PS2 sont impliquées dans plusieurs fonctions cellulaires par l’intermédiaire de leur activité protéolytique ?-sécrétase qui clive de nombreux substrats y compris la protéine précurseur amyloïde (APP). Les mutations des présénilines, à l’origine des formes familiales de la maladie d’Alzheimer (MA), augmentent la production de peptides ß-amyloïde (Aß) qui s’accumulent dans le parenchyme cérébral et dans la paroi vasculaire, et affectent les signaux calciques de plusieurs types cellulaires. Le réseau vasculaire des patients atteints de la MA est affecté structurellement et fonctionnellement bien avant que ne se déclarent les troubles cognitifs. De plus, les pathologies cardiovasculaires sont des facteurs de risque majeurs pour les formes sporadiques de la MA. Comme les bases moléculaires de la vasculopathie liée à la MA ne sont pas établies, nous avons choisi les présénilines comme molécule cible dans le système vasculaire. Nous avons montré l’expression des présénilines et des protéines partenaires du complexe ?-sécrétase, Nicastrine, Aph-1 et Pen-2 dans les vaisseaux cérébraux et périphériques. L’ensemble génère une activité ?-sécrétase et la production de peptides Aß pathogènes dans les cellules musculaires lisses, soutenant l’hypothèse de l’origine vasculaire d’Aß dans la pathologie amyloïde. De plus, les mutations de PS1 dérégulent la signalisation calcique intracellulaire des artères cérébrales, en augmentant l’activité des canaux de libération du Ca2+ activés par l’IP3 (IP3R) et la recapture du Ca2+ par les pompes du réticulum sarco-endoplasmique Ca2+-ATPase (SERCA). La dérégulation de l’homéostasie calcique par les présénilines mutées pourrait avoir des conséquences sur la réactivité vasculaire des vaisseaux cérébraux. En conclusion, nous avons mis en évidence l’importance physiologique des présénilines dans le réseau vasculaire et l’ensemble de nos travaux permet de mieux comprendre comment les vaisseaux participent à l’apparition des symptômes cliniques de la MA que sont la surproduction d’Aß et l’hypoperfusion cérébrale.Presenilins PS1 and PS2 are involved in several cellular functions through their ?- secretase proteolytic activity, which cleaves many substrates including the amyloid precursor protein (APP). Mutations in presenilins genes are responsible for the majority of familial forms of Alzheimer's disease (AD). Presenilins mutations increased production of ß-amyloid peptide (Aß) that accumulates in the brain parenchyma and the vascular wall, and affect calcium signals in several cell types. The vasculature of patients with AD is structurally and functionally affected before cognitive impairment appearance. In addition, cardiovascular diseases are major risk factors for sporadic forms of AD. As the molecular basis of the vasculopathy associated with AD is not established, we chose presenilins as target molecule in the vascular system. We showed the expression of presenilin and protein partners of ?-secretase complex, nicastrin, Aph-1 and Pen-2 in cerebral and peripheral blood vessels. Vascular wall generate a ?-secretase activity and production of pathogenic Aß peptides supporting the hypothesis of vascular origin of Aß in amyloid pathology. Furthermore, PS1 mutations disturb intracellular calcium signalling in cerebral arteries by first increasing channel activity of Ca2+ release activated by IP3 (IP3R) and second increasing reuptake of Ca2+ by Sarco/Endoplasmic Reticulum Ca2+-ATPase pump (SERCA). Dysregulation of calcium homeostasis by the mutant presenilins might affect vascular reactivity of cerebral vessels. In conclusion, we demonstrated the physiological importance of presenilins in the vascular network and our studies provide new insight on how cerebral blood vessels are involved in the onset of clinical symptoms of AD such as the overproduction of Aß and cerebral hypoperfusion

    Expression et fonction des présénilines vasculaires et exploration de l’hypothèse vasculaire de la Maladie d’Alzheimer

    No full text
    Les présénilines PS1 et PS2 sont impliquées dans plusieurs fonctions cellulaires par l’intermédiaire de leur activité protéolytique ?-sécrétase qui clive de nombreux substrats y compris la protéine précurseur amyloïde (APP). Les mutations des présénilines, à l’origine des formes familiales de la maladie d’Alzheimer (MA), augmentent la production de peptides ß-amyloïde (Aß) qui s’accumulent dans le parenchyme cérébral et dans la paroi vasculaire, et affectent les signaux calciques de plusieurs types cellulaires. Le réseau vasculaire des patients atteints de la MA est affecté structurellement et fonctionnellement bien avant que ne se déclarent les troubles cognitifs. De plus, les pathologies cardiovasculaires sont des facteurs de risque majeurs pour les formes sporadiques de la MA. Comme les bases moléculaires de la vasculopathie liée à la MA ne sont pas établies, nous avons choisi les présénilines comme molécule cible dans le système vasculaire. Nous avons montré l’expression des présénilines et des protéines partenaires du complexe ?-sécrétase, Nicastrine, Aph-1 et Pen-2 dans les vaisseaux cérébraux et périphériques. L’ensemble génère une activité ?-sécrétase et la production de peptides Aß pathogènes dans les cellules musculaires lisses, soutenant l’hypothèse de l’origine vasculaire d’Aß dans la pathologie amyloïde. De plus, les mutations de PS1 dérégulent la signalisation calcique intracellulaire des artères cérébrales, en augmentant l’activité des canaux de libération du Ca2+ activés par l’IP3 (IP3R) et la recapture du Ca2+ par les pompes du réticulum sarco-endoplasmique Ca2+-ATPase (SERCA). La dérégulation de l’homéostasie calcique par les présénilines mutées pourrait avoir des conséquences sur la réactivité vasculaire des vaisseaux cérébraux. En conclusion, nous avons mis en évidence l’importance physiologique des présénilines dans le réseau vasculaire et l’ensemble de nos travaux permet de mieux comprendre comment les vaisseaux participent à l’apparition des symptômes cliniques de la MA que sont la surproduction d’Aß et l’hypoperfusion cérébrale.Presenilins PS1 and PS2 are involved in several cellular functions through their ?- secretase proteolytic activity, which cleaves many substrates including the amyloid precursor protein (APP). Mutations in presenilins genes are responsible for the majority of familial forms of Alzheimer's disease (AD). Presenilins mutations increased production of ß-amyloid peptide (Aß) that accumulates in the brain parenchyma and the vascular wall, and affect calcium signals in several cell types. The vasculature of patients with AD is structurally and functionally affected before cognitive impairment appearance. In addition, cardiovascular diseases are major risk factors for sporadic forms of AD. As the molecular basis of the vasculopathy associated with AD is not established, we chose presenilins as target molecule in the vascular system. We showed the expression of presenilin and protein partners of ?-secretase complex, nicastrin, Aph-1 and Pen-2 in cerebral and peripheral blood vessels. Vascular wall generate a ?-secretase activity and production of pathogenic Aß peptides supporting the hypothesis of vascular origin of Aß in amyloid pathology. Furthermore, PS1 mutations disturb intracellular calcium signalling in cerebral arteries by first increasing channel activity of Ca2+ release activated by IP3 (IP3R) and second increasing reuptake of Ca2+ by Sarco/Endoplasmic Reticulum Ca2+-ATPase pump (SERCA). Dysregulation of calcium homeostasis by the mutant presenilins might affect vascular reactivity of cerebral vessels. In conclusion, we demonstrated the physiological importance of presenilins in the vascular network and our studies provide new insight on how cerebral blood vessels are involved in the onset of clinical symptoms of AD such as the overproduction of Aß and cerebral hypoperfusion

    Revisiting enigmatic cortical calretinin-expressing interneurons

    Get PDF
    International audienceCortical calretinin (CR)-expressing interneurons represent a heterogeneous subpopulation of about 10–30% of GABAergic interneurons, which altogether total ca. 12–20% of all cortical neurons. In the rodent neocortex, CR cells display different somatodendritic morphologies ranging from bipolar to multipolar but the bipolar cells and their variations dominate. They are also diverse at the molecular level as they were shown to express numerous neuropeptides in different combinations including vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), neurokinin B (NKB) corticotrophin releasing factor (CRF), enkephalin (Enk) but also neuropeptide Y (NPY) and somatostatin (SOM) to a lesser extent. CR-expressing interneurons exhibit different firing behaviors such as adapting, bursting or irregular. They mainly originate from the caudal ganglionic eminence (CGE) but a subpopulation also derives from the dorsal part of the medial ganglionic eminence (MGE). Cortical GABAergic CR-expressing interneurons can be divided in two main populations: VIP-bipolar interneurons deriving from the CGE and SOM-Martinotti-like interneurons originating in the dorsal MGE. Although bipolar cells account for the majority of CR-expressing interneurons, the roles they play in cortical neuronal circuits and in the more general metabolic physiology of the brain remained elusive and enigmatic. The aim of this review is, firstly, to provide a comprehensive view of the morphological, molecular and electrophysiological features defining this cell type. We will, secondly, also summarize what is known about their place in the cortical circuit, their modulation by subcortical afferents and the functional roles they might play in neuronal processing and energy metabolism
    corecore