865 research outputs found

    Active vitamin D (1,25-dihydroxyvitamin D) and bone health in middle-aged and elderly men: the European male aging study (EMAS)

    Get PDF
    <p>Context: There is little information on the potential impact of serum 1,25-dihydroxyvitamin D [1,25(OH)2D] on bone health including turnover.</p> <p>Objective: The objective of the study was to determine the influence of 1,25(OH)2D and 25-hydroxyvitamin D [25(OH)D] on bone health in middle-aged and older European men.</p> <p>Design, Setting, and Participants: Men aged 40–79 years were recruited from population registers in 8 European centers. Subjects completed questionnaires that included questions concerning lifestyle and were invited to attend for quantitative ultrasound (QUS) of the heel, assessment of height and weight, and a fasting blood sample from which 1,25(OH)2D, 25(OH)D, and PTH were measured. 1,25(OH)2D was measured using liquid chromatography tandem mass spectrometry. Bone markers serum N-terminal propeptide of type 1 procollagen (P1NP) and crosslinks (β-cTX) were also measured. Dual-energy x-ray absorptiometry (DXA) of the hip and lumbar spine was performed in 2 centers.</p> <p>Main Outcome Measure(s): QUS of the heel, bone markers P1NP and β-cTX, and DXA of the hip and lumbar spine were measured.</p> <p>Results: A total of 2783 men, mean age 60.0 years (SD 11.0) were included in the analysis. After adjustment for age and center, 1,25(OH)2D was positively associated with 25(OH)D but not with PTH. 25(OH)D was negatively associated with PTH. After adjustment for age, center, height, weight, lifestyle factors, and season, 1,25(OH)2D was associated negatively with QUS and DXA parameters and associated positively with β-cTX. 1,25(OH)2D was not correlated with P1NP. 25(OH)D was positively associated with the QUS and DXA parameters but not related to either bone turnover marker. Subjects with both high 1,25(OH)2D (upper tertile) and low 25(OH)D (lower tertile) had the lowest QUS and DXA parameters and the highest β-cTX levels.</p> <p>Conclusions: Serum 1,25(OH)2D is associated with higher bone turnover and poorer bone health despite being positively related to 25(OH)D. A combination of high 1,25(OH)2D and low 25(OH)D is associated with the poorest bone health.</p&gt

    Active vitamin D (1,25-dihydroxyvitamin D) and bone health in middle-aged and elderly men: the European male aging study (EMAS)

    Get PDF
    <p>Context: There is little information on the potential impact of serum 1,25-dihydroxyvitamin D [1,25(OH)2D] on bone health including turnover.</p> <p>Objective: The objective of the study was to determine the influence of 1,25(OH)2D and 25-hydroxyvitamin D [25(OH)D] on bone health in middle-aged and older European men.</p> <p>Design, Setting, and Participants: Men aged 40–79 years were recruited from population registers in 8 European centers. Subjects completed questionnaires that included questions concerning lifestyle and were invited to attend for quantitative ultrasound (QUS) of the heel, assessment of height and weight, and a fasting blood sample from which 1,25(OH)2D, 25(OH)D, and PTH were measured. 1,25(OH)2D was measured using liquid chromatography tandem mass spectrometry. Bone markers serum N-terminal propeptide of type 1 procollagen (P1NP) and crosslinks (β-cTX) were also measured. Dual-energy x-ray absorptiometry (DXA) of the hip and lumbar spine was performed in 2 centers.</p> <p>Main Outcome Measure(s): QUS of the heel, bone markers P1NP and β-cTX, and DXA of the hip and lumbar spine were measured.</p> <p>Results: A total of 2783 men, mean age 60.0 years (SD 11.0) were included in the analysis. After adjustment for age and center, 1,25(OH)2D was positively associated with 25(OH)D but not with PTH. 25(OH)D was negatively associated with PTH. After adjustment for age, center, height, weight, lifestyle factors, and season, 1,25(OH)2D was associated negatively with QUS and DXA parameters and associated positively with β-cTX. 1,25(OH)2D was not correlated with P1NP. 25(OH)D was positively associated with the QUS and DXA parameters but not related to either bone turnover marker. Subjects with both high 1,25(OH)2D (upper tertile) and low 25(OH)D (lower tertile) had the lowest QUS and DXA parameters and the highest β-cTX levels.</p> <p>Conclusions: Serum 1,25(OH)2D is associated with higher bone turnover and poorer bone health despite being positively related to 25(OH)D. A combination of high 1,25(OH)2D and low 25(OH)D is associated with the poorest bone health.</p&gt

    Genome of the house fly, <i>Musca domestica</i> L., a global vector of diseases with adaptations to a septic environment

    Get PDF
    Background: Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. Results: We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation. Conclusions: This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies

    Sub region-specific modulation of synchronous neuronal burst firing after a kainic acid insult in organotypic hippocampal cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excitotoxicity occurs in a number of pathogenic states including stroke and epilepsy. The adaptations of neuronal circuits in response to such insults may be expected to play an underlying role in pathogenesis. Synchronous neuronal firing can be induced in isolated hippocampal slices and involves all regions of this structure, thereby providing a measure of circuit activity. The effect of an excitotoxic insult (kainic acid, KA) on Mg<sup>2+</sup>-free-induced synchronized neuronal firing was tested in organotypic hippocampal culture by measuring extracellular field activity in CA1 and CA3.</p> <p>Results</p> <p>Within 24 hrs of the insult regional specific changes in neuronal firing patterns were evident as: (i) a dramatic <it>reduction </it>in the ability of CA3 to generate firing; and (ii) a contrasting <it>increase </it>in the frequency and duration of synchronized neuronal firing events in CA1. Two distinct processes underlie the increased propensity of CA1 to generate synchronized burst firing; a lack of ability of the CA3 region to 'pace' CA1 resulting in an increased frequency of synchronized events; and a change in the 'intrinsic' properties limited to the CA1 region, which is responsible for increased event duration. Neuronal quantification using NeuN immunoflurescent staining and stereological confocal microscopy revealed no significant cell loss in hippocampal sub regions, suggesting that changes in the properties of neurons within this region were responsible for the KA-mediated excitability changes.</p> <p>Conclusion</p> <p>These results provide novel insight into adaptation of hippocampal circuits following excitotoxic injury. KA-mediated disruption of the interplay between CA3 and CA1 clearly increases the propensity to synchronized firing in CA1.</p

    Linking behaviour and climate change in intertidal ectotherms: insights from littorinid snails

    Get PDF
    A key element missing from many predictive models of the impacts of climate change on intertidal ectotherms is the role of individual behaviour. In this synthesis, using littorinid snails as a case study, we show how thermoregulatory behaviours may buffer changes in environmental temperatures. These behaviours include either a flight response, to escape the most extreme conditions and utilize warmer or cooler environments; or a fight response, where individuals modify their own environments to minimize thermal extremes. A conceptual model, generated from studies of littorinid snails, shows that various flight and fight thermoregulatory behaviours may allow an individual to widen its thermal safety margin (TSM) under warming or cooling environmental conditions and hence increase species’ resilience to climate change. Thermoregulatory behaviours may also buffer sublethal fitness impacts associated with thermal stresses. Through this synthesis, we emphasise that future studies need to consider not only animals' physiological limits but also their capacities to buffer the impact of climate change through behavioural responses. Current generalizations, made largely on physiological limits of species, often neglect the buffering effects of behaviour and may, therefore, provide an over-estimation of vulnerability, and consequently poor prediction of the potential impacts of climate change on intertidal ectotherms

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap

    Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Get PDF
    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore