61 research outputs found
Recommended from our members
Static Mixing Nozzles for Long and Short Fiber Additive Extrusion Processes
Additive manufacturing is conventionally used to create structures by extruding plastic or
metal layer by layer. In the case of polymer processes, fibers are typically added to increase stiffness and
reduce warping during building. The length of the fiber exiting the nozzle can impact the overall
mechanical properties of the structure. Using long fiber pellets can increase the starting length of the
pellets to help increase the average fiber length coming out from the extruder. However, extruded long
fiber materials tend to have low fiber alignment and high porosity leading to poor mechanical properties.
By blending long fiber and short fiber resins using a static mixing nozzle, consolidated beads can be
created to produce more stable and solid structures while adding a fixed amount of long fiber into the
extruded bead to increase mechanical performance.Mechanical Engineerin
Digital girl:Cyberfeminism and the emancipation potential of digital entrepreneurship in emerging economies
Digital entrepreneurship has been described as a “great leveler” in terms of equalizing the
entrepreneurial playing field for women. However, little is known of the emancipatory
possibilities offered by digital entrepreneurship for women constrained by social and cultural
practices such as male guardianship of female relatives and legally enforced gender
segregation. In order to address this research gap, this paper examines women’s engagement
in digital entrepreneurship in emerging economies with restrictive social and cultural practices.
In so doing, we draw upon the analytical frameworks provided by entrepreneurship as
emancipation and cyberfeminism. Using empirical data from an exploratory investigation of
entrepreneurship in Saudi Arabia, we examine how women use digital technologies in the
pursuit of entrepreneurial opportunities. Our findings reveal that women in Saudi Arabia use
digital entrepreneurship to transform their embodied selves and lived realities rather than to
escape gender embodiment as offered by the online environment
Green and animal manure use in organic field crop systems
Dual-use cover/green manure (CGM) crops and animal manure are used to supply nitrogen (N) and phosphorus (P) to organically grown field crops. A comprehensive review of previous research was conducted to identify how CGM crops and animal manure have been used to meet N and P needs of organic field crops, and to identify knowledge gaps to direct future research efforts. Results indicate that: (a) CGM crops are used to provide N to subsequent cash crops in rotations; (b) CGM-supplied N generally can meet field crop needs in warm, humid regions but is insufficient for organic grain crops grown in cool and sub-humid regions; (c) adoption of conservation tillage practices can create or exacerbate N deficiencies; (d) excess N and P can result where animal manures are accessible if application rates are not carefully managed; and (e) integrating animal grazing into organic field crop systems has potential benefits but is generally not practiced. Work is needed to better understand the mechanisms governing the release of N by CGM crops to subsequent cash crops, and the legacy effects of animal manure applications in cool and sub-humid regions. The benefits and synergies that can occur by combining targeted animal grazing and CGMs on soil N, P, and other nutrients should be investigated. Improved communication and networking among researchers can aid efforts to solve soil fertility challenges faced by organic farmers when growing field crops in North America and elsewhere
A TRPV Channel Modulates C. elegans Neurosecretion, Larval Starvation Survival, and Adult Lifespan
For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1) stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV) channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion
Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases
Biology of human hair: Know your hair to control it
Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …